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1. Summary. From an algebraic point of view the analysis of variance tests
of effects and interactions can be based on the minimum values of a certain
quadratic expression in which the ‘“h-matrix” (defined in Section 3) is funda-
mental. The arbitrariness in the choice of this matrix reflects the arbitrariness
in the definition of effects and interactions. The paper considers the dependence
of the result of these tests on the h-matrix used and expresses the answer by the
two theorems of Section 4, which are proved in the subsequent sections.

2. Introduction. The sums of squares which appear in an analysis of variance
when the significance of effects and/or interactions is tested can be obtained
by taking the minima with regard to values a,...x, of such expressions as
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where the y;,...;, are the means of g;,...;, observed values for levels 7, of variables
z. ¢t = 1,---, 8), respectively, and the values & form a nonsingular matrix
which will be described in detail in the next section. The summation inside the
bracket in (1) is carried out over sets (k; - - - k,) of subscripts, 0 < k; < n, — 1,
which depend on the aggregate of effects and interactions to be tested. If* all
ny - - - m, possible sets appeared in (1), the minimum would, of course, be zero.
To each test there belongs a set of &’s which is left out of the combinations of
subscripts in (1) according to the following rule:

The interaction of order (¢ — 1) between z;, - - - , z; is tested by omitting all
Qkyer k0.0 fOr which %y - -+ k; £ 0. (A main effect is equivalent to an interaction
of order zero.) An aggregate of interactions is tested by leaving out all com-
binations referring to any of its several components [2].

As an illustration, let us take s = 2 and g;,...;,= 1. We choose the following
(orthogonal) matrix of Ax,,(%1%2):

(1) = 1 12 21 22 31 32

(y k2) = 00 1 1 1 1 1 1
01 1 -1 1 -1 1 -1
10 1 1 1 1 -2 =2
) 11 1 -1 1 -1 =2
20 1 1 -1 -1
21 1 -1 -1 1 0 0
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If we test for the first main effect, then we retain ag, an , an, and ay , and
we obtain for the minimum, after straightforward calculations,

(yu + y)’ + (yn + y2252 + (ya + y=)’ G2 yis)’
2 6 )

Similarly, testing for the interaction, we would retain aep , o1, G, a2, and
obtain

22 Y — EHyu + y)’ + (n + y2)’ + @a + yu)l]
-3y + yn + ya) + (Y + Y22 + () + (= yili,)z/ 6.

If we had taken general weights g,...;, , but still using the same values for
the h-matrix, then we should have obtained results which are equivalent to those
given by Yates’ “method of weighted squares of means” [5].

3. Assumptions and definitions. Let the “A-matrix” h,...x,(,..2,) G: =1, -+,
ng 3 ke = 0,1, -+ ,n, — 1) be such that all the elements in the same row have
equal sets of subscripts and all the elements in the same column have equal sets
of arguments. It will be assumed that this matrix satisfies the following conditions:

ConpITION A.

nl ns
E e z Wigereiy hk1---k‘(il e ’l:,) 'hmi...m,(’il e 1:,) # 0
=1 =1
if simultaneously k; = m., and = 0 otherwise. The w;,...;, are positive weights.
It follows that the h-matrix is not singular.

ConprrioN B. If any k. = 0, then hg,...x,...x, ts tndependent of ©; .

In particular, if the h’s are orthogonal polynomials of degrees k; in ¢,, then
Conditions A and B hold by definition.

It has been shown [1] that these two conditions can be satisfied simultaneously
only if the weights are “proportionate,” i.e., if wi,....,/D /=1 Wi;...i, is independent
of alt ¢, (m 5= t) for all &.

From Condition A can be derived the following lemma, which will be used
at a later state:

LemMA. If ke 5 0, then D 5ia Wiy, by, (1 -+ 45) = 0.

Proor. We assume that ¢ = 1; this clearly does not restrict the generality of
the argument, since it may be repeated identically for any other value of ¢.
From Condition A we have the equations:

nl ns
Z‘,l Zl Wiyori, Bigee, G+ + 50) Bomgerm, GG+ %) = 0
1= =,

for all ms, - -+, m,, since k; is assumed to be different from zero. If we regard
the ny -+ - M, expressions Y iies Wiy...i, hey..k, (6 - -+ 45) for all %, -+ , %, as un-
known values, we have the same number of linear homogeneous equations for
them. The determinant of the system is orthogonal and hence not zero. It follows
that the unknown values must be zero, and thus the lemma is proved.
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All sets (k1 -+ k0 -+ 0) with &; - - - k; 2 0 form a “block,” which we denote
by ((ky - -+ k:)). The meaning of ((km, * * * km,)) is immediately obvious. Every
set of subscripts belongs to one and only one block. If we consider a particular
block and then omit one or more values from within the double brackets de-
noting it, another block is obtained, which we call a “sub-block’ of the former.

4. The problem. Even with Conditions A and B to be satisfied, there remains
still an arbitrariness in the choice of the A-matrix, and this reflects an arbitrariness
in the definition of interactions [3]. If the h’s are such that Condition A is satisfied
with wi;...;s = giy...;, for all 7,, then the computation of the minimum of (1)
becomes very simple, but clearly this cannot be a reason for choosing the A-matrix
accordingly [4]. However, in this paper we shall be concerned with another
aspect of the situation: we wish to find out whether two different h-matrices
can lead to the same minimum value and, if so, under what conditions. The
answer depends on the particular test carried out and is expressed by the follow-
ing two theorems.

TurOREM 1. If two h-mairices satisfy Condition A with regard to the same weights,
then both lead to the same minimum of (1), whatever the aggregate of interactions
tested.

TuroreM 2. If the aggregate is such that for each retained block of subscripts all
its sub-blocks are also retained, then the minimum of (1) is independent of the
h-matriz (even if the latter s not orthogonal with regard to any wetghts).

It follows from the latter theorem that when only the highest order interaction
(that of order s — 1) is tested, and hence all sets of subscripts except those con-
stituting the block ((k; - - - k;)) are retained, any h-matrix leads to the same con-
clusion.

6. Transformation of the problem. In what follows we shall denote, where
no misunderstanding can arise, the various sets (¢, --* %) by I1, -+, Iy, and
the sets (k1 -+ k) by Ky, -+, Ku. Here N = ny -+« n,, and M is the num-
ber of retained sets of subscripts, e.g., M = (n; — 1) --- (n, — 1) if only the
block ((k; - - - k:)) were retained. We have N > M, except in the trivial case
where the minimum of (1) is zero.

Let us now imagine that we have two h-matrices, the elements of which are
denoted by h and &' respectively. If for any given set of ag;(z = 1, -+ , M) we
can find a set ax, so that

M M
(2) El ak; hK.' (It) = Z; a:!; h;.(-[t)
forall I,(t = 1, --- , N), then clearly the set of values which (1) can assume is

identical with that of a similar expression when 4 is replaced by #’. Hence the
minima of the two expressions will also be the same.

It follows that different h-matrices will lead to the same minimum of (1) if
they and the retained blocks of subscripts are such that (2) can be solved for the
a,’n , assuming that the ag, are given. In (2) there are N equations for the I/
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unknowns ax; . It will be possible, therefore, to solve the set only if not more
than M of the equations are linearly independent.

Regarding, to begin with, only the left-hand side (Lh.s.) of (2), we can cer-
tainly select M sets of arguments I;, ---, Ix so that the determinant
| hxy(I) | # O (since the complete h-matrix is not singular). Hence for any
further argument J, say, we can solve the system of linear equations

M
hx,(J) = é CI‘ hK;(It)’

B e Ceereeenaes
M
hKy(J) = ; Cz, hKy(It)'

This gives hx;(J) as a linear combination of hx;(I1), -+ , hx(Z. u) which is the
same for all ¢ = 1, ---, M. Therefore the L.h.s. of those equations in (2) in
which I, = J will again be the same linear combination of the L.h.s. of the equa-
tions in which the arguments are I, - -, Ix, respectively. Consequently the
whole equation, written for J, will be the very same linear combination of the
equations for the I, severally, if it can be shown that the Cy, which we find
from (3) are equally applicable to the r.h.s. of (2), i.e., to the hx, . Since the
two matrices are, by the assumptions of Theorem 1, orthogonal with regard to
the same weights, it is sufficient to prove that the Cr, , which are the solutions
of (3), although possibly dependent on the weights wi,...;, , do not otherwise
depend on the h-matrix considered.

6. Proof of Theorem 1. In general, the sets of subscripts Ky, -+, Ka will
not all belong to the same block. We consider first the block out of which K
is taken and assume that it consists of K;, - -+, Ke (P < M). It is no restric-
tion of generality to assume further that this is the block ((ky - - - kwm)), so that
P=(—1) - mmn—1).

We fix our attention on one single set belonging to this block, say
(%, , Fm, 0, -, 0). Conditions A and B imply linear relations between
the hiy...im0.--0(i1  + * 45), and we shall now establish how many of these values
can be chosen independently, thereby fixing all others implicitly. If hz;...imo...0
is known for (i1, - - - , %) Where the 7, are some fixed values, then, by virtue of
Condition B, it is also known for all (G, -, Tm, %m41, ", %) Where
the %my1, --- , 4, are arbitrary. We need therefore only investigate relations
between the 7y « -+ + N values hi,...imo-.0(t1 =+ * tmIm41 -+ 7). These are not all
independent either, since our lemma gives, for r = 1, -+, m,

(4) ~ Wiy.oni, hicl...fcmo...o(’ij, ceedy) =0
=,
for-allil, s ,1:,-_1,1:,-+1, s ,ia.
Thus only (n; — 1) - -+ (nm — 1) = P values among the Pioger im0y + =+ 1s)
will be independent, and it is easy to indicate how such a set can be found. In
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the matrix || hx;(I) || (j = 1, -+, P; ¢t = 1, ---, M) there must be a square
sub-matrix of order P which is not singular, since otherwise the determinant of
(3) would be zero, contrary to our assumptions. Let this sub-matrix be
|| hr;(Iu) || (w = &1, -, te ; j as befare). Then it follows that the hj,...i0...0(1u)
constitute a set of values which can arbitrarily be selected. Indeed, if they were
dependent, by virtue of (4) and Condition B, then identical linear relations
would hold for all K, i.e., for all rows of the matrix || hx;(Z.) || , which would
hence be singular.

We may, then, rewrite the first P equations in (3) by expressing all h(I;) on
the r.h.s. in terms of I, , -+ -, I,, as arguments. The coefficients will be linear
combinations of Cr, and of the weights, which appear in (4). Since the lLh.s.,
i.e., h(J), with subscripts of & as before, can also be expressed as a linear com-
bination of these same h(I,), by virtue of (4) and Condition B, we see that the
C1, must satisfy P identities, in which only the weights w;,...;, are parameters.

All blocks to which the K, , - -+, Ky belong can be treated in the same way
and thus we obtain altogether M equations from which the Cr,(t = 1, --- , M)
can be obtained. They will depend on the weights, but not otherwise on the A-
matrix. This completes the proof of Theorem 1.

7. Proof of Theorem 2. We turn now to Theorem 2, and assume that the
sets of subscripts retained in (1) are those of the blocks By, B;, -+, B, and
of all their sub-blocks. We can at once indicate the sets of arguments I, , I, - - -
equal in number to the retained sets of subscripts, and such that A(j; - - - j.) can
be expressed as a linear combination of A(Iy), h(Iz), - - - for all sets of subscripts
considered. For this purpose we take, for each retained set (k, --- k,), the set
of arguments (&, + 1, - - , k. + 1). Thus there will be the same number (=M)
of sets of arguments as there are sets of retained subscripts. We note in par-
ticular, that if any of the k; = 0, the corresponding j; will be unity. This will
be the case in respect of all sets of a block, if it is true for any set in it.

To simplify our formulae, we introduce the following notation: If (J) =
(J1 *+* Js), then (J); is the result of replacing by unity all those j; which corre-
spond to a k; = 0 in block B; . Further, (J);; is the result of replacing by unity
all those j; which correspond to a k; = 0 either in B; or in B;, or, in other words,
those j; which do not correspond to the largest common sub-block of B; and
B; . The notation (J)ij...; is similarly defined. Now if K; is any set of subscripts
in the block B;, then it follows from Condition B that

hrs(r -+ Jo) = hxg(Gr -+ - Jodi,
and, more generally,
hx‘(jl s j.)j.nk = hx;(jl e js)ii"-k )

since all those additional arguments 1 in (51 - - - s)ij...x Which do not already
appear in (7 - - - j,)j...k correspond to zeros in the subscripts of B;. Moreover,
these relations remain true if we take, instead of B;, any of its sub-blocks, since
such a sub-block contains all those zeros which were in B; (and some more).
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We shall now prove that the relation
®) Al = 2D = 2 haWes 4 -+ (=D heDoven,

(/) being an arbitrary set of arguments, holds for all K out of By, By, - , Bx
and. also out of any of their sub-blocks. This is a linear relation of the type
which we need for the proof of Theorem 2 and we see that all sets of argu-
ments appearing on the r.h.s. are among those I, I,, - - - which we have ini-
tially selected as a basis. Hence, if we prove that this relation holds for any K
out of the blocks and sub-blocks considered, then Theorem 2 follows.

First let K be a set out of B, . Equation (5) can be written as follows:

M) = he(o + 3 he@)s = 35 helus = g he()s

+ 2 hxWoi; + -+ + (=D he(Doreon -
$pbj=l

Now we have hg(J) = hx(J)s . Moreover, the second term on the r.h.s. cancels
with the third, the fourth with the fifth, and so on until all terms are exhausted.
This proves relation (5) for K out of By . But it is evident that the proof could
equally well have been carried out for any other of the given blocks or for any
of their sub-blocks. This completes the proof of Theorem 2. It will be noticed
that no weights appear in (5), so that under the given conditions the theorem
holds even for matrices which are not orthogonal (in the sense of Condition A)
with regard to any set of weights.
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