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where

v (_ 1,1 F(xo)[1 — F(xo)] , F'(zo)[1 — F'(x0)]
)\1-< da/‘/n—l-m:}:A)//‘/ - + —

and

A |/1 1 F(xo)[l — F(zo)] |, F'(zo)[1 — F'(w0)]
>\2—<da ;L—jr;n—.:tA)//‘/ = n & + g m =

Since this lower bound approaches one as n and m approach infinity the power
also approaches one and the test is consistent.

REFERENCES

1} J. WoLrwiTz, “Non-parametric statistical inference,’” Proceedings of the Symposium on
Mathematical Statistics and Probability, University of California Press, 1949,
pp. 93-113.

[2] N. Smirnov, “Table for estimating the goodness of fit of empirical distributions,”
Annals of Math. Stat., Vol. 19 (1948), pp. 279-281.

[3] F. MassEY, “A note on the estimation of a distribution function by confidence limits,”’
Annals of Math. Stat., Vol. 21 (1950), pp. 116-120.

[4] N. Smirnov, “On the estimation of the discrepancy between empirical curves of dis-
tribution for two independent samples,” Bull. Math. Univ. Moscou, Série Int.,
Vol. 2, fase. 2 (1939).

o

ON OPTIMUM SELECTIONS FROM MULTINORMAL POPULATIONS'

By Z. W. BirnBauMm AND D. G. CHAPMAN®

Unaversity of Washington

1. Introduction. Let Y;, Y3, ---, Y, be scores in n admission tests such as
those used in educational institutions, personnel selection, or testing of mate-
rials, and let these scores be used as a basis for selecting a sub-population IT*
from an initial population II. This selection is usually performed in such a
manner that an achievement or performance score X has a distribution in IT*,
which shows some required improvement over the distribution of X in II; such
an improvement may for example consist in changing the expectation E(X) of
X in II to a pre-assigned value E*(X) in IT*. Among all selection procedures
based on Y1, -+, Y, and achieving the required improvement of the distribu-
tion of X, it appears desirable to find those which retain as large a portion of II as
possible. It will be shown that under certain assumptions the linear truncations
studied in an earlier paper [1] are such optimal selections.

2. Selection, truncation, linear truncation. Let the frequency of individuals
with the scores (X, Y1, -+, Vo) be F(X, Yy, .-+, Y,) in Il and

1 Presented at the New York meeting of the Institute of Mathematical Statistics on
December 27, 1949.
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F*(Xr Yl: e )Yﬂ)

in IT*. Since IT* was obtained by selection from II, we have F*/F < 1, and since
the selection was made solely on the basis of the values of Y, -+-, ¥, , the
ratio F*/F is independent of X. We thus have

F*(Xley"'7Yn)

FX, 17, o, ¥y P00 T

and
(21) . 0§¢(Y1,"' )Yn)_<_1'

Let N =ff---fF(X, Yi, -, Y2)dXdY,--- dY. and

N*=ff---fF*(X, Yy, -, Y.)dXdVy --- dY.

be the number of individuals in II and II*, and f(X, Yy, --- , ¥,) and f*(X,
Yy, .-+, Y,) the distribution densities in IT and IT*, respectively, so that F =

NY, F* =N*f*andff---fdedY1 e dY, = ff ff*dXle---
dY, = 1. We then have

N*f* = oNf,
nd

al
©22) AZ_(; =[] [otri, - YK, 1, o, ¥ dX Yy - dY.

Thus any selection of a subpopulation IT* from II based onlyon ¥y, --- , Y,,
defines a ¢(Y1, - -+, Y,) satisfying (2.1). Conversely, if the frequencies

F(X, Y]_, M ,Yn)

in II are given, any measurable ¢(Y;, - -+, Y,) satisfying (2.1) defines new
frequencies F* = oF and hence a selection from II based only on ¥y, --- , ¥, .
These considerations lead to the following definitions:
A measurable function ¢(Y;, --- , Y,) which satisfies (2.1) is called a selection
in Yy, -, Ya. If, in particular, ¢ is the characteristic function of a set @ in
(Y1, -+, Ys),thatisg = 1in Qand ¢ = 0in &, then the selection ¢ will be
called a truncation in Yy, - - - , Y, to the set Q. If Q is defined by a condition of the
form
2aYi>t
=1
with constant a; , ¢, then the truncation to the set Q will be called a linear trunca-
tionin Yy, ---, Y.
In view of (2.2) we will refer to
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@3) r@) = [[ [olri, - ¥IIX V1, -, ¥ dX dVy, - aY

as the fraction retained in the selection o.

3. A lemma. We will need the following slight generalization of the funda-
mental lemma of Neyman-Pearson (cf. [2]).
LemMa. Let G(Y1, -+« , Ya),G(Yy, -+, Y,), -+, Gu(Y1, -+, Y,) begiven

integrable functions and ¢y, - -+ , cm given constants, and let (¢p) be the family of
all measurable functions (Y1, -+, Y,) which satisfy the conditions
@1 0< oYy, -+, ¥) S 1
62 [ [ e, VG, - T dYy - Y = o

- - for 7=1,---,m.
If there exist constants ky , - - - , km such that the characteristic function

oY1, -+, Y,) of the set E I:G > D ks G.-] = E belongs to (¢), then
=1

(Ylv"‘-Yn)
+e oo +o +o0
3.3) f f ¢oGdY1---dY,,2f f oG dY, -+ dY,

for any ¢ in ($). _
Proor: Wehave gy = 1 > ¢ in E and ¢ = 0 < ¢ in E, hence

[:w...[:w(G—gk;G¢>¢ole...dYn
+o 40 .
Zf_w f_m (G— ;k;G,—)gadYI...dyn’

and (3.3) follows since ¢y and ¢ fulfill (3.2).

4. Selection from a multivariate normal population, for which the fraction
retained is maximum. From now on we assume that the conditional distribution
of X forgiven Y;, Y, - -+, Y, is normal with a mean which is a linear function
of the Y’s and with a variance which is independent of them, i.e.,

1 —<X - Z": P Yi)
(4.1) fX|Y1,Ya,---,Y,) = oy &P 1 .

202

Let @Y1, -+, Y,.) denote the marginal density of ¥, --- , ¥,.
Tuaeorewm 1. A selection such that
1° 4n II* a proportion at most equal to a given proper fraction e has values of X
below X, , t.e. the e-quantile in II* is greater than or equal to X, , when X, is a
given number greater than the e-quantile in II,
2° the fraction retained is maximum,

is a linear truncation.
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Proor: We have to maximize
4D r) = [ [e, o, ¥IQW, -, ¥ AVs - av,
under the condition

Xo +o0 —+o0
[ [ et vde@, - YfX [V, ¥ d¥s - dY,dX
o0 — 00 00 <€'

) T =
/ f "'f ‘p(Yly"’)Yn)Q(Yly"'7Yn)f(Xler"'7Yn)dY1"'dYndX

Substituﬁng the expression (4.1) for f(X | Y1, ---, ¥,) and integrating with re-
spect to X we may rewrite this in the form

o= [ [ et e, 7

0

(43) Xo— 3 i Vi
-y ——?‘_ —eldYy---dY, <0,

where
_ o e
x//(u) = \/5;_ [we dt,

and we have to maximize (4.2) under condition (4.3).

Without loss of generality the inequality L(p) < 0 in (4.3) may be replaced
by equality. For if we had a selection ¢; which maximizes (4.2) and satisfies (4.3)
with a strict inequality L(p1) < 0, then ¢; could not be equal to 1 almost every-
where since then we would have F* = F almost everywhere and X, would be
equal to the e-quantile in II, in contradiction with 1°; hence ¢, = ¢1 + a(l — ¢1)
for sufficiently small @« > 0 would also satisfy (4.3) with a strict inequality but
would yield r(g2) > 7(e1).

To solve our problem we now have to maximize (4.2) under the condition

(4.4) L(p) = 0.
Applying the lemma of Section 3, with m = 1, and
G(Y17 ] Yn) = Q(Yl; ) Yn):

Xo—ipsYi
G(Yy, -, V) = QYy, -,V | ¢ = ) — ¢ ,

[

we conclude that the selection satisfying 1° and 2° will be the characteristic
function ¢o(Y1, -+, Ya) of the set defined by

Xo"'imyi
4.5) Ely —:‘_ — el <1,

provided % can be determined so that ¢, satisfies (4.4).
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To find such a k we consider

Xo—ipiYi
I =f -'-fQ(Yx,"-,Yn) y\—= | —¢|dYy---dYa.

g
‘,_.‘_.:1 piYs=t
As t tends to — o, I(t) tends to L(1), where L was defined by (4.3). Since the
e-quantile in II was less than X, it follows that I(— ) = L(1) > 0. Since
I(t) < O for large ¢, there exists ¢ such that I(t,) = 0, and clearly,

¢<X———°_ to) —e>0.
g
Setting in (4.5) k = R ((Xo — t)/o) — €]}, one obtains a ¢, such that

L(go) = I(t) = O.

The selection ¢, is the linear truncation to the set SrapYi>t.

By a similar and somewhat simpler argument one proves the following the-
orem.

TaEOREM 2. A selection such that

1° in II* the mean of X has a value greater than or equal to a pre-assigned num-

ber m > 0,

2° the fraction retained is maximum,
is a linear truncation to a set 011 p:¥: > to .

An immediate consequence of Theorems 1 and 2 is that a linear truncation,
using a properly determined weighted score > 54 p:Y;: and cutting score £ , is
more economical than any truncation to aset ¥; > ¢;,¢ = 1,2, --- , n, that is
than any truncation performed on each admission score separately.
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THE DISTRIBUTION OF DISTANCE IN A HYPERSPHERE
By J. M. HAMMERSLEY

University of Oxford

1. Summary. Deltheil ([1], pp. 114-120) has considered the distribution of
distance in an n-dimensional hypersphere. In this paper I put his results (17)
in a more compact form (16); and I investigate in greater detail the asymptotic
form of the distribution for large n, for which the rather surprising result emerges
that this distance is almost always nearly equal to the distance between the



