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That this is possible is most easily seen geometrically by observing that the
line #’ = =” separates point 1 from points 2 and 3, so that there exist weights
D » Pw , Do for points 1, 2, 3, respectively, so that the center of gravity of 1 and
2 lies on the line #’ = #”, as does that of 1 and 3. Also the center of gravity of
these three points with the assigned weights lies on the same side of ' = =”
as 2 and 3 while 4 lies on the opposite side. Thus we can determine py so that
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Then all the conditions (a), (b), (¢), (d) are satisfied. By similar reasoning it is
easy to see that the parameters can be chosen so that w; and w, have arbitrary
sizes oy and a3 , respectively.

It is possible to obtain cases where H, contains a continuum of simple hy-
potheses, for example

Ho\): P{X =14} =i+ 1 — Np7,
with 0 < A < 1, where p; , pi are obtained as in the main part of this paper.

The same tests are most powerful and similar. Many interesting questions arise
but they seem not to be of any real statistical importance.
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NOTE ON THE ESTIMATION OF A BIVARIATE DISTRIBUTION
FUNCTION
By Paur B. Sivpson
University of Oregon
A continuous cumulative probability distribution F(x) can be estimated from
a random sample (z:), ¢ = 1, --- , n, by the step function G(z) = j/n, where

7 is the number of z; < z. In this single variable case, it is known that the prob-
ability distribution

)] P{max | F(z) — G(z) | <A}
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BIVARIATE DISTRIBUTION 477

is the same for all distributions F(z) [2]. It might be expected that a similar
invariant property would hold for continuous bivariate distributions. An ex-
ample shows that such is not the case.
Consider the cumulative distribution
ay'x

2
@) Fay) = %Y 4 GOV

5 , 0<z<], 0<y<l

Let
(a) (21, y1) be a random observation from F(z, y);

(b)G'(x,y) = 1forx > zandy > y1,
G(x,y) =0forz < ziory < y1;

() 3 <A<

(d) J be the set of points (z, y) fulfilling the three conditions: F(z, y) >
A —=M),F(x,1) <X\ F(l,y) <A
It follows that

3) iz, y) e J] = P[|Flz,y) — Gz, y) | <] for all z, ¥.
For\ = 72and a = 0, 065 < Pl(z1, y1) € J] < .066.
For\ = 72anda = 1, .057 < Pl(z1, y1) € J] < .058.

Thus, there are two continuous bivariate distributions for which the proba-
bilities of the type (1) differ.

If we consider a set of points of the independent variables (z, %) lying on an
increasing function y of z, we reduce the bivariate problem to a single-variable
problem. Let F(z, ) be a cumulative distribution, — 0 < 2z < 4o, —0 <
y < 4, 8°F/d2dy continuous almost everywhere. Consider a random sample
(@i, 9,2 =1, ---, n. Let G(z, y) = j/n, where j is the number of observations
(x:i , y:) such that z; < x and y; < y. Let v = f(u) be any increasing continuous
function, — e < % < -+ o, such that v — = as uw — Z=. Define a set of
points (u; , v;) as follows: For given observation (z;, ¥.), if y; > f(x.), let v; =
y: and y; = f(u). If yi < f(z:), let u; = x; and v; = f(x;). Order the set such
that u;y < wj,7 =2, -+ ,n. Let 0 < X < 1. Since the maximum deviations
of the step function j/n from the distribution F(zx, y) over the points v = f(u)
occur at the end points of the “intervals”, we are interested in

(4) P{greater of max | F(u,,v;) —j/n| and max | F(u;,v;) — (7 +1)/n|} <\

The probability distribution of (4) is the same for all F(z, y) and equals the
distribution for the single-variable case (1), when the size of the sample is the
same.



478 W. KOZAKIEWICZ

To. prove this let  be a vector (u; , - -+ , u,). Let U be the set of u such that
the property described in (4) holds. We have
) Pluc U] = nt [ 11 aFlu;, 1))
JU j=1
Let z2; = F[u'l y‘f(ui)ly Z2 = (21 y Ty zn)
®) PlueU) =t [ ds
. z
where

zeZ if max|z —j/n| <X and max|z — (j 4+ D/n| <A
J J

Since (6) does not depend on F(z, y), the probability is the same for.all F(z, y)
with the given properties. Nor does (6) depend upon the particular choice of
f).

The expression (5) is the probability distribution of the type (1) for the single-
variable distribution Flz, f(z)]. We can test the hypothesis that a given random
sample was derived from a particular distribution by means of the maximum
deviation of the distribution from the step function derived from the sample.
Values of the probabilities have been tabulated by Massey [1].
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ON THE NECESSARY AND SUFFICIENT CONDITIONS FOR THE
CONVERGENCE OF A SEQUENCE OF MOMENT
GENERATING FUNCTIONS

By W. KozAKIEWICZ
University of Montreal

In a previous paper ([1], pp. 61-69) the author studied the reciprocal relation
between the convergence of a sequence of df’s (distribution functions) and the
convergence of the corresponding sequence of mgf’s (moment generating func-
tions) in the univariate case. It is the purpose of the present paper to give neces-
sary and sufficient conditions for the convergence of a sequence {p.(f , &)} of
mgf’s in two dimensions. The results can be extended to Euclidean spaces of
higher dimensions.



