A PROPERTY OF SOME TESTS OF COMPOSITE HYPOTHESES

By C. M. Stein

University of Chicago

In all common statistical tests, a result significant at the 1 per cent level is necessarily significant at the 5 per cent level. In this note we show that this statement is not true for all statistical tests. More precisely, for any α_1 , α_2 satisfying $0 < \alpha_1 < \alpha_2 < 1$, we construct a composite hypothesis H_0 and a simple hypothesis H_1 such that there are sets w_1 , w_2 in the sample space which are the unique most powerful critical regions of size α_1 , α_2 , respectively, for testing H_0 against H_1 . Furthermore, w_1 , w_2 are similar regions. But w_2 does not contain w_1 .

Let X be a random variable which can take one of the four values 1, 2, 3, 4. Let H_0 consist of two simple hypotheses H_0' and H_0'' , where H_0' states that $P\{X=i\}=p_i'$, and H_0'' states that $P\{X=i\}=p_i''$; and let H_1 state that $P\{X=i\}=p_i$ for i=1,2,3,4. Later, we shall determine appropriate positive values for the p_i , p_i' , p_i'' . Let $\pi_i'=p_i'/p_i$, $\pi_i''=p_i''/p_i$. By a slight modification of the Neyman-Pearson lemma [1] (see also [2]), the region w_1 consisting of the points x = 1 and x = 2, and the region w_2 consisting of the points x = 1and x = 3, are both most powerful critical regions and similar if and only if

(a)
$$p_1 \pi_1' + p_2 \pi_2' = p_1 \pi_1'' + p_2 \pi_2'', \\ p_1 \pi_1' + p_3 \pi_3' = p_1 \pi_1'' + p_3 \pi_3'';$$

(b) there exist constants a_1 , a_2 , b_1 , $b_2 \ge 0$ with $a_1 + b_1 > 0$, $a_2 + b_2 > 0$, such that $a_1\pi'_1 + b_1\pi''_1$, $a_1\pi'_2 + b_1\pi''_2$ are both less than or equal to $a_1\pi'_3 + b_1\pi''_3$, $a_1\pi'_4 + b_1\pi''_4$, and $a_2\pi'_1 + b_2\pi''_1$, $a_2\pi'_3 + b_2\pi''_3$ are both less than or equal to $a_2\pi'_2 + b_2\pi''_2$, $a_2\pi'_4 + b_2\pi''_4$. Expressed geometrically in the (π', π'') -plane, if a_1 , a_2 , b_1 , $b_2>0$ and "less than" holds in all the above relations (which will will always be the case in our construction), this means that the line joining points 2 and 3 intersects both axes at positive values, and the point 1 is inside and point 4 outside the triangle formed by this line and the coordinate axes. Of course H'_0 , H''_0 , H_1 are all probability distributions and all of the points 1, 2, 3, 4 are to have positive probabilities, so that we want

(c)
$$\sum p_i = 1, \qquad \sum p_i \pi'_i = 1, \qquad \sum p_i \pi''_i = 1;$$

(d) $p_i > 0, \qquad \pi'_i > 0, \qquad \pi''_i > 0.$

We shall show that conditions (a), (b), (c), (d) can be satisfied in a great variety of ways. Choose π'_{i0} , π''_{i0} so that $\pi''_{10} > \pi'_{10}$, $\pi'_{20} > \pi''_{20}$, $\pi''_{30} > \pi''_{30}$, $\pi''_{40} > \pi''_{40}$, and (b) is satisfied when π'_{i} , π''_{i} are replaced by π'_{i0} , π''_{i0} , respectively. Let p_{19} be an arbitrary nonnegative number. Choose p_{20} , $p_{30} \geq 0$ so that

(1)
$$p_{10}\pi'_{10} + p_{20}\pi'_{20} = p_{10}\pi''_{10} + p_{20}\pi''_{20} ,$$

$$p_{10}\pi'_{10} + p_{20}\pi'_{30} = p_{10}\pi''_{10} + p_{30}\pi''_{30} .$$

That this is possible is most easily seen geometrically by observing that the line $\pi' = \pi''$ separates point 1 from points 2 and 3, so that there exist weights p_{10} , p_{20} , p_{30} for points 1, 2, 3, respectively, so that the center of gravity of 1 and 2 lies on the line $\pi' = \pi''$, as does that of 1 and 3. Also the center of gravity of these three points with the assigned weights lies on the same side of $\pi' = \pi''$ as 2 and 3 while 4 lies on the opposite side. Thus we can determine p_{40} so that

$$\sum_{i=1}^4 p_{i0} \pi'_{i0} = \sum_{i=1}^4 p_{i0} \pi''_{i0}.$$

Finally we take

(2)
$$p_{i} = \frac{p_{i0}}{\sum_{j=1}^{4} p_{j0}}, \quad \pi'_{i} = \frac{\pi'_{i0}}{\sum_{j=1}^{4} p_{j} \pi'_{j0}}, \quad \pi''_{i} = \frac{\pi''_{i0}}{\sum_{j=1}^{4} p_{j} \pi''_{j0}}.$$

Then all the conditions (a), (b), (c), (d) are satisfied. By similar reasoning it is easy to see that the parameters can be chosen so that w_1 and w_2 have arbitrary sizes α_1 and α_2 , respectively.

It is possible to obtain cases where H_0 contains a continuum of simple hypotheses, for example

$$H_0(\lambda): P\{X=i\} = \lambda p_i' + (1-\lambda)p_i'',$$

with $0 \le \lambda \le 1$, where p_i' , p_i'' are obtained as in the main part of this paper. The same tests are most powerful and similar. Many interesting questions arise but they seem not to be of any real statistical importance.

REFERENCES

[1] J. NEYMAN AND E. S. PEARSON, "Contributions to the theory of testing statistical hypotheses, part I," Stat. Res. Memoirs, Vol. 1 (1936), pp. 1-37.

[2] E. L. LEHMANN, "Some principles of the theory of testing hypotheses," Annals of Math. Stat., Vol. 21 (1950), pp. 1-26.

NOTE ON THE ESTIMATION OF A BIVARIATE DISTRIBUTION FUNCTION

BY PAUL B. SIMPSON

University of Oregon

A continuous cumulative probability distribution F(x) can be estimated from a random sample (x_i) , $i = 1, \dots, n$, by the step function G(x) = j/n, where j is the number of $x_i \leq x$. In this single variable case, it is known that the probability distribution

$$(1) P\{\max | F(x) - G(x) | < \lambda\}$$