NONPARAMETRIC ESTIMATION IV

By D. A. S. FRASlj.!R AND R. WORMLEIGHTON!

University of Toronto

1. Summary. In the three papers, [1], [2], [3], entitled “Nonparametric estima-
tion”, Scheffé and Tukey generalized previous results on tolerance regions and
extended them to cover all continuous and discontinuous distribution functions.
This note contains four comments arising from these papers: first, on a method
for giving bounds to the confidence level in the discontinuous case which can
lower the probability that the end points need to have part, a random variable,
of their probability neglected to maintain the given confidence level; second,
on a correction of a statement of results in [2]; third, on a proof in (2] requiring
a further statement; fourth, a necessary restatement of theorems in [3].

2. Bounds for the confidence level. In paper [1] Scheffé and Tukey extend
the theory of tolerance regions to the one dimensional discontinuous case, and
obtain the following statement:

2.1 Pr{Cm-o.@+w 2 B} = 1 — agp 2 Pr{Cup 0,00 = B},

where Cpy40.(p50 are respectively the coverages of the open and closed inter-
vals with end points the pth and g¢th order statistics z, and z,(¢g > p) of a
sample of n from a distribution and @, , is the incomplete Beta function
Iflg —pyn —p+ g+ 1)

This statement implies the following statements:

1 — agpt2 = Pr{Cepn0,@+n— = B},

Pr{Copn-o,@-n+0 = B} = 1 — agpos.

This suggests giving bounds for the confidence levels of the tolerance regions
of statement (2.1).

Let us consider the one dimensional representation theorem with its ‘“‘inverse
probability integral transformation”. This transformation labelled gr(z*) mapped
z* with a uniform distribution into z with the given distribution represented by
F(z). 2* and 2 refer to the corresponding order statistics. Take any interval on
the range of the uniform distribution whose end points lie respectively in the
closed intervals (z;",_.l, z¥y) and (25 , z;"“). The confidence level, that the cover-
age of this interval is at least 8, lies between 1 — oy, and 1 — @, —p4o . Apply
the mapping gr(2*). The confidence level lies between 1 — ay—p and 1 — ag—pis
that the following coverage is greater than or equal to 8: Cy—o,w+0, if 2, i8
distinet from z,; and z, is distinct from 2,41 ; Cpy—o,@—0 + “fraction” of the
coverage of z, if z, is distinct from z,; and 2, identical to 2,41 ; and similarly
for the other two possible cases. The “fraction” (a number between 0 and 1) can

" 1 The authors wish to thank Professor John Tukey for suggesting Definitions 5.2 and
5.3.
294

[eXs
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. IIKOIRS ®

WWW.jstor.org



NONPARAMETRIC ESTIMATION IV 295

be considered as a random variable as determined by the above mapping or
as a fixed value since the relation must be true for at least one fixed value for
any given distribution and integers p and q. In either case it is unknown to the
practitioner and the interpretation weuld be unimportant.

Similarly we obtain the following result: The confidence level lies between
1 — apand 1 — oy pirys that the following coverage is greater than or equal
to B: Cipy—o,0+0 , if 2, is distinet from 2, and 2, is distinet from 2,4, ; Cpy—0, @0
+ “Iraction” of the coverage of z, , if z, is distinct from z,_, and 2, is identical
to 241, ; and similarly for the other two cases.

The open interval can be treated in a similar manner.

The application of these results would be for the practitioner who was familiar
with the type of data he was to receive and realized that perhaps two or three
order statistics would be tied on one or perhaps both tails. He would then choose
r and s to give as tight control of the confidence level consistent with a reason-
able determinacy in the tolerance interval (the probability being small that the
coverage should be considered as including only part instead of all of the cover-
age of the end points).

These results also generalize to the multivariate case with little alteration.
For example consider the following result which would correspond to the closed
interval case above. The confidence level lies between 1 — a,_p, and 1 — agpyr
that the following coverage is greater than or equal to 8: cov {B,}, if B is con-
tained in By, where u consists of r of the integers (1,2, ---,n + 1) which
are not contained in \; cov {Bx} + “fraction” of (cov {Br} — cov {By\}), if
B, is not contained in By,. Here the “fraction” can be considered a random
variable or fixed, in either case unknown to the practitioner (A containing
q — p integers).

In formulating the above generalization, attention was drawn to the fact
that the block groups did not form a proper sequence as A was increased. By
the following counter example the theorems in [3] are seen to be incorrect using
the given definition of block groups. Rectifying definitions are presented in
Section 5.

Following the notation of 3], let

o, y) = Y,
ez, y) = z,
ea(x, y) = —-Y,
‘:94(x, 1/) = -,

and p; = ¢(1 = 1,2, 3, 4).
Consider the distribution F(z, y) = e(x)e(y) where e(x) is defined by

(@) = 0, z <0,
=1, z=0.

Take & sample of n = 6 from this distribution; the sample values will all be
(0, 0) with probability one.
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S = {@y)|y>0o0ry=0,z>0),
Tl = {(O;O)},

S2= {(x,y)ly<0,$§0},

T, = Null set, °

Sz = {(:v,y)lx <07 Yy éO},

T3 = Null set,

Ss = Null set.

The corresponding coverages are respectively 0, 1, 0, 0, 0, 0, 0.
Taking A = {3} we find by the definition of block groups that

B.=TU8UT;, GC=0

with probability 1. Thus Pr{Cy < a} = 1 £ I(1,n)."

Taking A = {1, 2} we have B, = ;U T, U S,, and C, = 1 with probabil-
ity 1. Thus Pr{C\ < a} =0 2 I,(2,n — 1).

The proof in [3] is in error on page 39, the seventh line from the bottom.

3. Correction of a statement of results. In paper [2] on page 536 a “Statement
of Results for Measure Theorists” is given. The theorem B,.; should read:
Hold the n functions ¢;, ¢z, * -+ , ¢, and ‘the probability measure fixed, then
T" is mapped on B, and the power measure " is carried by that mapping into
a measure of B, . This measure is always n!/A/n + 1 times Lebesgue meas-
ure.

4. A proof; a further statement. In the proof on page 537 of paper [3], the
problem is to show that the distribution of n — m variates is the same when ob-
tained by two methods of calculation; more particularly, to show that, given
that in a sample of n, one value falls in each of the sets 4,, 4, -++, A and
the remaining n — m fall in B, then the distribution of the » — m in B is that
of a sample of n — m restricted to B. The statement is made that the probabil-
ity of the above, and in addition that the n — m falling in B, fall in R C B, is

M ADu(dd) - wAn(B)
(n — m)!

times the probability that a sample of n — m restricted to B falls in RB. To
show that the distributions are identical, a further statement is needed: that
for one variate in each A;, for p falling in B, and n — m — p in B — R, then
the probability is equal to

!
(—n%—"m p(41) -+ u(An)p™"(B)
times the probability that a sample of n — m restricted to B divides p into R
and n —m — pinto B — R.

6. Restatement of theorems in [3]. As has been noted in Section 2 above,
Theorems A¥,,1 and B, fail when actual ties (coincident points) occur.
The following redefinition of the block groups overcomes this difficulty and the
proof follows as given in [3].
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Define S; and T; as in (4.1) in [3].

DErFiniTION 5.1. Let S; be given by the definition for S; where < s replaced
by = and > is replaced by =.

DzriniTioN 5.2. The block group Bx consists of the union of all S; with © in \
and all T; not contained in any S; with i not in \.

DEFINITION 5.3. The closed block group By consists of the union of all S; with
iin X and all T; contained in any S; with ¢ in \.

Using the above definitions, Theorems A%, and B, follow provided the
“m-system of functions” is chosen so that all T'; are reduced to points.

A more general definition of block groups which will cover cases where the
“m-system of functions” does not reduce all cuts to points and which is identi-
cal to that of (5.2) and (5.3) when all cuts are necessarily points is given by
(5.4) and (5.5). :

DEerFINITION 5.4. The closed block group B consists of the union of all S; with
T1n A

DEerFINITION 5.5. The block group By consists of the complement of Beoy where
C(\) s the complement of N with respect to the integers (1,2, --- ,n + 1).

According to the representation theorem in [3], we have a continuous joint
distribution of variates Uy, U,, -+, Un . By means of monotone functions
g1(U1), + -+, gm(Un) this continuous distribution is mapped into a discontinu-
ous distribution identical to the distribution of ¥1(w1), -« , ¥m(Wm).

Let S{ = {(Uy, -, Un) | UL > wi(iy)},
Sy = {(Us, -, Un) | Ur < m(iw), Us > (i)},

Sn = {(Us,++, Un) | Ur < i), -+, Um > uUn(Gm)},
Sminit = {(Ur, -+, Un) | Us < (i), 5 Un < Un(im)}-
Also we have:
St = {gu(U), -+, gm(Um) | 01(UD) > qr(ma(iw))},
82 = {qu(U), -+, gn(Unm) | 01(U1) < 1)), 92(Us) > go(ua(im)) },

Sminir = {g1(UY), -+, gm(Un) | 1(U1) < g1(a(iw)), + + + 1 gm(Um) < gm(tmGem)) },

and ST, S5, etc., are defined as ST, S5 , etc., where < is replaced by < and
> is replaced by =.

Consider now the inverse mapping of the sets S;, S5, --- and 87, 83, - -
into the space of (U, Us, -+, Un). We shall have

g'(8%) € 8; cg7(8)
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because
g:(U;:) > gi(a) - U; > a— ¢:(Us) = gi(a).
Thus we have the following ineqfiality for the corresponding coverages:
cov (S7) = cov (83) = cov (87).

The proof follows directly from this relation as in section (9) of [3.
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