SOME BOUNDED SIGNIFICANCE LEVEL PROPERTIES OF THE EQUAL-
TAIL SIGN TEST

By Jorn E. Warsn
The Rand Corporation'

1. Summary. In addition to being easily applied and reasonably cfficient
for small samples, the equal-tail sign procedure for testing hypotheses about, or
setting confidence intervals for, the population median is valid under very general
conditions. (For brevity, the equal-tail sign procedure will be referred to as
Procedure E.) Rarely, if ever, however, are these conditions exactly satisfied in
practice. Thus the actual significance level or confidence coefficient for Procedure
E is only an approximation to the standard value (which holds when the condi-
tions are satisfied). Undoubtedly the equal-tail sign procedure is used in many
cases when thesc conditions are only roughly approximated. The purpose of this
paper is to investigate under what conditions Procedure E has significance
levels und confidence coefficients which are satisfactory approximations to the
standard values. It is found that the approximation is reasonably good for a wide
variety of situations if the number of observations is not lavrge. Thus, as far as
errors of Type I are concerned, Procedure E is a sufficiently close approximation
for many practical cases. This significance level stability, combined with its
other favorable properties, suggests that the equal-tail sign procedure be seriously
considered for application when an inference is to be made from a small number
of observations to the population median.

2. Introduction and discussion. Let us consider testing whether the population
median p equals a given hypothetical value y; for situations where alternative
values of the median greater than u, are to reccive the same emphasis as those less
than this value. The equal-tail sign test represents a solution to this problem
which is of great practical utility. The computation required for the application of
an equal-tail sign test is small. The efficiency of these tests is reasonably high for
small samples from normal populations (see [1]). Also the equal-tail sign test is
valid under very general conditions. Sufficient conditions are that the observa-
tions used for the test are statistically independent and from populations which
satisfy

(i) the populations have a common median value y, and

(ii) no population has a discrete amount of probability concentrated at

po ; i.e., Pr(z = o) = 0 for each population.
Here it should be emphasized that u is not necessarily unique; there may be an
entire interval of points which satisfy (i).

Situations where u is not unique but represents a set of points cause little

difficulty if suitably interpreted. An equal-tail sign test of the null hypothesis
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u = uo is merely a method of deciding whether g, is a point having the property
that Pr(z < wo) = Pr(x > m) = 1 for each population. The location of uo among
the 509, points of a population is usually not of importance. Thus the null
hypothesis u = uo has the interpretation yo in .

Let the n independent observations on which a test is based be denoted by
Y1, ~**, Yn. Subtract wy from each of these observations. Then n nonzero
numbers will be obtained (the probability of the number zero occurring is zero).
The equal-tail sign test for the median can be expressed in terms of the signs
(4+ or —) of these numbers. Let p be the number of positive signs (whence
n — p is the number of negative signs). The equal-tail sign test for comparing u
with the given hypothetical value uo is Accept u 7= o if eitherp = torp = n — 1,
where © > (n -+ 1)/2. An equivalent way to state this test is in terms of order
statistics. Let 2, , - - - , z, represent the values of y1 , - - - , ¥» arranged in increas-
ing order of magnitude. Using order statistics, the equal-tail sign test for the
median is

TesT 1. Accept p % o if either x; < po OF Tny1—i > Mo, where 1 > (n 4+ 1)/2.

The significance level of Test 1 is a function of 7 and » which has the value

1\" & n!
(¢)) Pr(z: < p) + Pr(Tny—: > p) = (~2) § ST = o)1
when conditions (i) and (ii) hold.
The statement of the equal-tail sign test in terms of order statistics is con-
venient because equal-tail confidence intervals for u can also be derived. Since
t> (n 4+ 1)/2, it follows from (1) that

(Zns1-4, 24)

is an equal-tail confidence interval for x with confidence coefficient
N & n!
1_<2> gs!(n— s)!
if (i) and (ii) hold.

When conditions (i) and (ii) are not necessarily satisfied, Test 1 is no longer
exact. Its significance level may differ substantially from the value of (1). The
null hypothesis may not be expressible in the form u = u,. In many cases,
however, the equal-tail sign test furnishes a reasonably close approximation to a
fairly large class of tests. This approximation is close in the sense that each test
of the class has a significance level which is near the value of (1) when conditions
(i) and (ii) are even roughly satisfied. The principal purpose of this paper is to
define this class of tests and investigate their significance level properties.

First, let us consider the form and properties of the null hypotheses for the
class of tests to be investigated. Since condition (i) is not necessarily satisfied, the
null hypothesis can no longer be expressed in the form u = yo . Let u; represent
the median value (or set of median values) for the population from which the
observation y; was drawn (7 = 1, --- , n). For each test of the class, the null
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hypothesis is required to be some function of w;, ---, u, which reduces to
# = p when condition (i) is satisfied. Since these null hypotheses represent
generalizations of the null hypothesis for the sign test (u = u,), they will be
referred to as generalized null hypotheses. Hence the generalized null hypotheses
considered will be of the form

uo s contarned in h(uy, <+, pa),

where the set function h is restricted so that it is contained in the set of 50 %
points common to all populations (denoted by u) when condition (i) holds.
If h is not unique, the generalized null hypothesis has the interpretation ue
in h.

The function A is also restricted so that it is nearly the same as w when condition
(1) is approximately satisfied. Stated in another way, the function chosen for A
should not be sensitive to condition (i); i.e., a moderate deviation from the
existence of a common median value should not have an appreciable effect on A.
For example, let g, - -, u, be unique and large. Then the function

n—l

1<
h‘%ﬁu:‘ dou o e Zl: (w1 ‘M)Z

would not be suitable for use as h even though it reduces to u when all the u;
have the value u.

Now let us define the class of tests which are investigated in this paper. All
tests of the class reduce to the equal-tail sign test when conditions (i) and (ii)
hold. Consequently, each test of the class will be referred to as a generalized
test. A generalized test is defined by

TesT 2. Accept that w 1s outside of h if either x; < po OF Xpgr... > o, where

t> (n+ 1)/2.
The significance level of this test equals
(2) Pr(z; < wo| poinh) + Pr(xaii—i > mo | moin h).

The value of (2) is not completely determined by ¢ and 7. It also depends on
many other factors such as the populations from which the observations were
drawn and the value of y, . In spite of this inexactness, the value of (2) is usually
rather closely fixed if & is a reasonable type of function and conditions (i) and (ii)
are even roughly satisfied. The statement of Test 2 defines a class of tests rather
than a single test because of the possible choices for the function A.

It should be pointed out that Test 2 does ot necessarily have equal tails. That
is, the value of Pr(x; < mo| mo in h) is not necessarily equal to the value of
Pr(Znq1—: > m | mo in h). In extreme cases, Test 2 might even be one-sided.

The main problem of the paper is to show that in practice the value of (1) is
usually a close approximation to the value of (2). This, of course, is not always
true. For example, consider the case where some or all of the populations from
which the observations were drawn have a large proportion of their probability
concentrated at or near the median. Then the value of (2) may differ greatly
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from that of (1) even though conditions (i) and (ii) are very nearly satisfied.
For populations of the type ordinarily encountered in practice and a reasonable
choice of h, however, the value of (1) is usually near that of (2) even when
conditions (i) and (ii) are only roughly satisfied. This is proved by obtaining
upper and lower bounds for (2) as functions of n, 7 and a quantity 8. Here 8 is
defined to be the greater of

. 1
Pr(yj>u0|u01nh)—§ .

max | Pr(y; < uo|poin h) — —;l , max
J J

If 8 = 0, the significance level of Test 2 equals that of Test 1. If 8 is small, the
value of (2) is very near that of (1). Table 1 contains upper and lower bounds for
the significance level of Test 2 for 8 = .02, .05, .08, .10, .15, .20, and n < 15. If
the populations are continuous (or very nearly o) at uo , the value of the lower
bound is noticeably increased (see Table 2). Thus, for n < 15, the value of (1)
does not differ greatly from that of (2) even for 8 moderately large. A value of 8
as large as .05 would seem unusual for the ordinary type of practical situation
where there is reason to helieve that conditions (i) and (ii) are approximately
satisfied.

Let us consider the practical implications of the fact that the equal-tail
sign test approximates Test 2 in the sense of significance level. Suppose the
experimenter recognizes the possibility that conditions (i) and (ii) may not
hold for his experiment. He then selects the function A(u; , - -+ , un) which is of
principal interest to him and uses Test 2. In this manner he obtains an accurate
test of the null hypothesis in which he is interested. On the other hand, suppose
that the experimenter applies the equal-tail sign test without considering the
possibility that conditions (i) and (ii) may be violated. The results of this paper
show that he is protected if the appropriate function % (which he would have
chosen) and the populations from which the observations were drawn are of a
reasonable nature. Then he is testing the appropriate null hypothesis at ap-
proximately the specified significance level even though he may not think of the
test in this light.

Since for the case of a sample from a normal population the efficiency of the
equal-tail sign test decreases as n increases, much of the investigation is limited
to tests based on 15 or fewer observations. Table 1 contains a list of the tests
investigated along with their efficiency for normality. The efficiency of a sig-
nificance test (more precisely, the power efficiency) is defined in [1]. Intuitively
the efficiency of a test measures the percentage of available information per
obscrvation which is utilized by that test.

The equal-tail sign test for the median may be usefulz for situations where
there is not much information available coneerning properties of the populations
from which the observations were taken. Duc to the extremely general conditions
under which its significance level is approximately determined, this test can be
used in cases where more specialized tests are not necessarily applicable.

Approximate confidence intervals for A(uy , - - - , 11,) ean be obtained from Test
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2. For populations of the type usually encountered in practice and a reasonable
function A,

(Tny1-i 5 T3)

is a confidence interval for & with confidence coefficient approximately equal to
unity minus the value of (1).

The material presented in this paper is limited to investigation of Type I
errors of the equal-tail sign test when the conditions on which it is based are
generalized. Due to the extremely general situations considered, an investigation
of Type II errors was not feasible. However, the results obtained for the particular
case of a sample from a normal population indicate that the efficiency of the
equal-tail sign test is reasonably high for most situations if the number of
observations is small.

3. Outline of results. This section contains a statement of the main results
of the paper. The proofs of these statements are given in Section 4.

The method followed in obtaining bounds for (2) consists in fixing n, 7, 8 and
then finding the largest and smallest values of (2) possible on the basis of these
and any additional restrictions. Thus the bounds represent the worst possible
situations for the given restrictions. For most situations, the value of (2) would
likely be nowhere near the values of the bounds. Consequently, for most cases
the value of (1) will be much nearer (2) than is indicated by the upper and lower
limits in the tables.

Let us consider the general case where both conditions (i) and (ii) could be
violated. Values of upper and lower bounds for the significance level of Test 2
as functions of n, 7, and 8 are given by

n

n!
= slln — 8)!

3 : [(% + ﬁ)s @ - B)n_' + (% - B)a (é + 3)"_'],

lower bound = 2 ; WL—'W (% - ﬁ) <§ + ﬂ) .

Thus, if 8 = 0 the value of (2) equals (1) while if 8 is small the value of (2)
is very nearly equal to (1). Table 1 contains values of these upper and lower
bounds for the tests considered. A visual example of how the bounds given by (3)
vary as functions of 8 for fixed n and 7 is'given by Figure 1, which contains a
plot of these bounds for the case n = 9,7 = 8. If 8 — 1, the upper bound — 1
and the lower bound — 0.

A case of practical interest is that where condition (i) is not violated to any
appreciable extent; i.e., none of the populations has a noticeable amount of
probability concentrated at uo. Then the upper bound given in (3) still holds
but the lower bound is greatly improved. Table 2 contains a list of some numerical
values for this lower bound. These values are only slightly less than the value of

upper bound =
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(1) except for large values of 8. The dotted curve in Figure 1 represents a plot
of this lower bound as a function of 8 for the casen = 9,7 = 8.

In all the above results, the n observations on which tests are based were
assumed to be independent. Although no analysis will be made for cases in

TABLE 2

Lower bounds for the significance level of Test 2 when populations are continuous at u,

Test Value Lower bound for significance level of Test 2
n of (1) PR
Accept uo outside % if either =90 B = .02|8 = .05/8 = .08|8 = .10|8 = .15|8 = .20|8 = .30|8 = .40
4 zy < uo Or Ty > po L1250 |.1246{.1225|.1187|.1152(.1035|.0882(.0512|.0162
5 x5 < po Or T1 > o .0625 |.0623|.0613|.0593|.0576(.0519(.0441{.0256/.0081
6 Tg < po Or T1 > wo L0312 [.0311].0303|.0289|.0276/.0235/.0185(.0082].0015
7 z; < poorzy > po .0156 |.0156/.0152|.0145].0138|.0118|.0093|.0041{.0007
T < po Or T2 > uo L1250 1.12471.1231].1202(.1175|.1082{.0953|.0604|.0214
8 Tz < po Or Ty > po .0078 ;.0078.0075{.0070|.0066|.0043|.0039{.0013|.0001
Zy < po Or T2 > o .0704 |.0701|.0688|.0663|.0641{.0567|.0469(.0236|.0049
9 Ty < poOr Ty > po .0039 |.0039].0038|.0035|.0033(.0027}.0019}.0007|.0001
s < po Or o > po .0390 1.0389|.0381{.0367|.0354|.0310{.0254{.0125|.0025
10 9 < uo Or Tz > uo .0214 |.0214/.0208|.0198|.0188|.0158(.0121{.0047|.0005
xg < po OF T3 > py .1094 |.1091{.1075|.1044|.1016{.0919{.0785(.0436{.0104
1 Zio < po Or T2 > po .0117 [.0117].0113}.0107|.G102|.0085|.0065|.0024|.0003
T9 < po Or Ty > uo .0654 1.0652|.0641|.0621].0602|.0538].0453|.0241|.0055
12 Zio < po OT Ty > uo .0386 |.0384/.0376|.0360|.0346|.0298).0237/.0102].0014
13 znn < po Or Ty > o .0224 |.0224].0218|.0208|.0200/.0170{.0133|.0055|.0007
Tio < po OT Xy > po .0924 1.0920{.0907|.0882(.0859|.0779.0669|.0381|.0096
14 Ti2 < o O Ty > wo .0130 |.0129{.0125|.0118{.0112|.0092/.0068|.0022.0002
T < po OF Ty > po -0574 1.0572.0561).0540|.0522.0459).0375/.0176|.0027
15 13 < po OF Ty > po .0074 1.0073|.0071|.0067[.0063|.0051|.0037|.0012|.0001
Z12 < po OT T4 > po .0350 |.0350|.0343|.0329|.0317|.0275 .0099(.0015

.0221

which the observations are not independent, examination of the significance
level expression (2) for Test 2 indicates that the value of (2) will often be ap-
proximately equal to (1) when the observations are mildly dependent. This
follows from the intuitive observation that in many cases dependence changes
Pr(z; < po | poin h) and Pr(znq1—; > po | moin k) in such a way that one prob-
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ability expression is increased while the other is decreased; consequently the
value of (2) tends to remain near that of (1).

4. Derivations. The purpose of this section is to present derivations of the
results stated in the preceding sections.

20 o
i &
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- 3/
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- &
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g |
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oy,
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VALUE OF g

BOUNDS OF (2) FOR n=9,i=8
Fic. 1.

The expressions for (1) and (2) follow from 7 > (n + 1)/2, conditions (i) and
(i), and elementary probability considerations. Consider relations (3). Let
Priy; < polmeinh) = 3 + aj, Pr(y; = wo | moin h) = €;,
Pr(y; > | moin k) = 3 + v; (j=1,~_',n).
Then
vi= —(a; + &)
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and
Pr(v: < wo|poinh) = H( + a,) + Z 2 [II' (1 + a,)]
=1 re=l j1> > gp=l 2
(G-
(4) ”" 1
Pr(xn+1~—l > o 1 Mo in h) = IIl (§ — ;T ei>
o
n—1 n , 1
+5 2 TG -a-o) [T +emta))
r=l J1> o> e==l 2
where the notation I’ denotes the product over those valuesof 7 (j = 1, --- , n)
which are different from 7, - - -, j,. If ¢ = n, each double summation in (4) is

taken to be zero.
Examination of (4) shows that (2) can be written in the form

f(al, T, Qn €1, "'7€f—1)€j+1"“)€")
- ejg(al)”')aﬂ;el; Ty €1 €541, "‘,6,.),
where
g(aly "':aﬂ;fl)"')65—1761"#17"')6”);

for each value of 7. Thus, since setting ¢; = 0 places no additional restrictions on
the possible values of the ’s and the other €’s, to obtain the maximum value for
(2) all the €’s should be zero. Now consider (2) with all the ¢’s equal to zero.
It can be written in the form

(5) u(a17 Ty Qe Qggr, T :O,‘ﬂ)+aﬂ)(al; Tty Qg U4, "'zan)

for each value of j. Since —8 =< «; =< B for all j, the maximum value of (2) is
obtained when the «; are restricted to be of the form

(6) a; = 1;8 (.7 =1, :n)’

where each 7; equals either +1 or — 1. Assume that an arbitrary but fixed choice
has been made for the 7;. Then (4) shows that (2) is a polynomial in « which
is an even function. Consider the coefficient of an arbitrary even power of « in this
polynomial. Examination shows that this coefficient is maximum (algebraically)
for the case where all the ; are chosen to have the same value. Hence (2) is
maximum when

(7) €i=0’ ai=ﬁ (jzlru';n)'

Thus the upper bound for the significance level of Test 2 is that given in (3).
Now consider the lower bound for (2). Examination of (4) shows that
Pr(z; < wo| wo in h) is minimum when a; = —8 (j = 1, ---, n). Similarly,
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Pr(zaq1—i > po | po in A) is minimum when a; + ¢; = 8 (j = 1, - - - , n). Thus (2)
is minimum when

e = 28, aj = —f (jzlf"'ﬂ?')-

Substitution of these values into (4) verifies the expression given in (3) for the
lower bound.

If the populations for Test 2 all satisfy condition (ii), e; = 0( =1, --- , n).
From (7), the upper bound of (2) given in (3) is unchanged for this case. The
lower bound, however, can be noticeably larger than the value stated in (3).
Since for each value of 7 (j = 1, ---, n), the value of (2) can be expressed in
the form (5), the lower bound of the significance level of Test 2 is equal to the
minimum value which can be obtained for (2) when the a; are restricted to be
of the form (6) and the €; have the value zero. As (2) is invariant with respect to
permutations of ¢, - -, @, , the problem of obtaining the lower bound of the
significance level of Test 2 is reduced to that of determining the number m
of the n; which equal +1 when the resulting value of (2) is minimum. Since
the lower bound for the significance level of Test 2 is only required for n < 15
and 7 = n — 3 (see Table 2), an analytical method of determining the value of
m which minimizes (2) will not be developed; the values for the lower bounds
listed in Table 2 were obtained by substituting numerical values for m and
computing the resulting values of (2). For example, if ¢ = n and m of the
a; = -+ while the remaining «; equal —g, the value of (2) is

G+B"G-B""+ G- "G+ 8"

If © < n, the expressions become much more complicated and will not be given
here.
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