THE ASYMPTOTIC DISTRIBUTION OF THE RANGE OF SUMS OF
INDEPENDENT RANDOM VARIABLES

By WiLniam FELLER
Princeton University

Summary. The asymptotic distribution of the range and normalized range
of the sum of n independent variables is derived using the theory of Brownian
motion.

1. Introduction. Let [X:] be a sequence of mutually independent random
variables with a common distribution V(z), and suppose that F(X,) = 0,
Var(Xy) = 1. Put 8. = Xy + -+ X, and let

M, = max [0, S;, Sz, -+, S.l,

(1.1)
m, = min[(), Sl,S‘z, >Sn]'

The random variable
(1.2) R,=M, —m,

will be called the range of the cumulative sums S, .

In applications' it is advantageous to modify this definition. One considers
instead of the values of the sums Sy, their deviations from the straight line joining
the origin to the point (n, S,). Thus we replace the random variables S; by

(1.3) Si =8, — kS./n (k=1,---,n)

and define the corresponding variables M , my , R% in analogy with (1.1) and
(1.2). The variable R will be called the adjusted range of the cumulative sums S, .

The adjusted range has a greater sampling stability, but its main advantage is
probably due to the fact that it eliminates the trend when E(X:) # 0, so that it
can be used even when the means do not vanish.

It is practically impossible to calculate the exact distribution of the ranges
even for n = 3 and simple forms of the underlying distribution V(z). Now the
sums S, are obviously asymptotically normally distributed, and therefore the
asymptotic distribution of the ranges is independent of the form of V(z). It
suffices accordingly to consider the case where the variables X are normal.
The sum S, can then be considered as the value at time ¢ = n of a continuously
changing normal variable S(t) which is subject to a Bachelier-Wiener process
(or ordinary diffusion). Since the sequence [S;] is a subsequence of the values
assumed by S(f), the range R, is certainly not smaller than the range at time

1 Cf. in particular Hurst [4]. A surprising statistical phenomenon discovered by Hurst is
discussed at the end of Section 2. The author is indebted to Mr. G. W. Alexander of the
State Rivers and Water Supply Commission, Melbourne, for drawinghisattention to Hurst’s
paper and the interesting statistical problems connected with it.
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t = n of the variable S(f), and it is clear that for large n the two ranges will be
practically the same.

In Section 3 we shall find the exact distribution of the range R(t) of the continuous
variable S(t) [cf. (3.7)]. One gets in particular

E(R(n)) = 2(2n/x)t = 1.5958 - - - n},

(1.4)
Var(R(n)) = 4n(log 2 — 2/x) = 0.2181 --- n.

These quantities are, asymptotically, the mean and varance of the range R. .
For the adjusted range Ry we have to introduce the corresponding continu-
ously changing variable

(1.5) S*(@) = S(t) — tS(T)/T o0O<t<.

This variable appears more complicated than S(f). Fortunately the stochastic
process defined by (1.5) happens to be equivalent to a process which has been
studied in an exceedingly elegant and simple manner by Doob in connection with
his heuristic approach to the Kolmogorov-Smirnov theorems. Using Doob’s
results it is easy to obtain the exact distribution of the adjusted range R*(T) for
the continuously changing variable S(t). It is given in (4.3) and represents the
desired asymptotic distribution of the adjusted range R for n = T. One gets in
particular

ERX(T)) = (Tx/2)* = 1.2533 --- T,
(1.6)

2
Var(R*(T)) = (% - g) T = 007414 --- T.
2. Discussion. A comparison of (1.4) and (1.6) shows that the adjusted range
has the advantage of greater sampling stability.
In order to get an idea about the goodness of the approximations (1.4) and
(1.6) we compare them with the exact values in the perhaps most unfavorable
case, namely where each variable X, assumes only the values & 1, each with

probability 3. For n = 6, 10, 12 we get

Ezxact value Approzimation (1.4)
E(Rs) 3.0625 3.909. - -
Var(Rs) . 1.18360 1.309- - -
E(Ry) 4.1523- - - 5.046- - -
2.1)
Var(Ry) 2.0872- - - 2.181- - -
E(Ry) 4.6377- - - 5.528. .-

Var(Ry) 2.545 - - - 2.617- -
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For the adjusted ranges (and the same Bernoulli variables) the corresponding
figures are

Ezact value Approximation (1.6)
E(Rs) 2 3.070- - -
22) Var(R¥) 0.4396- - - 0.445- - -
E(RY) 2.954- - - 3.963- - -
Var(RY,) 0.5822- - - 0.7414- - -

Considering the smallness of our n and the fact that the assumed distribution
of the X} is most unfavorable for our approximation, the above results appear
surprisingly good. They also bear out the expectation that the ranges of the
sums S, should be smaller than those of the corresponding eontinuously varying
variables S(t).

If the model of cumulative sums of independent random variables applies to a
particular type of empirical phenomena, then the observed ranges should, on the
average, increase with the square root of the length T of the observational period.
Now there is available a huge body of statistics concerning annual water levels
of rivers and lakes all over the world. It has naturally been assumed that such
levels could reasonably be treated as the cumulative effect of sums of random
variables, but in an interesting paper [4] H. E. Hurst discovered puzzling syste-
matic departures. In fact, Hurst has collected an impressively large statistical
material relating to water levels and other phenomena which seems to bear out
the contention that the observed adjusted ranges do not increase, as expected, like
the square root of the observational period T, but like a higher power T°. The most
surprising feature is the stability of the observed values of the exponent c:
it varies only from 0.69 to 0.80, with a mean of 0.729 and standard deviation
0.092. Within the several separate groups of phenonema the stability of ¢ is even
greater. Hurst himself has not attempted an explanation of his interesting
discovery.

It is conceivable that the phenomenon can be explained probabilistically,
starting from the assumption that the variables X are not independent, but that
Xny1 depends only on the actual value of S, . For example, a high lake level
creates additional outlets for the outflow and this in practice means a restoring
force towards the average size. Mathematically this would require treating the
variables X; as a Markov process. In theory the method presented in this paper
applies to this more general case, but the simple ordinary diffusion equation
would have to be replaced by a general Fokker-Planck equation, and the solution
of the corresponding boundary value problem is not explicitly known. We are
here confronted with a problem which is interesting from both a statistical and a
mathematical point of view.

3. The range. We have to deal with the variable S(¢) of a Bachelier-Wiener
process; this means that S(¢) is a normal variable with mean 0 and variance ¢
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( > 0), and the increment S(¢ + h) — S(¢) is a normal variable with mean 0
and variance h which is independent of S(¢) (and the values S(7) for r < ).
For fixed « > 0 and v > 0 we require the probability F(T; u, v) of the event

3.1) M(T) <o, m(T) 2 —u,

where M (T) > 0 and m(T) < 0 denote, respectively, the maximum and mini-
mum of S(£) for 0 < ¢ < T. The corresponding probability density is given by the
mixed derivative

(3.2) F(T;5u,v) = Fouo(T; u, v),

and it is easily seen that the density function 8(T'; r) of the range R(T) =
M(T) + | m(T) |is

(3.3) 8(T;r) = forf(T; u, r — u) du.

To calculate F(T; u, v) we start from the density function w(t, x; u, v) of the
event that simultaneously S(f) = z, M(¢) < v,and m(f) = — u. By the definition
of these functions we have

(3.4) F(T; u, v) =,f w(T, z; u, v) dz,

so that the required density 6(7T'; ) follows from w(T, z; u, v) by routine cal-
culations. Now it is easily seen® that w(f, ; u, v) is simply the fundamental solu-
tion of the ordinary diffusion equation w; = fw,, for the interval —u < 2z < v
with the boundary conditions w(t, x; u, v) = 0 when ¢ = —w or = v. One
gets by the so-called method of images?®

fwl, z;u,0) = 2 ¢ <2ku+ tf,k":x>

- 2ku 4+ 2(k — Vo + 2
- Z ¢<*“’ A,__,_,_,.,,t.?;_u.,_.«,__-,,4,,., )7

(3.5)
k=—c0

where ¢(z) stands for the normal density function with zero mean and unit
variance. Carrying out the indicated operations we find finally for the density
function of the range R(1)

(3.6) 8(t; r) =8 ,:.Zl (""I)k_ll(;2¢ (%‘)'

In this form it is not even obvious that the function is positive, and it is
readily seen that the mean can not be obtained by termwise integration of

2 The reasoning is substantially the same as in the case of discrete random walks (cf. [3],
chap. 14).

& Cf. problem 5 on p. 304 of [3]. Formula (3.5) can be derived from the formula given there
by the passage to the limit described in section 6 of chapter 14. Cf. also [5], p. 213.
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(3.6). Fortunately this function is closely related to the distribution function
L(z) which occurs in the Kolmogorov-Smirnov thcorem on empirical distri-
bution functions. The distribution function L(z) can be written in two cquivalent
forms*

Lk =1-2 i (=D exp (=2K*2%)
3.7) -
= @2m)iz" Y exp (—(2k — 1)*77/82)).
k=1
Clearly
(3.8) 8ty r) = (2/m)r L (r/(28)).

The second representation in (3.7) shows that 2 °L(z) — 0 as z — 0 for any a,
and hence an integration by parts shows that

(3.9) fow oty r) dr = 8{2; @k — 17 =1.

A similar procedure then leads to the formulas (1.4).

4. The adjusted range. We have now to find the range of the continuously chang-
ing variable defined by (1.5). It is clear that S*(f) is normally distributed with
mean0, variance ¢(T — t), and Cov[S*(s), S*(¢)] = s(T — ¢)/T,for0 < s <t <T.
Thus the stochastic process defined by (1.5) is, for the particular value T’ = 1,
the process studied by Doob [1]. According to Doob a simple transformation
permits one to reduce (1.5) to the ordinary Bachelier-Wiener process with the
interval 0 < ¢ < T going over into the entire interval 0 < ¢ < . This actually
simplifies matters inasmuch as the probabilities corresponding to (3.4) and
(3.5) are no longer time dependent, so that the preceding boundary value
problem for a partial differential equation is replaced by a simpler functional
equation. At any rate, Doob’s last equation furnishes us with the probability
F(T;su-, v) that S*(¢) is for 0 < ¢ < T contained in the interval (— u, v). We
have

F(T;u,v) = 1 4 e(u + v)
.1 — ki: fe(knw + (k — Do) + e((k — Vu + kv) — e(bu + kv)

—e((k — Du+ (k — Do)},

4 Cf. formula (1.4) of [2], where however a factor 2 is missing in the exponent.

§ Doob’s formula looks simpler than (4.1), but the rearrangement (4.1) was necessary to
make it possible to perform the required differentiations and integrations in the routine
manner. (In the original form each term of the series contains a singular probability dis-
tribution along the axes, and formal manipulations lead into apparent contradictions. Also,
Doob has T = 1.)
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where we put for abbreviation

4.2) e(x) = exp (— 22Y/T).

Formula (4.1) corresponds to (3.4), and it remains to perform the calculations
indicated in (3.2) and (3.3). In this way we get for the density function of the
range R*(T) of the variable S*({)

§(T57) = 1) + 3 12h(k — 1) [6((k — D) — ¢Gn)]

(4.3)
+ (b — D" ((k — 1)r) + Ere’ (kr)}.

To see how the moments are calculated note, for example, that

fom 76(T; r) dr = /o'v %" (r) dr
(4.4) + i {[(k ik 0~ 2k Ic: 2] fom r’e'(r) dr

+ [(—k—l—l)"’ + 1212] [D % (r) dr}.

But
/ %' (r) dr = —3[ e (r) dr = 6f re(r) dr = 3T/2,
o o o

and therefore

¥ asm. I P 2k @k—2) 3 3]
fr&(T,r)dr———Z-T .2-'17155;;{06_1)2 - e~ o

(4.5)

0

=T>2Xk*=xT/6.

k=1
In this way formulas (1.6) are obtained.
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