A BIVARIATE EXTENSION OF THE U STATISTIC!

By D. B. WHITNEY
Ohio State University

1. Summary. Let z, y, and z be three random variables with continuous
cumulative distribution functions f, g, and h. In order to test the hypothesis
f = g = h under certain alternatives two statistics U, V based on ranks are
proposed.

Recurrence relations are given for determining the probability of a given
(U, V) in a sample of I &’s, m y’s, n 2’s and the different moments of the joint
distribution of U and V. The means, second, and fourth' moments of the joint
distribution are given explicitly and the limit distribution is shown to be normal.

As an illustration the joint distribution of U, V is given for the case (I, m,n) =
(6, 3, 3) together with the values obtained by using the bivariate normal approxi-
mation. Tables of the joint cumulative distribution of U, V have been prepared
for all cases where Il + m 4+ n = 15.

2. Introduction. Let z, y, and z be three random variables with continuous
cumulative distributions f, g, k. We wish to test the hypothesis that f = g = A
with the alternative that f > g,f > h, orsay,f > g > h.

To test such a hypothesis with a sample of [ 2’s, m y’s, and n 2’s, we arrange
the sample values in ascending order and let U count the number of times
a y precedes an z, and V count the number of times a 2 precedes an z. As a
critical region for the hypothesis with the alternative f > g, f > h we propose
touse U £ K1,V £ K, ; or with the alternativeg > f > h, U 2 K;,V £ K,,
where the constants K are chosen to, give the correct significance level. Even
if the significance level is fixed the constants K are not uniquely determined.
A reasonable principle to follow in this case would be to choose

P(USK,) =P(V=K;) or P(UzK;) =PV =Ky

according to which alternative is chosen. In particular, if m =.n this leads to
K1 = Kz and K3 + K4 = m-n.

3. Moments of the joint distribution of U and V. We consider sequences of
la’s, m y’s, n 2’s and let T1ma(U, V) be the number of such sequences in which
a y precedes an x U times and a z precedes an z V' times. Omitting the last term
in such a sequence leads to the relation

(1) Tlmn(U7 V) = Tl—-l,mn(U - m, V- n) + Tl,m—l,'n(U; V) + Tlm.n—l(U7 V),

1 The U statistic was introduced by H. B. Mann and the author in “On a test of whether
one of two random variables is stochastically larger than the other,”” Annals of Math. Stat.,
Vol. 18 (1947), pp. 50-60. The present extension was carried out at the suggestion of J. W.
Tukey, Princeton University.
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where T (U, V) = 0if UK 0; V <0;U>0,m = 0;0or V> 0,n = 0;and
T - (m + n)
omn = .

m
Under the hypothesis any of the. (I + m + n)!/l!m!n! sequences has equal
probability. Hence

l
l+m+4+n

m
+ m pl.m—-l.n(Ur V) + "_‘"_“"_—_}_—' Dim, n—l(U V);

where pina(U, V) denotes the probability of a sequence of I z’s, m y’s, n 2’s
having y precede an z U times and z precede an z V times.

To obtain the mean of U we multiply (2) by U and sum over all U, V. This
gives

plm»(U, V) = pl-—l.mn(U - m, V - n)

@

l

Ema(U) = R ——

3)

El—l.mn(U) + i—_l‘_'——‘_l__ El m—1, n(U)

Im
+ ﬁ——_F—Elm n—l(U) + m.

This and a similar equation for E;..(V), together with the obvious initial con-
ditions, give

(4) Elﬂm(U) == Elmn(V) = %.

The recurrence relations for the higher moments about the mean are obtained
by multiplying (2) by (U — 4Im)*(V — }in)’ and summing overall U, V. Using
u=U=—3imv="V — in,

B = i 25 () () 5)6) e

m i i l i—a «
(5) + TmTn .,Zgo < ) (=1) (2> Epmy,n(u’v’)

t e 2 (1) 0 () Bt
l+m+nim\8 2 . ’
For 7 + j = 4 the solutions of (5) satisfying the initial conditions Eomn(u'v?) =
Eo(u®’) = 0 are found to be

Bin@) = o 1m(1 + m + 1),

Epn(w) = Tlélmn,

E,,,,,,(u”v) = Elmn(uvz) =0,
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E;,,,,,(u‘) = 2_16 im

(6) ‘(0 + m + 1)(5'm + 5lm* — 21 — 2m* + 3lm — 21 — 2m),

Eimn(u®) = 541_0 Imn(5Pm + 5lm* — 21 — 2m® + 3lm — 21 — 2m),

Epa(u®?) Imn

720
«(50° + 50'm + 5f'n + 15imn + 141
+ 3lm + 3ln — 6mn + 71 — 2m — 2n — 2).
From symmetry considerations it follows that Ez,,,,.(u;v") = 0if 7 + j is odd.
4. Limit distribution of u and v. Let F(l, m, n) be a function of integers
l, m, n and define an operator ¥ by
YF(1, m,n) = [F({1, m,n) — F(l — 1, m, n)]
+ m[F(, m,n) — F(,m — 1,n)] + n[F(, m,n) — F(l, m,n— 1)].
This permits (5) to be rewritten as

i - £ i
® +m '21 () 0 (1) Bumaatu)
+ nt ( ) (-n** (é)i_ Emna(u'’).

B=0

™

In order to work with equation (8) we need these properties:

(a) If WF (I, m, n) is a polynomial of degree ¢ in all the variables, « in [, 8 in
m, ¥ in n, then F(I, m, n) is a polynomial of degree ¢ in all the variables,
ainl, Binm,yinn.

(b) If P, , Q. are polynomials of degree ¢ and I, m,n — o« so that F(l, m,n) —

wvP t P t [

Foand — — ¢, then == — 7

; Q
Leaving the proof of these statements to a later section (Section 5), we shall
apply them now to equation (8). Since Ema(u'v ) = 0 for 7 + j odd we consider
only the case ¢ + j = 2r. For 7 = 1, 2, Epna(u'’) is a polynomial of degree 3r,
of degree at most 2r in [, 2 in m, and j in n. If we assume this to hold fors 4 7 <
2r, then from (8) VE ... (u%?), 1 + j = 2r, has these properties and hence B, (u'v’)

does also.
In what follows there are two cases according as ¢ and j are both even or both
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odd. We give only the first case explicitly. Replacing ¢ and 7 in (8) by 2 and
27, we obtain

¥l (57 =1 [(m z 2> (%)3 By (')
" (2f z 1) (2:‘2z ) @ @ By a7 Y)
© + <2j2 _]- 2) <g> I 2,_2)]
o [<2,-2f 2) (12) Ez.m_l.,.(uz-'-z,zf)]

+ n[(zjzi 2) <l2> Elm ,.._1( 21 2)—2)]+ P3(¢+j)_1 (l,m,n)’

where Psiyj-1(I, m, n) indicates a polynomial of degree 3( + j) — 1inl, m, n,
which is also of degree at most 2( + 7) in I, 2¢ in m, and 2j in n. This may be
reduced to

YEinn(u*s™) = Hm(l + m)i(2i — 1) Eumn (w0
(10) + lmn - jElm”(uzi—l 2i-l) + Yn(l + n),7(21 _ I)Elmn( 24 2}—2
+ Piaipa(l, m, n).

_ Bima(u#)

Now we write Ao, = a B
Oyl

then dividing (10) by o' o3’ = [t Im( + m + 1)]' [ (I + n + 1Y gives

YEima(W%) — Hm( + m)i(26 — 1) 4, 0;
e T Em( 4+ m 4 1) N

an lmn-z-§ AZi=l2i-1
T EVimG+ m DI F o ¥ D
fnl + n)j@2j — )Aza.zi—z + M
Hinl +n 1) M oiar
Let
_ Eimn(u,v) mn
ollymym) = == = C+m+ DI F+n+0D

and use p(l, m, n) — po to mean I, m, n — o in such a way that

mn

I+m+DI+n+1
We then have for p(I, m, n) — po

- Po.

(12) >‘ll1lnn —>po, th?m.n g 3, >\:irlnn i 3P0 ’ leim_) 1 + 2,03.
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Dropping the I, m, n to denote the limiting values, (12) are just special cases
ie,t+ 7= 2o0r4,of

2izi _ (20)1(2)! "R (200)™
(13) V= 2 .Z:o C—a)l(f — a)!ax)!’
sz _ (24 DI+ DY "R (2p0)"
2i+ P C—al(j—a)!@a+ I

Inductively then, we assume for & + 8 < 2(i + j) that A§h, satisfies (13)
for p(l, m, n) — po . Since Pji+j-1(l, m, n) in (11) has degree at most 2(z + j)
in I, 2 in m, 27 in n, we obtain

C VB (i)
Lim ——7—
p(limyn)—pg OyuOy
_aiior _ 1) @1 — 2121 "R (2p0)"
" =802 = D) Eo G—1—=a)l(j —a)(2a)!
L (@i=1DI2 = 1)1 ™MD (2p0)*
2. hal :
T 12i-7p0 PR po Eo G—1—a)lj—1—a)!Ca+ D!
o 1y D125 — 2)1 ™D (200)™
+ 327 - 1) 5 Z(:) G-l =1= a2
and this reduces to
. \I;Elm”(uﬁvﬁ) . (21) '(2‘7) | min (4d) (2po)2a
a5 Lm wo =30+ T5mT 4 g aig =@l
From this it follows that
. B 0™ (20)1(29)! "D (200)™
1) | Hm T T Towm & G- @i - el

and in like manner for Ejn.(w*****'). Therefore the moments of the limit
distribution are those of a bivariate normal distribution. Hence the variables

Im In

,‘/i%lm(l+m+1) 1/1-151n(z+n+1)

have in the limit a joint normal distribution with means 0, variances 1, and
correlation coefficient po , where

- z"I.“,.‘?...'t/(l+m+ Di+n+ D)

6. Properties of ¥.
Lemma 1. If

14

N .
F(x’ Yy 7) = Z 2 Z aipx yizk’

tua( ju=0 k=0
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then
A 12
YF(z,y,2) = ZiZA w2y 2,
=0 ju=0 k=0
where

A = ﬁ (—=1)* aa,,,( i 1) + i( 1% ag (j E 1)

Q=1 Be=j
~ % Y
+ ;}c (=17 aijy (k - 1)-

This follows from a straightforward application of the definition of .

Lemma 2. If F(z, y, 2) is a polynomial in x, y, 2 of degree o, of degree \ in x,
uin Y, vin 2, then so is VF.

This follows from the representation of ¥F in Lemma 1

Lemma 3. For any polynomial F(z, y, 2) there exists a polynomial G(z, y, 2)
such that ¥G@ = F.

Let the coefficients of F be denoted by A4;; and the unknown coefficients of
G by a;; . The lemma will follow if we can solve the equations in Lemma, 1 for
@i ,2=0,1,--- ,N;7=0,1,-+ ,u;k=0,1, ---,v. For7 + j + k a maxi-
mum for all the 7, j, k of A;; ,we have

Aijip = aipp (z ) + aij <] ) + auk< k ) = (47 + ka .

By induction we assume that the equation can be solved for the a;j for all
i, j, k such that ¢ + 7 + &k > ¢. Then for ¢ 4+ j 4+ k = twe have A =
(¢ + 7 + k)aii plus a’s whose subscripts add to more than ¢. Hence the a;z
can be determined.

Lemma 4. If ¥[F(z, y, 2) — G(z, y, 2)] = 0, then F(z,y,2z) — F(, 0, 0) =
G(z, y, 2) — G(0, 0, 0).

Let ¢ = z + y + 2. The lemma is true for ¢ = 0, and we assume it to be true
for all z, y, zsuch that x 4+ y + 2 < . Then forz + y + 2z = ¢,

\I,[F(x’ Y, z) - G(x) Y, z)] =0
gives
(x + Yy + z)[F(x, Y, z) - G(xa Y, Z)] - x[F(x - 1’ Y, z) - G(Z - 11 Y, Z)]
- ?/[F(x,y - l’z) - G(xyy - l’z)] - Z[F(x’ Y,z — 1) - G(x)y’z - 1)] =0.

Using our induction assumption,

(@ +y+2IF(,y,2) — G,y,2)] = &+ y + 2)[F(0,0,0) — G, 0, 0)],

and the lemma, follows.
6. Distribution of ¥ and v in a particular case with! = 6, m = n = 8 Using.

the relation (1), the table of Te(U, V) (Table 1) was obtained. In this case
E(U) = E(V) = 9,0\ = 03 = 15, 0u, = 4.5,p = 0.3.



TABLE 1

Tea(U, V)
9 |14 15 32 55 78 103 150 155 178 200 178 155 150 103 78 55 32 15 14
8 |17 18 41 65 91 112 158 160 194 178 173 144 139 95 71 46 30 14 14
7 |16 20 42 66 85 108 146 158 160 155 144 122 110 74 52 38 23 11 10
6 |25 24 48 71 95 114 170 146 158 150 139 110 103 64 49 33 21 10 10
5 |20 20 39 58 75 98 114 108 112 103 95 74 64 43 312213 6 5
4 |19 18 37 51 74 75 95 85 91 78 71 52 49 31 2314 9 4 4
3 |15 16 32 56 51 5 71 66 65 55 46 38 33 22 1410 6 3 3
2 |14 15 30 32 37 39 48 42 41 32 30 23 21 13 9 6 4 2 2
1 (10 12 15 16 18 20 24 20 18 15 14 11 10 6 4 3 2 1 1
0 |2 10 14 15 19 20 25 16 17 14 14 10 10 5 43 2 1 1
v
/f 01 2 3 4 5 6 7 8 9 10 11 12 13 1415161718
TABLE 2
k h
2 2 (U, V)
V—Q U=0
9 9 18 3 62 9 137 191 242 208 351
a2 @) @7) (59) (1) (132) (181) (237) (205) (352)
8 8 17 33 56 8 120 166 210 256 208
10) (19) 33) (52) (80) (114) (156) (201) (249)  (295)
7 7 15 29 48 73 102 139 174 210 242
9) (@16) (28) (45) (67) (95) (128) (165) (201) (237)
6 7 183 24 41 6l 84 113 139 166 191
8 (14) (23) (36) (54) (76) (101) (128) (156) (181)
5 5 10 19 32 46 63 8 102 120 137
6) (@1 (@18) (28) 1) (67) (76) (95) (114) (132)
4 4 8 15 24 3 46 61 73 86 9
5) @8 @3 (@ (@©0) (41) (54) 67) (80) 91)
3 3 6 11 17 24 32 4 48 56 62
3) 6) @@0) a4 (@ (28) (36) (45) (52) (59)
2 2 4 8 11 15 19 24 2 33 36
) “4) 6) @10) (@3) (18) (23) (28) (33) 37)
1 2 3 4 6 8 10 13 15 17 18
) 3) 4) (6) ®8) (11) (14) (16) (19) (21)
0 1 2 2 3 4 5 7 7 8 9
1) (¢} 2) @3) (5) (6) 8) ) (10) (12)
% 0 1 2 3 .4 5 6 7 8 9

280
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Table 2 gives the cumulative distribution Z’{r.o v~ Pess(U,. V). The num-
bers have all been multiplied by 1000. The figures in parentheses are the values
obtained by using (U — 9 — §)/4/15, (V — 9 — 4)/4/15 as random variables
from a bivariate normal distribution of means zero, variances one, and cor-
relation coefficient 0.3. ‘

7. Example. Suppose that y, , z denote the lengths of life of rats that have
been exposed to insecticides of supposedly decreasing toxicity. We would then
be interested in the hypothesis g = f = & under the alternative g > f > k.

For a sample of 3 s, 6 2’s, and 8 2’s, a critical region of size .044 is found
from the preceding table to be U = 12, V < 6. In an experiment the sequence

TABLE 2—Continued

Eh
2 2 pa(U, V)
V=0 Um0
9 400 440 478 502 520 533 541 544 548

(404)  (447) (482) (508) (526) (B37) (544) (548) (851)

8 338 369 398 418 431 441 447 450 452
(336) (370) (398) (417) (430) (439) (444) (446) (449)

7 272 206 318 332 342 349 353 355 357
(268) (293) (313) (327) (337) (345) (346) (348) (349)

6 213 230 246 256 263 268 271 272 274
(204)  (222) (236) (245) (252) (265) (268) (259)  (260)

b 151 162 173 179 184 187 189 190 190
(147) (159) (168) (174) (178) (180) (182) (183) (183)

4 106 113 119 124 127 129 130 130 131
(to1) (108) (114) (118) (120) (121) (122) (128) (123)

3 68 72 76 79 81 82 83 83 83
®5) @0 () @) (W) () () ("8) (@)

2 39 42 4“4 45 46 47 47 47 48
@0) W) @) 4 @) @ Un @ @

1 20 21 22 23 23 23 24 24 24
@) @) @) @) @ @) @) @ @)

0 10 10 1 11 12 12 12 12 12
) @ a3 @4 a9 14 (4 4 14

k
/ 10 1 12 13 14 15 16 17 18
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yyzxzyTeszes was obtained. For this sample U = 15, V = 4, and consequently
we presume the toxic effects to be as supposed.
For a sample of 7 y’s, 6 z’s, 8 2’s, we first compute

EWU) =21, EV)=28, oy=49, oy =60, o =4/15.
The critical region can be written as
U_E(U)gh, V—E(V)é__

oy gy

k,

where h, k are to be determined to give a significance level of 5%, say, and

subject to
P (_—U — 2O) h) =P <V——-“ EV) < -—k>.

oy (44

With the normal approximation to the distribution of U or V the last condition
implies b = k. Then entering Pearson’s table for the normal bivariate distribu-
tion with p = —.52 (interpolating between —.50 and —.55) we find that
h = k = .37 are the desired values. This gives a 5%, critical region of U = 24,
V = 25,



