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1. Summary. It is shown that there exist strictly unbiased and consistent
tests for the univariate and multivariate two- and k-sample problem, for the
hypothesis of independence, and for the hypothesis of symmetry with respect
to a given point. Certain new tests for the univariate two-sample problem are
discussed. The large sample power of these tests and of the Mann-Whitney test
are obtained by means of a theorem of Hoeffding. There'is a discussion of the
problem of tied observations.

2. Introduction. The purpose of the present paper is to investigate the exist-
ence and various properties of strictly unbiased and of consistent tests for testing
certain nonparametric hypotheses. The problems that will be considered are
the two-sample and k-sample problem, the hypothesis of independence and the
hypothesis of symmetry with respect to a given point.

A sequence of tests is said to be consistent against a certain class of alternatives
if for each alternative the power of the test tends to one as the sample sizes tend
to infinity. A test will be said to be strictly unbiased if the power for each alterna-
tive exceeds the level of significance.

Consistency being a rather weak property, which one would expect most se-
quences of tests to satisfy for the class of alternatives for which they are designed,
it is important to obtain some more detailed information concerning the power
of the various tests under consideration. Because of the tremendous variety of
the alternatives it seems fairly hopeless to get a comprehensive view of the
achievements of most tests when the samples are small. This in spite of the fact
that it is occasionally possible to write down the power explicitly (for example
in the simplest cases of the tests discussed by Mathisen [1]). On the other hand,
the large sample distribution of a number of test statistics may be found by
means of the asymptotic theorems of Hoeffding [2]. Asymptotically, the power
then usually involves only a few parameters and a large sample comparison of
various different tests becomes possible.

3. Two-sample problem: specific classes of alternatives. Wé shall discuss
in detail only one of the problems mentioned, the two-sample problem, and
indicate only briefly certain extensions to the other problems. In the two-sample
problem one is given independent samples X;, ---, X,, and Y, -+, ¥, from
populations with unknown cumulative distribution functions ¥ and G respec-
tively, and it is desired to test the hypothesis F = @. In this connection various
classes of alternatives are possible.

It may, for example, be known that unless F/ = @, the Y’s tend to be larger
than the X’s. For this problem it has been proposed as a test to consider the
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166 E. L. LEHMANN

number of pairs X, Y; for which X; < ¥;, and to reject the hypothesis if this
number is too large. This test was proved consistent by Mann and Whitney
[3] against the alternatives that

3.1) F(t) > G@) forall t.

Actually their proof shows that the test is consistent! against all alternatives
for which P(Y; > X,) > 3.

We shall now prove that this test is also unbiased against the alternatives
satisfying (3.1).2 This is true not only for this test but also for those proposed
by Thompson [4] and for tests based on randomisation of such statistics as 7 — Z.
In fact we have

TaeorEM 3.1. Let w be any stmilar region for testing H: F' = @ on the basis of
X1, o, Xm; Y1, 0+, Yau. Suppose w t8 such that (X1, «++, Tm j21, = ,22) EW
andys = z;fori =1, -+, nimplies (T, , Tm Y1, ***, Yn) € w. Then the
test is unbiased against all continuous alternatives F, G satisfying (3.1).

Proor. Suppose that X;, -+, Xm, Y1, -+, Y, are independent and all
have the same c.d.f. F and that @ is such that (3.1) holds. Then we shall con-
struct Y; = f(Z;) such that Y; > Z;for7 = 1, ---, n and such that the Y’s
have c.d.f. G. Thus the probability. of (X1, -+, Xm; Z1, -+, Z,) ¢ w equals
the level of significance, a say, while the probability of (X;, -, Xm; Y1, -+,
Y,) € w equals the power of the test against the alternative (F, G). But since
Y. > Z, for all 7, the test rejects for the X’s and Y’s whenever it rejects for the
X’s and Z’s, and hence the power is = o.

The function f is easily defined by the equation

G(f(2)) = F(2).

(When this does not define f(z) uniquely, it does not matter which of the possible
definitions is used.) That y = f(2) > 2 follows from assumption (3.1).

The theorem as stated refers only to tests in which no randomisation is al-
lowed, but the extension to randomised tests is immediate. Also, as we shall show
later, the assumption of continuity of F and G may be omitted.

Theorem 3.1 may be used also to widen the applicability of the tests to which
it refers. So far, we have taken the hypothesis to state that X and Y have the
same distribution. This formulation may arise, for example, when one is faced
with the question whether a treatment, known to be harmless, has a beneficial
effect: Either it has no effect so that F = @, or it has a good effect. If, on the
other hand, the comparison is between two different treatments one may wish
to test hypothesis H’ that ¥ tends to be smaller than X, against the alternatives
that it tends to be larger. The hypothesis would then be

H:F@t) < G¢) forall ¢

1 This was also noticed by van Dantzig who points it out in a paper “‘On the consistency
and the power function of Wilcoxon’s two sample test,” to be published in Proc. Roy. Inst.
Acad. Sci., 1951.

2 For alternatives (F, @) differing only in location this was proved by Van der Vaart [26].
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There is of course no nontrivial similar region for this problem, however any
region w satisfying the condition of Theorem 3.1 and such that P(w) = « when-
ever F' # @ clearly will be of size « for testing H' i.e. P(w) will be £ a whenever

F(t) = G(¢) for all £. .
Returning to the Mann-Whitney test, let us define V by
3.2) mnV = number of pairs X;, ¥; with X; < Y;.

It was shown by Mann and Whitney that V is asymptotically normally dis-
tributed when F = @ and m, n — « in an arbitrary manner. From a result of
Hoeffding (Theorem 7.3 of [2]) it follows that asymptotic normality holds also
when F 5 @ provided m/n remains constant as m, n — o,

We shall apply Hoeffding’s theorem to prove asymptotic normality not only
of V, but of a large class of statistics connected with the two-sample problem.
We begin by stating Hoeffding’s theorem, somewhat specialised and with slight
changes of notation:

Let Z,, -+, Z, be independently, identically distributed chance vectors with

real components, let s < n and let ¢(Z:, - -+, Z;) be a real valued symmetric
function of its s arguments such that E[¢(Z;, - -+ , Z,)] < «, and let us write
E¢(Zy,---,Z,) = 0.
Let
n -1
U, = (S) E¢(Za1’ te 7Za,),
where the summation extends over all subseripts 1 S oy < -+ < a, < n, and let
U:l = Un + Rn )

where R, is a random variable for which
EMmR%) —0 as n— o,
Then/n(U, — 6) is asymptotically normally distributed. Further, if we put
V() = El$(21, 22, -+ , Zs) — 6,

the limiting distribution of v/7(U» — 6) is nondegenerate provided Ey(Z.)]* > 0.
We can now state
TaeorEM 3.2. Let Xy, -+, Xn; Y1, -+, Y, be independently distributed

with c.df.’s F, G respectively. Let t(xy, -+, v, Y1, *** , Y») be symmetric in the
2’s alone and in the y’s alone. Suppose that

Et(XI;”':Xf"Yl:""Yr) = 0(F7G) =0,
Et(Xy, , X, Y1, -, V) =M < .

Let m/n = ¢, and let n be sufficiently large so that r < m, n. Define

-1/, \-1
U:» = <m> <:{> Et(Xcu LI X“r ’ Yﬁl LA Yﬂf)’

r



168 E. L. LEHMANN

where the summation is extended over all subscripts 1 £ ay < -+ < ar = m;
18, < +++ <Br < n.Then,asn— o,/ n(Un — 6) is asymptotically normally
distributed.

Proor. For the sake of simplicity we shall give the proof only in the case
m = n. Let Z; = (X;, Y.) and define

2r\™ .
¢(Zly""Z2f) = <,rr> Zt(Xh:"' ’X"r7 foy"' ’Yfr)

summed over all sets of indices for which (i < ++- < %, 1 < +++ < jr) is a
permutation of (1, :--, 2r). Further let

-1
U, = <;‘r> 26(Zoy, s D))

summed over all ¥’s such that 1 < v;1 < -+ < 72 = 7.
Clearly( > U, is the sum of all possible ¢-terms, while (2:)(; ) U. is the

sum of only those ¢-terms in which the X’s and Y’s have no common subscript.

Hence, since <; ) <2r> = (n)(n N r), we have
r)\r r r
—2
= () o ()
r
where W, is a sum of [( >(:'> < >< : r>] t-terms, and we can write

= U, + D.,
where
n-—r n A n\"’
o= [ - OJC) e ()
Since for any real numbers ; , - - - , & we have (; + - -+ + &)* = k@ + - +

{2) we see that

swd = [(2) - (7] ) o+ [C) - (7] C)

But, asn — ©,1/n I:(:’) - <n - r>] (7>_1 —0. Hence E(nD%) —0 and the

r

S

result follows.
Let us now consider the application of this theorem to the Mann-Whitney

statistic. We define
(1 if y> =
t(xy y) =
<

10 if y

x.
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Then U, = V. and asymptotic normality follows since E2(X, ¥) < 1. It
remains to check under what conditions E¢*(Z;) > 0. Since we have s = 2r = 2,

20(z1) = P(Yys > 21) + P(y1 > Xp) — 2P(Y > X).

Hence Ey*(Z) = 0 is equivalent to F(¥) — G(X) = constant with probability 1,
or P(Y > z) + P(y > X) = constant except on a set of points (z, y) that has
probability zero. It is easy to see that this is satisfied if and only if P(Y > X) is
1 orO.

So far we have considered the hypothesis H: F = @ against the alternatives
that the Y’s tend to be larger than the X’s. As a second example we shall consider
testing H, or even the wider hypothesis H’ that F and G differ only in location
(i.e., that F(z) = G(x + d) for some d), against the alternative that the ¥’s
are more spread out than the X’s (in a sense to be defined below). In analogy
with the Mann-Whitney test let W . be the proportion of quadruples X,
X;, Y, Yy for which | Y, — Yi| > | X; — X:|. We reject H if W, ,, is too
large. This test is unbiased against all alternatives (F, @) for which F(z;) =
G(1), F(z:) = G(y2) implies | 21 — @2 | < | y1 — ¥z | The test is consistent against
the wider class of alternatives for which P(|Y' — Y [>|X' — X|) > &
where X, X', Y, Y’ are independently distributed with c.d.f. F, G, respectively.
The proof of unbiasedness is quite analogous to the one given previously, and
we shall therefore omit it.

We shall however indicate the proof of consistency, and refer in this connection
to the closely related remarks by Hoeffding [5] on the construction of consistent
sequences of tests.

We first state for reference the following trivial

Lemma 3.1. Let 0 = f(F, G) be a real valued function such that f(F, F) = 6,
for all (F, F) in a class @y . Let Tmpn = tmn(X1, -+, Xm, Y1,+-+, V,) be a
sequence of real valued statistics such that Tm.. tends to 6 in probability as min
(m, n) — . Suppose that f(F, G) > 6o(6) for all (F, @) in a class C, . Then
the sequence of tests which reject when Twmm — 60 > Cmyn (When | Tmn —
o | > Chm.») s consistent Jor testing H: C, at every fized level of significance against
the alternatives @, .

For proof one need only to notice that a fixed level of significance 20 implies
that Cmn — 0 (Cr.n — 0) as m, n — .

In the applications we have in mind, E(Tm,.) is usually independent of m
and 7, and is easy to find. On the other hand some work is required to determine
0" (T'm.n). It is therefore of interest to notice that the evaluation of *(Tm.y) is
frequently not necessary to prove consistency. To this end we shall state the
following lemma, which is a generalisation of a theorem of Halmos [6], and
which follows easily from Theorem 5.1 of [7]. A simple proof will be given in [8].

Lemma 3.2 (Lehmann-Scheffé). Let f(F, G) be a real valued function defined
for all continuous c.d.f.’s F and G. There exists at most one function tm . such that
tmn(X1, o0y Xy, Ya, o+, Vo) is symmetric in the first m and in the last n
arguments and is an unbiased estimate of f(F, @) for all continuous (or even ab-
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solutely continuous) c.df.’s F, G. If such a function t. . exists, (and has finite
variance), it has among all unbiased estimates of f(F, G) uniformly smallest variance.

For the application to be made here we need the slightly stronger statement
that the conclusion of the Lemma remains valid if m (X1, -+, Xm; Y1, -+,
Y,) is an unbiased estimate of f(¥, G) for all continuous c.d.f.’s F, G for which

P(|Y - Y|>|X -X|)> &

This generalization follows immediately from the proof of the Lemma given
in [8].

The proof of consistency of the proposed test is now immediate. For let Wy, .
be the proportion of quadruples for which the Y’s are further apart than the
X’s among the independent quadruples X;, X,, Y1, Y2 ; X5, X4, Y3, Yy oo,
Then

EWn,) = EWna) =P(|Y = Y|>|X - X|),
and hence by Lemma 3.2,
(3.3) FWann) (W)

But ¢’ (Wm..) obviously tends to zero as m, n — .

We remark finally that the large sample distribution of W, ., by Theorem
3.1, is again normal. Degeneracy occurs only if either F or G are one-point dis-
tributions.

As a last problem in this section we shall consider the hypothesis F = @
against the combined class of alternatives that the Y’s are larger than the X’s
or more spread out. In such a problem it seems important not only to decide
whether F and G are equal but, in case the hypothesis is rejected, for which of
the two possible reasons it is rejected or whether it is rejected for both of them.
(See in this connection the discussion by Berkson [9]). Thus one is really dealing
with a multidecision problem. One must decide between

dy: Accepting the hypothesis H: F = @G,

d;: Rejecting H for the reason that the Y’s are larger than the X’s,

d.: Rejecting H for the reason that the Y’s are more spread out than the X’s,

ds: Rejecting H for both reasons.

It is desired to find a decision procedure under which the probability of taking
decision dy is 1 — a when F = @ while the probability of taking the appropriate
of the decisions d; , d; , d; when the hypothesis is false tends to 1 as the sample
sizes tend to infinity. Let us recall the statistics V., n» and W, , introduced in
connection with the previous problems and let us denote E(V.,.) and E(W )
by 6 and n respectively. One may then accept H when Vama < @Gmn, Win <
bm.n , or take one of the remaining three decisions according as to which one of
the three complementary inequalities holds. The constants ¢, and b . are not
completely determined by the equation

PVamn = amns Wnan S b i F=@G)=a.
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One may specify some additional restriction, such as
P(Vm,n = Omn ‘ F = G) = P(Wm,n = bm,n | F = G).

It is easy to prove that the above procedure has the consistency property
asked for. This follows from Lemmas 3.1 and 3.2 generalised to the case that the
function f(F, @) of these lemmas is vector valued instead of real valued. The
function £.,, of Lemma 3.2 is then also vector valued and instead of its variance
one may consider its ellipsoid of concentration (see [10] and Theorem 5.2 of
[7]). In the present case we notice that (Vm,», Wam,s) is a symmetric estimate of
(8, 1) and hence has a uniformly smallest ellipsoid of concentration. But one
can easily construct unbiased estimates of § and 7 based on independent samples,
whose concentration ellipsoid has both axes tending to zero as the sample sizes
increase indefinitely and so consistency can be proved by the device used after
Lemma, 3.2.

4. Two-sample problem : general class of alternatives. In the present section
we shall consider the problem of testing the hypothesis F = G against the class
of all continuous alternatives F  G. One might argue that this should not be
treated as a hypothesis-testing problem. For Berkson’s argument seems to
apply: The question is not only whether or not the hypothesis is true. If it is
false, it is necessary to decide what alternative hypothesis is correct. While in
some situations, this criticism seems to be valid, there are others in which it does
not seem to apply.

The two-sample problem may arise in the following two quite different settings.

A: Two production processes, treatments or populations are available, and
it is desired to decide whether one is better than the other. In this case the
populations F and @ are in competition, and the main problem is that of rank-
ing them. Here the notion of such a ranking automatically suggests some
specific class or classes of alternatives to the hypothesis that the populations
do not differ.

B: The two populations coexist. There is no question of which is preferable,
but we wish to know whether the two can be treated as one. One may, for
example, want to know whether the output of two different machines can
be treated as a uniform product, or whether data obtained under two different
experimental setups or by two different investigators may be pooled. These
problems really are two-decision problems: The data can or can not-be pooled.
An explanation of why they can not be pooled is not necessarily of interest..
In connection with the present problem Wald and Wolfowitz [11] proposed as

test statistic the total number of runs of the ordered z’s and y’s, the hypothesis
to be rejected if the number of runs is too small. The authors proved their test
consistent, under the assumption of constant ratio of sample sizes m/n, against
alternatives of all shapes restricted only by mild assumptions, concerning exist-
ence and positiveness of the probability densities. It was also proved in their
paper that the test statistic has an asymptotically normal distribution when the
hypothesis is true. More recently Wolfowitz [12] proved that the limiting dis-
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tribution is normal even when F s G, and obtained the asymptotic variance
for this case. It follows from his results that the test is in general not consistent
if m/n — 0 or «. This is actually what one would expect since when m/n is
sufficiently extreme the maximum number of runs will in general occur with
near-certainty whether the hypothesis is true or false.

Another test suitable for this problem is that of Smirnov [13] based on the
maximum difference between the two sample cumulative distribution functions.

For the given samples X1, -+, Xm; Y1, -+, Yalet
on(d) = o(Xy, -, Xn3 ) = % (number of X’s < §),
Uat) = @Yy, -+, ¥V, 0 = 11; (number of ¥’s < ¥,

be the two sample cumulative distribution functions. It follows from a theorem
of Glivenko-Cantelli [14], that sup:]¢n(t) — F(t)| and sup|¢a.(t) — G() |
tend to zero in probability as min(m, n) — . From this it is easily seen that
Sup| ém(t) — ¥a(t) | is a consistent estimate of sup| F({) — G(¢) |, and hence
that Smirnov’s test is consistent against all alternatives F # @ as min(m, n) —
o . A different proof of this fact was given recently by Massey [25].

The large sample distribution of sup| ¢»(f) — ¥a(t) | was obtained by Smirnov,
for the case that F = G, a simpler proof having recently been given by Feller
[15] (see also Doob [16] and Smirnov [17]). Although the large sample distribu-
tion is not known when F # G, Massey [25] obtained a lower bound for the
power of Smirnov’s test, which may permit comparing this test with others.

While these two generally consistent tests are known for the two-sample
problem, very little work has been done on the existence of unbiased tests for this
or other nonparametric problems. Mann [18] proved unbiasedness of a test for
randomness against a certain class of trends. Hoeffding [5] proved the non-
existence for the hypothesis of independence of unbiased critical regions based
on ranks, corresponding to certain very small levels of significance.

As far as the two-sample problem is concerned, Smirnov’s test is easily shown
to be biased on the basis of an example given by Massey for the problem of
goodness of fit. On the other hand, it seems very possible that the Wald-Wolfo-
witz run test is unbiased whenever the two samples are of equal size. We have
not proved this but shall now construct a test for the two sample problem that
is strictly unbiased.

Lemma 4.1 Let X, X'; Y, Y’ be independently drawn from populations with
continuous cumulatives F, G respectively, and let us denote for any random variables
U, U'; V, V' the event max (U, U’) < min (V, V') by U, U" < V, V'. Then

F+G>
2 y

p=PX, X' <Y, Y)+ (Y, Y < X, X)) = %+2f(F——G)2d<

and hence p attains its mintmum value § if and only if F = G.
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Proor. Since F and G are continuous,

p=[a-pa+[a-aat= 2+ [ (7 a6* + 6 ar)

—4fFGd(F+G)=2+jd(F’G’)—4fFGd(F+G)

F+G>

3—2[[(F+G)*—<F—G)’1d( :

=%+2f(F—G)’d(F'2"G).

To prove the second part of the lemma, we must show that A = f (F — @)?

d(F 4+ G) = 0 implies F = @. Now A = 0 implies F(r) = G(r) except

possibly on a set N such that f F = f dG = 1. Suppose that F(z;) # G(z),
N N

G(x) — F(xz1)) = 7 > 0 say. Then by continuity there exists zy < z; such
that G(xo) = F(xo)) + 9/2 and F(x) < G(x) for 7 < z = x;. Since
G(z) — G(m) > 0, it follows that A > 0.

It is now clear that there exists a strictly unbiased test of H:F = G if m, n =
2. For we can consider the number of quadruples Xs;—1 , Xo: ; Y2i1, Yo for which
either the two X’s fall below the two Y’s or vice versa. These may be regarded’
as the successes in independent trials with probability p = ¥ + 2A of success,
and the problem reduces to that of testing H:p = } against alternatives p > 3.

The unbiased test just described has the pleasant property that its power is a
strictly increasing function of A = f (F — ®)'d F ;— G,
able measure of the degree of difference of F and G. On the other hand one
would not expect this test to be very efficient. More reasonable use of the data
seems to be made if one modifies the test in the direction of the Mann-Whitney
test described earlier. One would then compare each pair of X’s with each pair

of Y’s, and reject H if among the (g‘)(;) possible quadruples X;, X;; Y%, Y,

it happened too frequently that both X’s lie on the same side of both Y’s.

This test is no longer unbiased, but it is still consistent as follows from the
argument given in the previous section. Further, the test retains the property
that the statistic on which it is based provides an unbiased estimate, in fact

the minimum variance unbiased estimate, of the quantity [ (F — @)d F ; .

which seems a reason-

Finally, it is again easily seen that the distribution of the test statistic is ap-

proximately normal, degeneracy occurring only if P(Y > X) equals 1 or 0.
The test can be expressed in a form more convenient for computation in terms

of the ranks of one of the sets of variables. Let , < 7, < -+ < r, be the ranks
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of the n Y’s among the totality of m + n observations, and denote by Q... the

number of quadruples X, X;, Y%, Y1 for which both X’s lie on the same side
of both ¥’s. Then it is easily seen that

o= [@-n ("7 H)+ -0 (" TH).

From this it follows by easy computation that

2Qm..= (n — 1) Z =2+ m— 23k — (n — 2m + 1)Zr:

3) nin + 1)@2n 4+ 1) nin 4+ 1)
6 2 :

+ (0 + 2m — + 0+ m—3m+1)

It may perhaps be worth noting that the first of the two tests described in
this section can also be used as the basis of a sequential test of the two sample
problem. This is clear since the problem is simply reduced to that of testing a
simple binomial situation against a one-sided class of alternatives. The sequential
probability ratio test to which one is led in this manner of course is again un-
biased and has a power function that is strictly increasing in f (F - Q)? dF+ G

The measure of dlscr?pancy

f(F ®* F-I-G

utilised in the tests of the present section, suggests using / (dm — ¥n) d <¢MT+%>

as test statistic. It should be pointed out that tests of this kind have been studied
in connection with the closely related problem of goodness of fit by Cramér
[19] and von Mises [20]. In the present case, let us denote the z’s and ’s in order
of magnitude by z° < 2 < -+ < z'™; ym < y® < oo < y™, let my be the
number of ’s < y™®, m, the number of 2’s between 3 and y® etc., and define
N1, N2, -+ - analogously. Then it is easily seen that

f Gn — ¥)? d(bm + ¥2)
_ 1[<@ _ 1>2+<m1+m2_%>2+...+<’fﬁ_“_'i'ﬂ'_1)2:|
nL\m n m n -m
2
sl -1y ]
m n m

Tests of this type have been proposed by Dixon and by Mood [21], but have
not been studied thoroughly.

Finally it should be mentioned that one might also try the method of ran-
domisation, which has been considered by Pitman [22] and others in connection
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with specific classes of alternatives, for the present problem. One statistic which
may be suitable for this purpose if m = n is 2:1 (Y® — x99,

5. Discontinuous distributions. So far, we have assumed F and G to be con-
tinuous. This assumption is obviously not satisfied in practice, and we must
therefore consider the difficulties introduced by discontinuities. (These diffi-
culties were investigated in connection with various estimation problems by
Scheffé and Tukey [23]).

Let us restrict our attention to rank tests and introduce the convention that
tied observations are ordered at random. Thus if X;, = -+ = X;, = Y, =

= Y;,s + t = r, we perform an experiment with r! possible and equally
probable outcomes. We then establish a 1:1 correspondence between the r!
possible orderings of » objects and these r! outcomes, and treat the X’s and Y’s
as if they had occurred in the order indicated by this experiment. If the X’s
and Y’s have the same distribution it is then clear that the distribution of any
rank statistic of the X’s and ¥’s is what it would be if this common distribution
were continuous since in both cases each possible ordering of the X’s and Y’s is
again equally probable.

In order to see that various unbiasedness results of the preceding and follow-
ing sections remain valid, we state the following

LemMa 5.1. Let 8§ = &Xy, -, Xm, Y1, -, Y.) be a random event de-
pending only on the ranking of the X’s and Y’s. Suppose that F and G may have
discontinuities and that in case of ties the event & is defined by ordering the tied
observations at random. Then there exist continuous c.d.f.’s F* = F*(F, G) and
G* = G*(F, @) such that

PF,G(S) = Ppt,ec(g).

and that F* = G* if and only if F = G.

Proor. We shall only give the construction of F*, G*; the remainder of the
proof then follows easily.

Consider the (denumerable) totality of points that are points of discontinuity
of either F or G, and suppose these points have been numbered: z;, x5, -« - .
Consider first z; and define two new c.d.f.’s F;, G; as follows:

Fi@) = Fe + 2 if v <a—1%
=F($T)+——-—£L_l;4)[F(:v1)-—F(xT)] if l-’”l—x <1

=F@x -1 if :v>x1+%

G, is defined analogously in terms of G. What this construction does is to push
F and G apart at z; symmetrically by a total amount of 3, and to distribute
the probability at z; uniformly over the gap thus created.

In the same way we now push F; and G, apart at the second dlscontlnulty
(in its new position) by a total amount of 1,/2? and distribute the amount of jump
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uniformly over the gap, thus obtaining F, and G,. Then the sequence F,,
F,, --- will converge to a continuous distribution F* and analogously for the
@’s and F*, G* will have the desired properties.

It follows from this lemma that the unbiased test of the hypothesis F = @
discussed in Section 4 remains strictly unbiased when the assumption of con-
tinuity of F and @ is dropped. On the other hand, the power is no longer such a
simple function of F and G. In fact let X, X’; Y, Y’ denote as before independent
random variables with distributions # and @ respectively and denote by X, X’ <
Y, Y’ that this ordering occurred after randomisation of ties. Then it is not
difficult to show that

P(X,X' <Y, Y)+ Y,V <X, X)) = }+ 20,

where

' = 7 -~ @+ ™ -6+ 7 - @@ —enaTEY

Here F - (z) = F(z7), G (z) = G(z").

6. Existence of unbiased tests for the hypothesis of independence and some
other nonparametric problems. In this last section we shall briefly consider
some more complicated nonparametric problems. Our aim is to prove for all
these problems the existence of strictly unbiased and consistent tests. The
problem is treated purely theoretically in that no effort is made to construct
tests that make good use of the data and that are convenient to apply, but that
instead the sole purpose is to exhibit tests possessing the properties asked for.

For the hypothesis of independence Hoeffding proposed a test that he proved
consistent against all alternatives with continuous joint and marginal prob-
ability densities. In this connection he also considered the problem of unbiased-
ness and proved the nonexistence of unbiased critical regions based on rank for
certain small levels of significance. This negative result seems to contradict
those of the present section. This is however not so. Hoeffding restricted his
attention to critical regions while we are here admitting also randomised tests.
It should be pointed out in this connection that, while randomisation was used
in previous sections only in a trivial manner, namely so as to get the exact
level of significance, we shall here make very heavy use of this device. This
could be avoided in part, however the tests would then become more compli-
cated. Further if the problem is reduced, as is done here, to that of testing
equality of two binomial p’s, randomisation is needed to get an exactly similar
test.

The hypothesis of independence states that the joint c.d.f. equals the product
of the two marginal c.d f.’s. Thus if (X{*, X),% = 1,2, - - - , are independently
drawn from a bivariate distribution F, 1t is equivalent to the hypothesis that
the pair (X{, X{) comes from the same bivariate population as the pair
(X 9’, X§P). It is therefore clear that if we can prove the existence of strictly
unbiased and consistent tests for the bivariate two-sample problem, this will
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imply the existence of tests with these properties for the hypothesis of inde-
pendence. The same remark clearly applies to hypothesis of mdependence (both
complete independence and independence of sets of variates) in more than two

variables. .
Conslder now samples X XP, e, XY i = 1,2, ---and ¥, =
Y, ..., ¥®) ;= from two k-variate distributions F and G. The

work of section 4 suggests utilising the expression

[@ - G)zd(F“zLG) [+ @ d<F+G) - 2[FGd(F———;—G>.

All that is necessary is to construct events A and B such that

2 2
n=pPw) = [LEE 4110,

p = P(B) = f F@ d<§'g—q).

The hypothesis H:F = G will then be reduced to H':p; = p, to be tested against
alternatives p1 > p». The events A and B may be defined as follows:
A: With probability  observe either X; , X; or Y1, ¥, and with proba-
bility 4 observe either X; or Y; . Denote the three variables that are observed
by Z,, Z,, Zs , and define A as the event

z, 78" < 7P for 2=1,---,k

B: Observe X, , Y, and with probability % either X; or V5. If the last of these
variables is denoted by Z; , define B as the event

X0, v <z for s=1,+--,k

It should be mentioned that instead of observing five random vectors some of
which may be either X’s or ¥’s, we could have obtained a test with the desired
property based on ten observations, five X’s and five Y’s.

To complete the proof we must show that the hypotheses H and H' are really
equivalent, that is, that p; = p. if and only if F = G. For the case that F and
G are continuous this follows immediately by an argument similar to the one
given in the univariate case, and it is easy to show it even without
this restriction.

It is clear that one can generalise further and instead of two samples consider
s samples. For this purpose one may replace f (F — @)} d<F ;- ¢

) for example
by E (F; — F)*dF where F is the average of the s c.d.f.’s. Alternatively, one

may utlhse the expression f (F; — F,)? d<F + F)
i<i

As a last problem let us consider a sample X;, ---, X, from an unknown
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univariate c.d.f. I, assumed to be continuous. It is desired to test the hypothesis
H of symmetry with respect to the origin, i.e., that F(z) = 1 — F(—=z) for all .
Smirnov [24] recently proposed max, { | N*(z) — N (z) |} as a test statistic
where N*(z), N (z) denote the numbér of z’s contained in the intervals (0, z),
(—=, 0) respectively.
The work of Section 4 suggests considering 4 X’s (X;, X;, Xi, Xi) and de-
fining the following two events.
A: Exactly two of the four X’s are positive.
B: If A is satisfied, and X;, X; < 0 < X}, X;, say, the event B is said
to occur if neither

lXil;|Xj1<XkyXl nor Xk,Xz<IXil,lXjI.

Then if F(0) = po, P(A) = 6pags takes on its maximum value 3/8 if and only
if po =1/2. Further, P(B | A) takes on its maximum value 2/3 if and only if the
conditional distribution F* of —X given X < 0 is the same as that, G¥, of X
given X > 0. Thus

P(4B) = 6plg} {?2; -2 [(re - % d(ﬁgﬁ)}

takes on its maximum value 1/4 if and only if the hypothesis of symmetry
holds.

If we apply this method to independent quadruples, we obtain a test that is
strictly unbiased and consistent. If we apply it to all possible quadruples the
test remains consistent and may be a reasonable test for the hypothesis in
question. Hoeffding’s theory can again be applied to the asymptotic distribu-
tion problem.
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