## REFERENCES

[1] H. HOTELLING, "Some new methods in matrix calculation," Annals of Math Stat., Vol. 14 (1943), pp. 1-35.

[2] P. S. DWYER, "The solution of simultaneous equations," Psychometrika, Vol. 6 (1941), p. 101.

## A CLASS OF RANDOM VARIABLES WITH DISCRETE DISTRIBUTIONS

ALBERT NOACK

Cologne, Germany

1. General results. A large class of random variables with discrete probability distributions can be derived from certain power series. Let

$$f(z) = \sum_{x=0}^{\infty} a_x z^x, \quad a_x \text{ real}, \quad |z| < r.$$

We may have either non-negative coefficients  $a_x$  or we may have  $(-1)^x a_x \ge 0$ . In the first case take 0 < z < r; and in the second case take -r < z < 0. Define a random variable with the distribution

(1) 
$$P\{\xi = x\} = \frac{a_x z^x}{f(z)}; \qquad x = 0, 1, 2, \cdots.$$

The above conditions insure  $P\{\xi = x\} \ge 0$  for all x; besides

$$\sum_{x} P\{\xi = x\} = \frac{1}{f(z)} \sum_{x} a_x z^x = 1.$$

The distribution of  $\xi$  may be called the power series distribution (p.s.d.). The mean of such a distribution is

$$E(\xi) = \sum_{x} xP\{\xi = x\} = \frac{1}{f(z)} \sum_{x} xa_{x}z^{x}.$$

Hence it follows that

(2) 
$$E(\xi) = z \frac{f'(z)}{f(z)} = z \frac{d}{dz} \log f(z).$$

We have for the moments about the origin

$$\mu'_r = \sum_x x^r P\{\xi = x\} = \frac{1}{f(z)} \sum_x x^r a_x z^x,$$

and hence

$$z \frac{d\mu'_r}{dz} = \frac{1}{f(z)} \sum_x x^{r+1} a_x z^x - z \frac{f'(z)}{f(z)} \frac{1}{f(z)} \sum_x x^r a_x z^x.$$

Thus we have the recurrence relation

(3) 
$$\mu'_{r+1} = z \frac{d\mu'_r}{dz} + \mu'_1 \mu'_r.$$

The central moments are

$$\mu_r = \sum_x (x - \mu_1')^r P\{\xi = x\} = \frac{1}{f(z)} \sum_x (x - \mu_1')^r a_x z^x,$$

and hence

$$z \frac{d\mu_r}{dz} = \frac{1}{f(z)} \sum_{x} x(x - \mu_1')^r a_x z^x - zr \frac{d\mu_1'}{dz} \frac{1}{f(z)} \sum_{x} (x - \mu_1')^{r-1} a_x z^x - z \frac{f'(z)}{f(z)} \cdot \frac{1}{f(z)} \sum_{x} (x - \mu_1')^r a_x z^x.$$

The sum of the first and third term will be found to be  $\mu_{r+1}$ , hence

$$z \frac{d\mu_r}{dz} = \mu_{r+1} - rz \frac{d\mu'_1}{dz} \mu_{r-1}$$
,

whence we have for the central moments of a p.s.d. the recurrence relation

(4) 
$$\mu_{r+1} = z \left[ \frac{d\mu_r}{dz} + r \frac{d\mu'_1}{dz} \mu_{r-1} \right].$$

Putting r = 1,  $\mu_0 = 1$ ,  $\mu_r = 0$ , we get the variance of  $\xi$ 

(5) 
$$\mu_2 = \sigma^2(\xi) = z \frac{d\mu_1'}{dz} = z^2 \frac{d^2}{dz^2} \log f(z) + \mu_1' = z^2 \frac{f''(z)}{f(z)} - z^2 \left[ \frac{f'(z)}{f(z)} \right]^2 + z \frac{f'(z)}{f(z)}.$$

By (5), (4) assumes the form

(4') 
$$\mu_{r+1} = z \frac{d\mu_r}{dz} + r\mu_2 \mu_{r-1}.$$

The characteristic function of  $\xi$  is

$$\varphi(t) = \sum_{x} e^{itx} P\{\xi = x\} = \frac{1}{f(z)} \sum_{x} a_x e^{itx} z^x,$$

 $\mathbf{or}$ 

(6) 
$$\varphi(t) = \frac{f(e^{it}z)}{f(z)}.$$

To get a relation connecting the cumulants  $\kappa_n$  and the moments  $\mu'_r$  about the origin, we differentiate both sides of the identity

$$\sum_{r=1}^{\infty} \frac{\kappa_r}{r!} (it)^r = \log \sum_{\rho=0}^{\infty} \frac{\mu_{\rho}'}{\rho!} (it)^{\rho}$$

with respect to (it), identifying coefficients in (it)<sup>r-1</sup> we get<sup>1</sup>

(7) 
$$\mu'_{r} = \sum_{j=1}^{r} {r-1 \choose j-1} \mu'_{r-j} \kappa_{j}.$$

Differentiation of (7) with respect to z gives

(7') 
$$\frac{d\mu'_r}{dz} = \sum_{j=1}^r \binom{r-1}{j-1} \left[ \frac{d\mu'_{r-j}}{dz} \kappa_j + \mu'_{r-j} \frac{d\kappa_j}{dz} \right].$$

Substitution of (7) and (7') in (3) gives

$$\sum_{j=1}^{r+1} \binom{r}{j-1} \mu'_{r+1-j} \kappa_j = \sum_{j=1}^{r} \binom{r-1}{j-1} \left\{ \left[ z \frac{d \mu'_{r-j}}{dz} + \mu'_1 \mu'_{r-j} \right] \kappa_j + z \mu'_{r-j} \frac{d \kappa_j}{dz} \right\},$$

or by (3) after a little re-arrangement

(8) 
$$\kappa_{r+1} = z \sum_{j=1}^{r} {r-1 \choose j-1} \mu'_{r-j} \frac{d\kappa_j}{dz} - \sum_{j=2}^{r} {r-1 \choose j-2} \mu'_{r+1-j} \kappa_j.$$

## 2. Special cases.

(a) Choosing  $f(z) = e^{z}$ ,  $\xi$  has Poisson-distribution

(1a) 
$$P\{\xi = x\} = \frac{z^x e^{-z}}{x!}.$$

- (2) and (5) are the well known relations  $E(\xi) = \sigma^2(\xi) = z$ ; the recurrence formula
- (4) assumes the form<sup>2</sup>

(4a) 
$$\mu_{r+1} = z \left[ \frac{d\mu_r}{dz} + r\mu_{r-1} \right].$$

(b) Taking  $f(z) = (1 - z)^{-k}$ , k > 0, 0 < z < 1 we get the so-called negative binomial distribution

(1b) 
$$P\{\xi = x\} = \frac{\Gamma(k+x)}{x! \Gamma(k)} z^x (1-z)^k, \qquad x = 0, 1, 2, \cdots.$$

The mean is

(2b) 
$$E(\xi) = \frac{kz}{1-z},$$

while the recurrence formula for the central moments is

(4b) 
$$\mu_{r+1} = z \left[ \frac{d\mu_r}{dz} + \frac{rk}{(1-z)^2} \mu_{r-1} \right],$$

hence the first three moments of this distribution are

$$\sigma^2(\xi) = \mu_2 = \frac{kz}{(1-z)^2},$$

<sup>&</sup>lt;sup>1</sup> Cf. M. G. Kendall, The Advanced Theory of Statistics, Vol. I, p. 87.

<sup>&</sup>lt;sup>2</sup> Cf. Craig, Am. Math. Soc. Bull., Vol. 40 (1934), p. 262.

(5b) 
$$\mu_3 = \frac{kz(1+z)}{(1-z)^3},$$

$$\mu_4 = \frac{kz(1+4z+z^2+3kz)}{(1-z)^4}.$$

The characteristic function of the distribution is

(6b) 
$$\varphi(t) = \left(\frac{1 - e^{it}z}{1 - z}\right)^{-k}.$$

Writing  $z = \eta/(1 + \eta)$ ,  $k = h/\eta$ ,  $\eta > 0$ , h > 0 we get the so-called Polya-Eggenberger distribution for rare contagious events<sup>3</sup>.

(1b<sub>1</sub>) 
$$w\{\xi = x\} = \frac{\Gamma\left(\frac{h}{\eta} + x\right)}{x! \Gamma(h\eta^{-1})} \left(\frac{\eta}{1+\eta}\right)^x (1+\eta)^{-h/\eta}, \quad x = 0, 1, 2, \cdots.$$

The first four moments of this distribution are

(5b<sub>1</sub>) 
$$\mu_2 = h(1 + \eta)$$

$$\mu_3 = h(1 + \eta)(1 + 2\eta)$$

$$\mu_4 = h(1 + \eta)[1 + 3(1 + \eta)(h + 2\eta)].$$

To obtain a recurrence relation for the moments consider

$$\frac{d\mu_r}{dz} = \frac{\partial \mu_r}{\partial \eta} \frac{d\eta}{dz} + \frac{\partial \mu_r}{\partial h} \frac{dh}{\partial z} = (1 + \eta)^2 \left[ \frac{\partial \mu_r}{\partial \eta} + \frac{h}{\eta} \frac{\partial \mu_r}{\partial h} \right];$$

hence we find for this distribution by (4) and (4b)

(4b<sub>1</sub>) 
$$\mu_{r+1} = (1 + \eta) \left[ \eta \frac{\partial \mu_r}{\partial \eta} + h \frac{\partial \mu_r}{\partial h} + rh \mu_{r-1} \right].$$

It follows from (4b<sub>1</sub>), that  $\mu_r$  is a polynomial in  $\eta$  and h. The characteristic function of this distribution is

(6b<sub>1</sub>) 
$$\varphi(t) = [1 + \eta(1 - e^{it})]^{-h/\eta}.$$

(c) The coefficients of the series  $-\log(1-z) = \sum_{x=1}^{\infty} z^x/x$  are positive; the associated distribution derived is

(1c) 
$$P\{\xi = x\} = -\frac{z^x}{x \log (1-z)}, \qquad 0 < z < 1; \quad x = 1, 2, \dots,$$

and has the mean

(2c) 
$$E(\xi) = -\frac{z}{(1-z)\log(1-z)}.$$

<sup>&</sup>lt;sup>3</sup> Cf. Zeits. f. angew. Math. und Mech., Vol. 3 (1923), p. 279-289.

Recurrence formula (4) has for this distribution the form

(4c) 
$$\mu_{r+1} = z \left[ \frac{d\mu_r}{dz} - r \frac{z + \log(1-z)}{(1-z)^2 [\log(1-z)]^2} \mu_{r-1} \right],$$

while the variance and the characteristic function of this distribution are

(5c) 
$$\mu_2 = \sigma^2(\xi) = -\frac{z^2 + z \log(1-z)}{(1-z)^2 [\log(1-z)]^2},$$

(6c) 
$$\varphi(t) = \frac{\log (1 - e^{it}z)}{\log (1 - z)}.$$

(d) The coefficients of the series  $\log (1+z)/(1-z) = 2\sum_{z=1}^{\infty} (z^{2z+1})/(2z+1)$ 

are positive, so we can derive a random variable  $\xi$  with the distribution

(1d) 
$$P\{\xi = 2x + 1\} = \frac{2z^{2z+1}}{(2x+1)\log\frac{1+z}{1-z}}, \quad 0 < z < 1, x = 1, 2, 3, \cdots$$

ξ has the mean

(2d) 
$$E(\xi) = \frac{2z}{(1-z^2)\log\frac{1+z}{1-z}},$$

the recurrence formula (4) assumes the form

(4d) 
$$\mu_{r+1} = z \left( \frac{d\mu_r}{dz} + 2r \cdot \frac{(1+z^2) \log \frac{1+z}{1-z} - 2z}{(1-z^2)^2 \left[ \log \frac{1+z}{1-z} \right]^2} \mu_{r-1} \right),$$

while the variance and the characteristic function of  $\xi$  are

(5d) 
$$\sigma^{2}(\xi) = 2z \frac{(1+z^{2}) \log \frac{1+z}{1-z} - 2z}{(1-z^{2})^{2} \left[\log \frac{1+z}{1-z}\right]^{2}},$$

(6d) 
$$\varphi(t) = \frac{\log (1 + e^{it}z) - \log (1 - e^{it}z)}{\log (1 + z) - \log (1 - z)}.$$

(e) Likewise the coefficients of the series

$$\sin^{-1} z = z + \sum_{x=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2x-1)}{2 \cdot 4 \cdot 6 \cdots (2x)} \frac{z^{2x+1}}{2x+1}$$

are positive, the derived variable  $\xi$  with the distribution

$$P\{\xi = 1\} = (\sin^{-1} z)^{-1},$$

(1e) 
$$P\{\xi = 2x + 1\} = \frac{1 \cdot 3 \cdots (2x - 1)}{2 \cdot 4 \cdot 6 \cdots (2x)} \cdot \frac{z^{2x+1}}{2x + 1} (\sin^{-1} z)^{-1},$$
$$0 < z < 1, x = 1, 2, 3, \cdots.$$

has the mean

(2e) 
$$E(\xi) = \frac{z}{\sqrt{1 - z^2 \sin^{-1} z}}.$$

The recurrence formula for the moments

(4e) 
$$\mu_{r+1} = z \left[ \frac{d\mu_r}{dz} + r \frac{\sin^{-1} z - z\sqrt{1 - z^2}}{\sqrt{1 - z^2}^3(\sin^{-1} z)^2} \mu_{r-1} \right]$$

gives the variance

(5e) 
$$\sigma^{2}(\xi) = z \frac{\sin^{-1} z - z\sqrt{1-z^{2}}}{\sqrt{1-z^{2}}^{3}(\sin^{-1} z)^{2}}.$$

The characteristic function assumes the form

(6e) 
$$\varphi(t) = \frac{\sin^{-1} e^{it} z}{\sin^{-1} z}.$$

(f) It is well known, that series (b), (c), (d), and (e) are special cases of the hypergeometric function F(a, b, c; z). This function gives a p.s.d., if abc > 0. If a > 0, b > 0, c > 0 or if a < 0, b < 0, c > 0, a, b integers, there exist no further restrictions on these parameters. Suppose a < 0, b < 0, c > 0, a integer, b not, we must have  $[b] \le a^4$ ; if neither a nor b are integers, we must have [a] = [b]. Suppose a < 0, b > 0, c < 0. If c is an integer, a must be an integer a or a is an integer, but a nor a are integers, we must have a nor a nor a are integers, we must have a nor a nor a are integers, we must have a nor a n

$$\frac{d}{dz}F(a,b;c;z) = \frac{ab}{c}F(a+1,b+1;c+1;z),$$

the mean of a random variable  $\xi$  with hypergeometric distribution is

(2f) 
$$E(\xi) = z \frac{ab}{c} \frac{F(a+1,b+1;c+1;z)}{F(a,b;c;z)}.$$

Considering the differential equation

$$z(1-z)f''(z) + [c - (a+b+1)z]f'(z) - abf(z) = 0,$$

(5) gives the variance of  $\xi$ 

(5f) 
$$\sigma^{2}(\xi) = \frac{ab}{c} \cdot \frac{z}{1-z} \left\{ c + [1-c+(a+b)z] \frac{F(a+1,b+1;c+1;z)}{F(a,b;c;z)} - z(1-z) \frac{ab}{c} \left[ \frac{F(a+1,b+1;c+1;z)}{F(a,b;c;z)} \right]^{2} \right\}.$$

The higher moments of this distribution can now derived from (4').

<sup>&</sup>lt;sup>4</sup> [b] means as usual the greatest integer  $\leq b$ .