THE ASYMPTOTIC PROPERTIES OF ESTIMATES OF THE
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1. Summary. In a previous paper [2] the authors have given a method for
estimating the coefficients of a single equation in a complete system of linear
stochastic equations. In the present paper the consistency of the estimates and
the asymptotic distributions of the estimates and the test criteria are studied
under conditions more general than those used in the derivation of these estimates
and criteria. The point estimates, which can be obtained as maximum likelihood
estimates under certain assumptions including that of normality of disturbances,
are consistent even if the disturbances are not normally distributed and (a) some
predetermined variables are neglected (Theorem 1) or (b) the single equation is
in a non-linear system with certain properties (Theorem 2).

Under certain general conditions (normality of the disturbances not being
required) the estimates are asymptotically normally distributed (Theorems 3
and 4). The asymptotic covariance matrix is given for several cases. The criteria
derived in [2] for testing the hypothesis of over-identification have, asymp-
totically, x’-distributions (Theorem 5). The exact confidence regions developed
in [2] for the case that all predetermined variables are exogenous (that is, that
the difference equations are of zero order) are shown to be consistent and to hold
asymptotically even when this assumption is not true (Theorem 6).

2. Introduction. The complete system of linear stochastic equations con-
sidered by the authors in [2] was written

(2.1) Byt + Tyt = €1,

where y, is a row vector of G jointly dependent variables at “time” ¢, z; is a row
vector of K variables predetermined at ¢, and ¢, is a row vector of “disturbances,”
and By, and T',, are matrices. If B,, is non-singular the distribution of e; induces
the distribution of ¥, given z; .

One component equation of (2.1) was given special treatment. Let 8 be

t This paper will be included in Cowles Commission Papers, New Series, No. 36.

2 The results of this paper were presented to meetings of the Institute of Mathematical
Statistics at Washington, D. C., April 12, 1946 (Washington Chapter) and at Ithaca, New
York, August 23, 1946. Most of the research was done at the Cowles Commission for Re-
search in Economics; the authors are indebted to the members of the Cowles Commission
staff for many helpful discussions.

3 Fellow of the John Simon Guggenheim Memorial Foundation; Research Consultant
of the Cowles Commission for Research in Economics.

4 National Research Fellow; Research Consultant of the Cowles Commission for Re-
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composed of the coefficients of the coordinates of y; which are not assumed
zero in the specified equation, and let x; be composed of the corresponding
components of ¥, ; similarly let ¥ be composed of the coefficients of the coordinates
of z; which are not assumed zero, and u. the corresponding components of z; ;
and let {; be the component of e; associated with the specified equation. Then
the single equation is

(2.2) Bxe + vur = &e.
Suppose we have a set of observations z;, z;,¢{ = 1, - -+, T. For sets of any
two vectors a¢ and b, , let the second-order moment matrix be
1<~ s
(2.3) Ma = = 2 aib.
T t=1

Let s; be some linear transform of v, , the set of coordinates of z; not contained in
g, chosen 8o M, = 0. Defining

(2.4) Wa:a; = sz - szMz—lezz ’

and assuming e; normally distributed with mean 0, covariance matrix 2, and
independently of ¢,-(t # t'), we find 8, the maximum likelihood estimate of 8,
to be proportional to a vector defined by

(2.5) (Mas MMy — vWo)b' = 0,
taking » as the smallest root of

(2.6) | MeM oMy, — yWop | = 0.
The vector is normalized by

@7) pe.p =1,

where &, may be a function of the estimates of other parameters. The estimate
of yis4 = —BM.. M35 [2; Theorem 1]. These estimates were derived under the
following explicit Assumptions A, B, C, and D:

AssuMPTION A. The selected structural equation (2.2) is one equation of a complete
linear system of stochastic equations. It is identified by the fact that if H is the
number of coordinates in x. , there are at least H — 1 coordinates in v; , the vector of
predetermined variables in the system, but missing in (2.2).

AssumrTION B. At time t all of the coordinates of z; = (u:, v;) are given.

AssumptioN C. The coordinates of z, are given functions of exogenous variables
and of coordinates of Yo , Yz, - - - - If coordinates of yo , Y—1, -+ - are tnvolved in
24, they will be considered as given numbers. The moment matrix M ,, is non-singular
with probability one.

AssuMPTION D. The disturbance vectors e; are distributed serially independently
and normally with mean zero and covariance matriz =, .

Under these assumptions it is found that (1 + v)'“ is the likelihood ratio
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criterion for testing the hypothesis that the number of components of z; assumed
to have zero coefficients is so great.

If there are no lagged endogenous variables in z;, we can find confidence
regions for 8 and for 8 and v simultaneously as well as an approximate test for
the above hypothesis. The assumptions used for these results are A, B, and

AssumpTioN E. All the coordinates of z: = (us, ve) are exogenous. The moment
matriz M., is non-singular. The disturbances of the selected equation are distributed
independently and normally with mean zero and variance o°.

Assumptions A and B are used in this paper and a number in addition,
which will be lettered similarly. It is to be emphasized that the various assump-
tions are used alternatively, never all at once; in fact many assumptions are
mutually exclusive.

3. Consistency of the estimates. The estimates 3 and 4 are consistent not
only in the case for which they are maximum likelihood estimates, but also in
cases in which the disturbances are not normally or even identically distributed.
Moreover, for consistency of the estimates it is not necessary that the investigator
know all of the components of », or use them. Another direction in which the
assumptions may be relaxed is to permit the other equations in the system to be
non-linear.

3.1. The linear case. This case is characterized by Assumption A. We need
also to assume:

AssumpTIoN F. M., converges to a fixed non-singular limit R in probability.

Let u, consist of the part of z, that enters the selected structural equation (22).
The remainder of the components of z, are divided into two groups as to whether
they are known or not. Let ¢, be a linear transform of the known components
not entering the specified equation such that
3.1) plim M,, = 0,

t—>r0

and let 7, be a linear transform of the components of z; not known such that

(3.2) plim M,, = 0,
t—e

(3.3) plim M., = 0.
t—rc0

The relevant part of the “reduced form,” obtained from (2.1) by multiplication
by By, is
(3.4) 2y = Tout + Hact + Try + 61 .

The matrix (I, II,,) is I (defined in [2]) multiplied on the right by a non-
singular matrix; hence, fIl,. = 0, and similarly gil,, = y. We shall find it
convenient to assume

AssumprioN G. II,, has rank H — 1.
This means that for T sufficiently large the probability is arbitrarily near 1
that (2.2) is identified.
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However, these conditions still do not insure consistency. We need the asymp-
totic analogue of lack of correlation:
AssumpTioN H.

1K
plim = > btz = 0.
T—c0 tmml
We do not need to require that the covariance matrices of 8, are the same or
even that they exist. We shall make an assumption about

. M Mu\"' (M
(3.5) Wee = Mz — (M:WMIC) .
Mcu Mcc Mcz

AssumpTION 1. The ratio of the largest to the smallest characteristic roots of Wes
s bounded in probability.
This means that for a suitable constant K

36) lim P (i((’;’[,)) > K) —0,

where P(E) denotes the probability of event £ and s(4) and I(A) are the smallest
and largest roots of the matrix 4, respectively.

Assumptions F and H imply that P,, — 1., and P,. — I, in probability,
where P,, = M., M7y and P, is the part of

Muw M\
(3 .7) (Mzu Mzc)
Mcu Mcc

corresponding to the vector® ¢, . The first assertion follows because M. wMay =
(T Muu + MeeM oo + Me M, + My )Moy and M., — 0, M., — 0, and M, — 0
in probability by (3.1), (3.3) and Assumption H; the second assertion follows
similarly. Since matrix multiplication is continuous, and the characteristic roots
of a matrix are continuous functions of the matrix,?
3.8) plim s[P..M,,Pz] = 0,

T~+c0

where My = (M — Mo MyyM,). This follows from the well-known theorem
(a proof of which is given in [4]) that if a random vector X r converges sto-
chastically to X, then f(X r) converges stochastically to f(X) if f(y) is continuous
at X.

We shall find the following lemmas convenient. The proofs are simple and
have been given in [1].

LemMA 1. Let B be positive definite, A positive semi-definite. Then the smallest
root vof | A — xzB | = 0 s less than or equal to s(A)/s(B).

5 See Section 4 of [2].
¢ Because of the assertion above and Assumptions F and G only one characteristic root
of the matrix approaches zero in probability.
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LemmA 2. Each element of a positive definite matriz is less in absolute value
than the largest characteristic root.
Let » be the smallest root of

(3.9) I P:chuP::c - VW;::: l = 0.
Then plim »W,, = 0. This statement follows from (3.8) and Lemmas 1 and 2.

T—w

Since 0 is a simple characteristic root of II,, plim M1, , it follows from (3.9)

T o0
and the consistency of P,, and P,, that § approaches 8 apart from normalization.
The following theorem results directly:

TurorEM 1. Under Assumptions A, ¥, G, H, and 1, and if plim 8&,.8' = 1,

T —s00
(3.10) $m3=&
(3.11) plim § = v,

where B and 4 are calculated as if r, = 0 and as if the remainder of A, B, C, and D
were satisfied.!

3.2. The non-linear case. In this section we apply the estimates obtained in [2]
to an equation of a complete system in which the remaining equations may be
non-linear. We replace Assumption A by the following assumption:

AssumpTION J. The selected structural equation (2.2) vs one equation of a complete
system of stochastic equations:

(311) Fz'(yt ’ Zt) = € (7' = 11 ] G)
Let us solve the complete system (3.11) for the components of y.. We obtain
3.12) Yii = hi(ze, ).

Let u; be the subvector of 2z, occurring in the selected structural equation.
Let c: be a vector function of 2z, such that plim M.. = 0. We may write (3.12)

T—0

for those y’s occurring in the selected structural equation as
(3.13) 2y = Moty + Macer + ¢/ (2, €0,

where the components of ¢(z:, €;) are the residuals from the formal limiting
regression of z; on u, and ¢, . The proof of Theorem 1 can be used to prove the
following:

TrEOREM 2. If Assumptions F, G, H, I, and J are satisfied with z, replaced by

(us , ¢r) and 8, replaced by ¢(2. , €:1), and 7:, = 0, and if plim Bd,.B = 1, then

T—o0
(3.14) plim 3 = B,
T w00
(3.15) plim 4 = «.
T—00

7 This follows from the above statements because § and 4 are (vector-valued) rational
functions of M., , P., , Wi: and &,, which approach limits in probability.
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4. The asymptotic distribution of the estimates.

4.1. The asymptotic distribution of P and P., . To obtain the asymptotic
distribution of the estimates we need stronger assumptions. Throughout Sections
4.1 and 4.2 we use Assumptions A, B, F, H, I, and the following:

AssumptioN K. The exogenous variables are bounded; the vector of disturbances
of the complete system has mean zero, and is serially independent; for some X > 0
and some M, &(| 8. ') < M the coordinates of z, may be linear combinations of
lagged endogenous variables. If the endogenous part of a coordinate is

0 qQ

Z Z FrilYt—r,i,

T=1 =1

then

0 [}

22 gl <

7=l =1

and

0 G

Z Z GrilYt—r,i
T=af §=1
28 bounded.
AssuMPTION L. The matrixz &, is known and constant.
AssumprioN M. Foreachi,j,k, 1,1 <4,j < H, 1<k 1l <K,

L1

lim — 6(5“5“2‘]@ Z:l) = Kijkl
T —c0 t=1

exists.

Let the components of My, , M,., M,, be arranged as a vector m(T) with
meanvalue u(T). It has been shown [3] that /T (m(T) — u(T)) is asymptotically
distributed according to N(0, Z), the normal distribution with mean 0 and
covariance matrix £ composed of elements

oi; = lim E(Tm(T) — pi(T)] mi(T) — wi(THD.
In conjunction with this result we make repeated use of a special case of Theorem
6 of [4]:

Suppose \/T(xjr — &ir) (j = 1, -+, n) have the joint asymptotic distribution

N(0, ¥) with &;r being functions of T such that lim £, = &;. Let fer(21, -+ , 2a)
T—x
be random Borel-measurable functions of n real variables such that %Z‘—T = ag;r(2)

1

exists with probability one for T sufficiently large and z in a fixed neighbor-
hood of &, and suppose that there exist numbers ox; such that for any ¢ > O,

and X > 0, P( sup | axjr(z) — oxj| > €) approaches zero. Then if
(2—k7) (s—ET)" SO\/'T)

Yer_ = fer(Tir , *, Znr) and mer = firlbiz , -+ , £ar), the random variables
VT (yer — mir) have the joint asymptotic distribution N (0, AVA’), where A =
(eij)-
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To obtain the asymptotic distributions we have only to verify that the assump-
tions of this statement are satisfied, and compute A, since the asymptotic
distribution is characterized completely by A¥A’. We shall denote the element in
the k-th row and I-th column of AVYA’ by o(fx, fi). We shall find it convenient
to use the notation df = Adz; that is, the differential df is defined in terms of the
limit matrix 4.

Let

4.1) A = M,

@2 B = M,

(43) C= plim My )
T—0

4.4) E = plim M, ,
T—ro0

(4'5) L = qu )

(4.6) P =P,= M:SM:SI ]

(4.7) A = ﬁzu b

(48) I = Il .

The matrix} L is the random function AM3 + ..M. M7y + A of A, P is the
random function BMs, + II of B. Then

(4.9) dL = (d4)C™,

(4.10) dP = (dB)E™".

However

(4.11) o(am, an) = aipm,
(4.12) o(ai , bj1) = Biw,
(4.13) a(bik , bit) = Vi,

where a;jri, Bijrt, Yini are the appropriate quantities ke , respectively. From
these we may compute o(l;; , lri), o(li; , Dr1), and o(pi; , Dr1), the elements of the
asymptotic covariance matrix of the elements of L and P (which are asymp-
totically normally distributed by the above). These elements can be estimated
consistently from the sample (the proof follows from Theorem 1).

4.2. The asymptotic distribution of 8 and % for constant normalization. In this
section we shall show that 8 and 4 are asymptotically normally distributed
(Theorem 3). In view of the above theorem on asymptotic distributions the
intricate part of the proof is in obtaining the covariance matrix. First we shall
demonstrate that the elements of W are 0(1/4/T) in probability. Since Assump-
tion I holds, it is sufficient to show that s(P,,M.,,Ps,) is 0(1/A/T) in probability.
This means d | PzsMwPs | = 0, since each of the characteristic roots of
P..M,, P, except the smallest approaches a non-zero limit in probability.
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For any matrix 4, A,; denotes the matrix obtained by deleting the 7-th row
and j-th column from A, and A,;; is the matrix obtained by deleting the i-th
and k-th rows and the j-th and I-th columns. Let

AY = (D™ 44,

Ai].kl — (_1)i+j+k+l+e | Aik,il |’

where e = 0if 6 — k) (j — 1) > 0, 1 otherwise when ¢ 5 k, j = 1. A** = 0
if ¢ = k or j = I In the rest of the paper we use the summation convention of
tensor calculus for lower case indices; namely, that whenever a lower case letter
appears as a superscript and a subsecript in an expression, the corresponding
terms are to be summed on that index.

In general

(4.14) d|A| = A"da:;.

We may consider P,,M « P2, as a random function of P, . Then

(4.15) d(i,j-th element of PpyM oo Pyy) = wiex dp} + wlewdph .

However

(4.16) (IL,EN.,)" = o8° = p's’,

where p’ is a factor of proportionality. Since SII,, = 0, we have d | P, M. wPa| = 0.

Then it can be shown that Ay MMy, — PoMyPa) = 0, where 1, =
(I - M) Prs .
ﬁszB’ .
Let © = I, EN,, and F = P,M,P... We know that 3; = 50", where
ps = 1/p’ (and the capital letter J indicates that there is not to be a sum on
that index), and & = M,,M,,11., . Hence

(4.17) dpi = p,d0% + ©7dp, .

However '8%;; = 1; therefore p;, = (©76"y)™. From this it follows that
(4.18) dp; = —(p)’0"pu db*’.

From (4.14) we see d0* = 0"”**df 5 . Therefore

(4.19) B’ = ps[0"* — B8O pui]dbas .

Let us define ; = Bo;; . Let us multiply (4.19) by 6, and ¢, . We obtain
0yidB’ = ps0,0™Pdbap
= ps8, 0%dbos — ps0”°db,s = —B%dbya,
(4.21) ¥.dB* = 0.
Let us simplify (4.20). We see that
(4.22) B%dbye = BT eridpl .

(4.20)
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Hence
A A k h l i
0(B°A0ya , Bdbys) = BTy eriB Ty enie' ™"y wyms
= ﬂaﬁﬁ"r,"y‘T:'Yanmi = Tiyw,y

say. Let ¢(8°, ) = ¢i’ and let Q, = (¢1). Then from (4.20) and (4.23) we obtain

(4.23)

(4.24) 006 = Ry,

and (4.21) is

(4.25) - ¥Q, = 0.

It may be shown (see [1], for example) that the solution is
(4.26) Q= (I = BY)xOm) " (R)i(O) (I — ¥B)k. ,

where k(1 < k < H) is arbitrary except that g = 0, and 4. denotes 4 with
the k-th column deleted, etc. If the normalization is B° = 1,k = iis a convenient
choice.

Since 4 = —BL,
(4.27) A" = —dB'\T — gl .
Hence
(4.28) o(B,47) = —a(B, BNT — o(B’, 16",

429) o(§",4") = o(&, BININ} + o(B%, BN} + (B, 12)BNT + o(I7, 17)8'8".

We, therefore, see that we must compute «(8’, I7)8° and (17, I})8'8". We find,
from (4.20), (4.21), and (4.22) that

(4.30) 0,808, I7) = —BBric™ i = 17,

say. Let (¢(8’, I7)8") = Q:, and let R, = (r%,). Then, from (4.30) and (4.21) we
obtain

(4.31) 0Q: = R,

(4.32) ¥Q, = 0.

The solution is

(4.33) Q: = (I — BY) +(6m) " (Ras. .
We find, readily, that )

(4.34) BBo(lF, 1) = BB ™ i = g3,

say, where (c™) = C". Let Q; = (¢5"). This concludes the proof of Theorem 3.

TueoreM 3. If Assumptions A, B, F, H, I, K, L, and M are satsfied, \/T (8 —B8)
and \/TH — v) are asymptotically jointly normally distributed with means zero
and covariance matrix

(435) G(ﬁly B) = Ql )
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(436) 0(3,7 '?) = —'QZﬁzu - QZ )
(4.37) o, 4) = MouQullsy + M0uQs + Qo + Q-

where Q1 s given by (4.26), Q. by (4.33), and Qs by (4.34).

If there is a kind of asymptotic independence of {; and z;, then the above
expressions may be simplified. Corollary 1 results from Theorem 3 and the
following assumption:

T
T Y. &(t2i2) = 'R, whereR is defined in Assumption F.
T— o0 t=1

CoroLLARY 1. If Assumptions A, B, F, H, I, K, L, M, and N are satisfied,
VT@B — B) and N/THE — v) are asymptotically jointly normally distributed with
means zero and covariance matriz

(4.38) o, B) = (I — BY) 4O T — ¥B).,
(4'39) U(B,r ‘)A’) = —UZ(I - B,'l/) -k(ekk)-l(ﬁxu + II”Y)k' )
(4.40) o(¥,4) = ' l(Mau + ¥¥) 4Ow) (Mo + ¥'7 ). + C7].

4.3. Asymptotic distribution of the estimates of the parameters B and v with
normalization a function of Qs .

If we relax Assumption L that &, is constant, we obtain a more general
result. Since the proof, however, is more involved, we shall not give it here;
the reader is referred to [1]. In the derivation of the estimates 2., was defined as
6(8:6,). In the asymptotic theory we do not assume that this is the same for
each . We use the following assumption:

1
AssumptiON N. lim

T
AssumprioN O. lim 71’ D 8Gudiidman) = ni exists;
T-+o0 t=1

T
lim —1 Z &(5::6:5) = @i exists;

T—00 T t=1

1 T
lim T D &(3:61380u) = @iju + @ijom exists.
T—»00 t=al

Let 8., be the quantities 7, corresponding to the u’s, €z, the quantities
corresponding to the ¢’s. Define

(4.41) x"7 =166’ g%’;’_, l

(4.42) ey = Bmoxeiin

(4.43) g = (I = BY) @) ().,
(4.44) ¢ = x"x'oint,

(4.45) g = xX"B"8:imc".

With the aid of the matrices @, @, and @;, the vectors ¢s and gs , and the
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scalar ¢s , we may express the asymptotic covariance matrix of the estimates.
We obtain

TaEOREM 4. If Assumptions A, B, F, H, I, K, M, and O are satisfied, and
&, 15 a function of Q. , \/T(B — B) and \/T# — v) are asymptotically jointly
normally distributed with means zero and covariance matrix
4.46) (@, B) = Qi + @B + B'es + 488,

(4.47) o(#,4) = —Qulleu + giv — B'qalleu + g8y — @2 — B'gs,
6(’9’, 'f’) = ﬁ;quﬁzu - ﬁ;uq;'y - 'qu:iﬁzu + 45‘)"’)'

+ ﬁ;uQ2 + Q;ﬁzu - ‘Y'Qs - qg‘)’ "I_ Q3’
where Q1 , @2, Qs , g1, g5, and g are given by (4.26), (4.33), (4.34), (4.43), (4.44),
and (4.45) respectively.

CoroLLary 2. If Assumptions A, B, D, F, H and K are satisfied, and
O = o, VTEB — B) and \/THE — v) are asymptotically jointly normally
distributed with means zero and covariance matriz
449) o, B) = (I — BY)+(0w) (I — ¥B). + 368,

4.50) (B, 4) = —(I = B'¥)+Ow) " (Mew + ¥'v)i. + 38",
(451) A/’ ')A’) = (qu + ’Y"P) (ekk)_l(nzu + ¢7)k + O_ + _'Y'Y

(4.48)

6. Asymptotic distribution of the likelihood ratio criterion and the small
sample criterion for testing a certain hypothesis. The likelihood ratio criterion
for testing the hypothesis that the number of coordinates of z, with zero co-
efficients in the selected structural equation is as great as it is assumed to be is
(1 4+ »)™*" [2, Theorem 2], where » is the smallest root of

(51) lesMssP::s - VW:;:I = 0
Then
g BPs Mo P..p
5.2 T —_— = TBP., TBP.s
(5.2) v T (\/B)W . (\/TBP..)".

From Theorem 5 of [4] it follows that the asymptotic distribution of T'v is the
same as that of the quadratic form z ;5 2’, where x has the limiting distribution

of \/TBP.. , use being made of plim fW..3’ = o*. We have

T—00
(5.3) da’ = B'dpi + df'r}.
Let T = (I — B'¥).x(0u) (I — ¢'B)i. . Then
5.4) df’ = —v*B'nTendp? .

Substituting in (5.3), we obtain
(5.5) da’ = Bdpi — v*8rremndplns .
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Then
(5.6) @', 2%) = o’(e” — mir*) = E*
say, and (£°) = E.

Let F be chosen so E = FF’ and F'EF = ¥ is diagonal. Since EZEEE = EZE,
the diagonal elements of ¥ are 1 and 0. The number of elements that are 1 is
the rank of EEE, namely, D — H + 1, where D is the number of coordinates
of v; (the number of coordinates whose coefficients in the selected equation are

assumed to be zero). Let z = le. Then the asymptotic distribution of T'v
g

is the distribution of 2z’ where z is normally distributed with mean zero and
covariancematrix ¥. It is the x’-distribution with D — H + 1 degrees of freedom.
We observe that T' log (1 + ») and TDX are asymptotically equal to T'», where A
is the criterion based on small sample theory [2, Theorem 4]. Finally, we note
that v is independent of the normalization of 8.

TaEOREM 5. If Assumptions A, B, F, H, I, K, M, and N are satisfied, —2 times
the logarithm of the likelihood ratio criterion, —T/2 log (1 + v), the asymptotically
equivalent T'v and TD times the small sample criterion, N, for testing the hypothesis
that the number of coordinates with zero coefficients is D are asymptotically distributed
as x* with D — H + 1 degrees of freedom.

This theorem indicates how conservative the small sample test is asymp-
totically, for that test asymptotically is equivalent to using Tv as having an
asymptotic x*-distribution with D degrees of freedom.

6. Asymptotic behavior of confidence regions based on small sample theory.
In [2] we deduced confidence regions for 8 and for 8 and ¥ when Assumption E
holds. If the normalization of 8 is

(6.1) B0 =1,

where &, is a given matrix, then a confidence region (a) for 8 of confidence e
consists of all 8* satisfying (6.1) and

B*M e Moy Mop* D
3*szﬁ*, - T-K
where Fp r_x(e€) is chosen so the probability of (6.2) for 8* = B is ¢ and K is

the number of coordinates of z; and D is the number of coordinates of »;. A
region (b) for 8 and v simultaneously consists of 8* and +* satisfying (6.1) and

3*MzuM;}4MuzB*’ + ﬂ*Mzu'Y*/ + 'Y*Muzﬁ*’ + 'Y*Muu'y*' +B*M23M:31Mszﬁ*’
B*szﬁ*l

(6-2) F D, T—K (é) )

(6.3)
K
S T — KFK.T—K(G)-

We shall now show that even if Assumption E does not hold the regions have
asymptotically confidence coefficients ¢ and they are consistent under general
conditions.
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Let ¢ = BM. M7y + v, ¢ = BM.. M5 . We observe from Section 4 that if
Assumptions A, B, F, H, K, L, M and N are satisfied, the vectors+/Tc and
A/ Te have asymptotic independent distributions N(0, ¢°C™") and N 0, c'E,
respectively. Then TcM ..c’'/s” and TeM e’ /o will have asymptotic independent
x -distributions with (= K — D) and D degrees of freedom, respectively.
Also W, approaches ¢” stochastically. By Theorems 5 and 6 of [4], the left-
hand sides of (6.2) and (6.3) have asymptotic F-distributions with D and T — K
degrees of freedom and K and T — K degrees of freedom, respectively.

We shall prove that (a) is consistent for 8; the proof is similar for (b) as a
regionforBandy. If we replace 8 by b in the definition of e,eM e’ =bM .o Mos M ,2b'.
For b # B we must show that the probability that b will fall in the confidence
region for 8 approaches zero. The above form approaches bIL,.ETL,.b’ in proba-
bility. If b ¥ B8 and satisfies (6.1) then bIl,, ¥ 0 and eM e’ has a non-zero limit
in probability since E is positive definite. Thus b is not in the limiting confidence
region.

TuarEOREM 6. If Assumptions A, B, F, H, I, K, M, and N are satisfied, the
confidence regions of Theorem 3 of [2] (including (a) and (b) above) are consistent,
and the regions (a) and (b) have asymptotically the confidence levels e.
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