SOME TWO SAMPLE TESTS

By Doucras G. CHapMaN!
University of Washington

1. Introduction and summary. Stein [4] has exhibited a double sampling pro-
cedure to test hypotheses concerning the mean of normal variables with power
independent of the unknown variances. This procedure is here adapted to test
hypotheses concerning the ratio of means of two normal populations, also with
power independent of the unknown variances. The use of a two sample procedure
in a regression problem is also considered.

Let {Xi;} ¢ =1,2) (j =1,2,3, ---) be independent random variables
distributed according to N (m;, ¢;): all parameters are assumed to be unknown.

Defining & by the equation

(1) m; = kmg

we wish to test the hypothesis H that k has a specified value k, .

If ky = 1 the hypothesis H reduces to a classical problem, often referred to
in the literature as the Behrens-Fisher-problem (cf. Scheffé [3] for a bibliography).
At the present time it is still an open question whether it is possible (or desirable)
to find a non-trivial single sample test for H with the size of the critical region
independent of ¢; and o» . In any case it is a simple extension of the result of
Dantzig [1] (cf. also Stein [4]) to show that no non-trivial single sample test
exists whose power is independent of ¢; and o .

On the other hand the case ky # 1 may be expected to occur frequently in
fields of application where a choice must be made between different products,
methods of experimentation ete. which involve different costs. The statistician
must make a choice on the basis of results relative to the ratio of costs involved.
Nevertheless this problem appears to have received little attention in the
literature.

In general tests based on a two-sample procedure may not be as “efficient”
in the sense of Wald [5] as a strict sequential procedure. On the other hand the
two sample procedure reduces the number of decisions to be made by the experi-
menter and it will, in certain fields, simplify the experimental procedure.

2.. The two sample procedure. Stein’s double sampling procedure (which may
be denoted procedure S) to test a hypothesis concerning the mean of a normal
population consists briefly in the following steps:

(a) Choose “a priori” a positive number z and a preliminary sample size n.

(b) Take 7 independent observations x;, --- , x, of the random variable X

1 This research was carried out while the author was at the University of California.
Berkeley, and was supported in part by the Office of Naval Research.
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which is assumed to be distributed according to N (m, ¢%) with unknown mean m
and unknown variance o°, and calculate

n

2 (z: — 3).

2 2='1.=1
2) u —

2
u

(¢) Let N = max([—;] + 1, n + 1> where [r] = largest integer < r
(d) Take N — 7 more independent observations of X and choose a set of

constants a; , - -+ ax such that

N N
2
3) G) > a; =1, o =a=- -+ =ay,, (iii)2a§=?.
=1 =1
N
Z G;T; — M
(e) Then %T— has Student’s {-distribution with n — 1 degrees of
K4
freedom.

Stein further showed that the procedure may be modified to some advantage
in problems dealing with a single population. This modification is not applicable
in the problems under consideration here.

There remains to be discussed briefly the choice of n, z and the a’s. The pre-
liminary sample size n may be determined by other considerations or it may be
chosen as part of the design of the experiment. Hodges [2] has shown that the
expected value of the total sample size N and the power of the test both depend
on the choice of n and he has discussed the optimum choice of n with respect
to the modified procedure of Stein. In general this optimum choice of n depends
upen prior knowledge concerning the variance.

The power of the test will depend upon z: some considerations concerning
the choice of z will be dealt with after discussing the tables upon which the
two sample tests are based.

The arbitrariness involved in choosing the a’s may be eliminated by placing
the additional requirement that

4) Qup1 = Guiz = -+ = ay = b (say).
Letting a; = a, = - -+ = a, = ait is elementary to solve for @ and b explicitly
viz.,
5) ne + (N —n)b =1,
nat + (N — )b = 5.

The solutions are

1 n(Nz — u?)
© b= (144 Wm B,
@ a=1-—(N-—n)b'

n
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3. Test for H. The steps involved in testing the hypothesis H are

(a) Choose the preliminary sample size n, and positive numbers z; , 2, subject
to the restriction

21 2
8 = = k.

®) 2k

(b) Carry out procedure S with the same n for each population, determining
two statistics T, T., i.e.

Ni
Z Qi Tij
j=1

Vi
Then T, — T. has, under the hypothesis tested, the distribution of the difference
of two independent Student variables.

If s denotes the difference of two independent random variables ¢ and %

each distributed according to Student’s ¢-distribution with n — 1 degrees of
freedom and if s, is defined by the equation

9) ’ T; = ¢ =12).

P(ISI >80) = a
then a test of size a is given by the rule: H is rejected if | T:— T2 | > 5.

4. The distribution of differences of Student variables. The distribution of s
is easily found by the method of characteristic functions, in case n is even.
Let m = n — 1 and to simplify slightly put

(10) %=J% G =1,2).

Then the density function of y; is

m 4+ 1
(11) f = i/<7,.mr2 (%>> T+ 22)<m+1)/2

and its characteristic function

+oo .
12 a0 =] @

-1

m
\/; e—ltl (m—1)/2 < 2 + 7‘) !
2

(13) = ;—@z—m:i =0 (7’_7'2;1 — r) I

Formula (13) may be obtained by contour integration; it is, however, a standard
formula in connection with Bessel functions of the second kind of purely imagi-
nary argument (cf. Watson [6], pp. 80, 185-188).

[2( ¢
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While it is not possible to obtain a simple general expression for

+o0
(14) f@ = o [ e a 0k,

s
the density function of w = \ﬁ this integral may be evaluated form = 1, 8, 5
b

etc. and furthermore the density function of s may be integrated in a closed form
for such values of m, and consequently tabulated fairly easily.

In case n is odd it is possible to express ¢,(t) in terms of Bessel functions but
the Bessel functions obtained are not expressible in a closed form. While the
problem may be attacked directly by numerical integration, it will generally be
sufficient to interpolate in Table I where necessary, for such values of n.

Table I gives the distribution of s forn = 2, 4, 6, 8, 10, 12. For larger values
of n it may be sufficiently accurate to use the normal approximation to the
distribution of s. In virtue of the asymptotic normality of the -distribution s
will be distributed approximately normally with miean zero and variance———-i(bn__;)
for n sufficiently large.

6. Power of the test. Writing

my me

(15) A=\72:1—\72:2 and T=T,—-T,

it is seen that T = s + A and hence
(16) P(H is rejected) = P(|T| > s)) = P(s < —sp — A) + P(s > s — A).

me [k
A \/22 (ko 1)
equation (16) may be used as a guide in choosing 2z, so that a certain minimum
power is attained; the presence of the nuisance parameter m, makes impossible
the determination of 2, so as to give exactly some preassigned power.

Since s is distributed independently of o1, o5, it follows that the power of the
test is independent of these parameters. Using the addition formula to express
the frequency function of s in terms of the frequency function of Students’
t-distribution, it may be shown that f(s) in unimodal and symmetrical about
s = 0. Hence the test is unbiased. It also follows from (16) that if z, is made to
approach zero the probability of rejecting H when it is false tends to 1: i.e.
the test is consistent.

It may be observed that tests for the one-sided hypotheses

Since

Msk oo ™<i

me me
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may easily be formulated. Table II provides a table useful for such tests also,
at half the indicated significance levels.

TABLE 1

Distribution of s: difference of two independent student-variables with n — 1 degrees of freedom

The value tabled is P(0<s=<s,)

Normal Ap-
5 ” 2 4 6 8 10 12 proximation
for n = 12
0.50 0.0780 0.1014 0.1222 0.1265 .1290 0.1306 0.1254
1.00 .1476 .1922 .2311 .2392 .2438 .2467 .2388
1.50 .2048 .2660 .3185 .3290 .3349 .3386 .3313
2.00 .2500 .3243 .3825 .3939 .4002 .4041 .3996
2.50 .2852 .3620 .4260 .4364 .4415 .4465 .4451
3.00 .3128 .3903 .4542 .4637 .4687 4724 .4725
3.50 .3348 .4104 .4726 .4796 .4834 .4856 .4874
4.00 .3524 .4247 .4825 4884 .4914 .4929 .4947
4.50 .3669 .4352 .4890 .4936 .4956 .4966 .4980
5.00 .3789 .4431 .4930 .4964 .4977
5.50 .3890 .4491 .4955 .4980 .4988
6.00 .3976 .4539 .4970 .4988
6.50 .4050 .4578 .4980
7.00 .4114 .4611 .4986
7.50 .4170 .4638
8.00 .4220 .4661
10.00 .4372 .4730
12.00 .4474 4774
21.00 .4698 .4870
30.00 .4788 .4908
50.00 .4873
100.00 .4936
TABLE 11
The 5% and 1%, significance points of the distribution of s
The value tabled is s,
\ n” Normal
N n | Ao
Significance Level n =12
P(ls] = so) = .05 25.41 | 10.82 3.62 3.18 3.10 3.06
P(s] 2 so) = .01 127.3 36.8 5.38 4.42 4.26 4.03

6. A regression problem. We consider the problem where z; are values of a
sure variable, Y; are independent random variables with

17)

E(Y,) = a +

bz i

and oy, is unknown. It is desired to estimate @ and b and to test the hypothesis

b=b.
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The usual procedure is to assume o, constant, and use the Markov theorem
(i.e. the standard least squares formulae). In this way unbiased estimates of
a and b are obtained, whether or not this assumption is fulfilled. However the
usual significance test for b is not valid if this assumption (plus normality of
the Y’s) is not fulfilled.

The two sample procedure leads to a valid test of the hypothesis b = b, , with
power independent of the unknown variance. Since linearity of the expected
value of Y on z is assumed, the optimum procedure is to observe Y for only two
values of x, at opposite ends of the range. Let these points be z; , z; . For these
values of z, procedure S may be used (choosing 2z; = 2;) to determine T, T:
where T; — (a + bz;)/A/z has Student’s ¢-distribution with » — 1 degrees of
freedom.

Then the following estimates of a, b are unbiased, for n > 3,

1) b= (T_‘l> VA

T2 — 1

<IL‘2 T1 — I T2> \/5

Lo — 1

IS

(19)

To test the hypothesis H,:b = b, it is necessary only to calculate the statistic
¢ = [Ty — T2 Vz — bo(zy — 12)]/A/z and reject H;, at the a level of sig-
nificance if | { | > sy, where s, was defined above (Section 3).

It is seen that if b’ is the true value of b, then the power of the test is a function
of (" — bo)(zy — 2)/+/z and z maybe determined to obtain any prescribed power
desired. It is also immediate that the power of the test is independent of oy, .

The author wishes to express thanks to the members of the computing staff
of the Statistical Laboratory, University of California, Mrs. E. Putz, Miss J.
Linton, and Mr. J. Blum, for assistance in preparing Tables I and I1.?
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2 Tt has been pointed out to the writer that percent points of linear combinations of
two independent Student t’s are given in Table VI (by P. V. Sukatme) in R. A. FISHER
AND F. Yartes, Statistical Tables for Biological, Medical and Agricultural Research, Oliver
and Boyd, Edinburgh, 1943 (added in page proof).



