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1. Summary. Let (Y., .-+, Ya,) be a random vector which takes on the
n! permutations of (1, - - - , n) with equal probabilities. Let ¢.(3, §), 4,5 = 1, -+ -,
n, be n’ real numbers. Sufficient conditions for the asymptotic normality of

N E Cn('i, Ym')
fua]

are given (Theorem 3). For the special case ca(¢, 7)) = a.(1)ba(f) a stronger version
of a theorem of Wald, Wolfowitz and Noether is obtained (Theorem 4). A con-
dition of Noether is simplified (Theorem 1).

2. Introduction and statement of results. An example of what is here meant by
a combinatorial central limit theorem is a solution of the following problem.
For every positive integer n there are given 2n real numbers a,(z), b,(), ¢ = 1,
-, n. It is assumed that the a.(Z) are not all equal and the b,(¢) are not all
equal. Let (Yn1, --+, Ya,) be a random vector which takes on the n! permu-
tations of (1, -+, n) with equal probabilities 1/n!. Under what conditions is

(1) S = 2 a2(®)ba(Vn)

=

asymptotically normally distributed as n — «?
Throughout this paper a random variable S, will be called asymptotically
normal or asymptotically normally distributed if

B 1 z
lim Pr{S, — ES. < z v/varS,} = \/—2—”‘[ o dy, —0 <z < o,

where ES, and var S, are the mean and the variance of S, .

In the particular case a.(s) = b.(¢) = 7 the asymptotic normality of S, was
proved by Hotelling and Pabst [2]. The first general result is due to Wald and
Wolfowitz [6], who showed that S, is asymptotically normal if, as n — o,

L3 @@ - a

(2) 1 ] 2,./2=0(1), r=34,--,
[% 12_:1 (a,,.(z) - dn) ]
and
LS Ga@) — B
®3) N it = 0(1), =234 -,

|23 6.0 - 57

1 Work done under the sponsorship of the Office of Naval Research.
558

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IIKORS ®

Y
Jé%,,
o 22

WWww.jstor.org



COMBINATORIAL CENTRAL LIMIT THEOREM 559
where
4= 13 0@, b =150
n i=1 ’ N =1
Noether [5] proved that condition (3) can be replaced by the weaker condition

(4) lim —=1 __ =0, r=34,..

~[% oo 5]

This condition can be simplified as follows.
TrareorEM 1. Condition (4) is equivalent to either of the following two conditions:

21 ba@) = ba [
(5) lim == =0 for some r > 2;

=% ) 52

i=1

max (ba(® — Bn)2
(6) lim 1<i<n = O.

n }_3 (a0 — B

Hence conditions (2) and (5) or (2) and (6) are sufficient for the asymplotic
normality of (1).

The proof is given in Section 3. For a more general condition and a stronger but
simpler condition see Theorem 4 below.

One extension of this problem was considered by Daniels [1], who studied the

asymptotic distribution of

> 21 iy )ba(¥i, Vo).

) t=1 j==
The present paper is concerned with an alternative extension. It considers the
distribution of

@ 8, = g eas, Y,

where ¢.(2, 7), %, = 1, -+, n, are n? real numbers, defined for every positive
integer n. In the particular case c.(z, j) = @.(2)ba(5), (7) reduces to (1).
Let i
. . o 1¢ ; 1¢ . 1 v
Q) duls) = cally5) — = 2. €algyd) — = 2o ealy B) + 5 22 2 ealg, B).
n N h==1 Nn® g=1 h=1

g=1

TuEOREM 2. The mean and variance of

n

Sn = E cn(iy Ym')

1=
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are
IS .
) ES. = =22 ¢45,7),
N ==l jem1
(10) var S, = 1 > diGE, 5).
n— 1=

Henceforth we assume that d.(z, j) # O for some (7, §), so that var S, > 0.
In the special case c¢.(Z, j) = a.(2)ba(s) this corresponds to the assumption that
the a.(¢) are not all equal and the b,(j) are not all equal.

THEOREM 3. The distribution of Sp = D tu1 ¢a(3, Ya:) 18 asymptotically normal if

D IDWAK)

(11) lim 1“;“;‘ 7 =0, r=3,4,-:.
e
N =l je=1

Condition (11) 1s satisfied if
max da(s, 7)

(12) lim 25kisn T _
" ”—Elzd (1).7)
fm=1 j=1

Theorems 2 and 3 will be proved in Sections 4 and 5.

For the special case ¢.(7, 7)) = aa(2)ba(j), Theorem 3 immediately gives

THEOREM 4. The distribution of S, = D i1 a.(6)ba(Yai) s asymptotically
normal if

E (a'n(i) - d'n)r Z (bn(i) ot En)r
(13)  Lim n' = T =0, r=34,...

lim [E i) — d,,)”] [; (bal) — w]

Condition (13) is satisfied if

max (an(z) - an) max (b”(i) - b'n)2
(14) lim n =i=7 1=i=n = 0.

n
n—=+c0

Z (a/n(z) - an) ; (bn(i) - En)z

=1

It will be observed that the symmetrical condition (13) contains Noether’s
condition (2) and (4) as a special case.

Let X, = (Xai, -+, Xan) be independent of and have the same distribution
as Y, = (Ya, -+, Yan).

TraeOREM 5. The random variable

(15) Sy = i cn(Xniy Yi)

te=1

has the same distribution as S, in (7).
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In fact, the conditional distribution of S/, given that X, = p, a fixed permu-
tation of (1, ---, n), is independent of p because the distribution of Y, is in-
variant under permutations of its components.

The distribution of sums of tl}e form (1) has attracted the attention of statis-
ticians in connection with nonparametric tests (see, for example, [2], [6], [3])
and sampling from a finite population (which leads to the case a.(s) = 0 for
1 > m; cf. also Madow [4]). More general sums of the form (7) or (15) are like-
wise of interest in nonparametric theory. Thus it follows from results of Lehmann
and Stein [3] that a test of the hypothesis that Uy, - -, U, are independent and
identically distributed, which is most powerful similar against the alternative
that the joint frequency function is fi(u1) - - - fa(un) is based on a statistic of the
form (7) with

n(t,7) = log fi(w), °
where the u; are the observed sample values. If the n pairs (U, Vi), ---,
(Un, Va) are independent and identically distributed, a test of the hypothesis
that U; and V; are independent which is most powerful similar against the
alternative that their joint frequency function is f(u, v) is based on a statistic of
the form (15) with ¢,(¢, j) = log f(u;, v;), where (w1, v1), - -+, (Ua, vs) are the
observed values. '

In these examples the numbers ¢,(, j) are random variables. An application
of some of the present results to such cases will be considered by the author in a
forthcoming paper.

3. Proof of Theorem 1. Let
ba(s) — b

[:7;‘1 (ba(3) — 5,.)2]1/2’

Gn = max (|g1], -+, [gal) -
Theorem 1 asserts the equivalence of the three relations

(16) 1imz;g:=0, 7‘=3,4,...;
(17) lim Zl |g:il"=0 for some r > 2;
(18) lim G, = 0.

We have

and hence for r > 2
G <2 lgsl @2 gi= G
=1 =1

The equivalence of (16), (17) and (18) follows immediately.
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4. Proof of Theorem 2. The subscript n in Y,;, ¢.(7, j), ete., will henceforth
be omitted. We note that if the subscripts 41, - - - , im are distinct, the expected
value of a function f(Y;,, -+, Y, ) is equal to

1 .
R T PR AL

where the sum 2’ is extended over all m-tuples (41, - -+ , jm) of distinct integers
from 1 to n. Relation (9) follows immediately.

Let

(19) Ta=2,dG4Y
=1
where d(¢, j) = d.(1, j) is defined by (8). Using (9), we get
(20) Tn = Sn - ESn .
Also
(21) Y. d(,7) = 0for all j, > d(,7) = 0for all 4.
=1 j=1

Hence

Ed(i, Y, =0,

EdG, Vo) =13 dG, j),
n =1

and if 7 # j,
—1 = . .
= m ’; d(% g)d(J: 9)-
Therefore

M:

var S, = var T, =

dz('lr, s') + Z, Ed(i: Yi)d(j, YJ)

- }L; > @) - = L3 d,0dG, 0
SEPIDILCH LI 3 2 (F)

which gives relation (10).
6. Proof of Theorem 3. Let
1< ..
(22) = - Z Z d'(7'7 .7),
n =1 =1
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23) Mym =13 3014601,
N =1 j=1
(24) Dn= max |dG,j)|.

. 1<4j<n

Then var 8, = n/(n—1) Ms,,, . Since, by hypothesis, var S, > 0, we may and
shall assume that

(25) My, = 1.
Conditions (11) and (12) can now be written as
(26) lim M., = 0, r=3,4,---,
and
@) lmD, =0,
That (27) implies (26) is seen from the inequalities

|Mon| < My < D7 Mo = D° for r > 2.
Since

M;H—lm < Mok Morion, k=12,.--,

condition (26) implies
(28) lim M, =0, r=234,--

As var S, — 1, it is now sufficient to demonstrate that under conditions (25)
and (28), T» = S. — ES, has a normal limiting distribution with mean 0 and
variance 1. This will be proved by showing that

1.3.c-(r—1) if r is even,
(29) lim ET,, =
n—eo if r is odd.
The rth moment of T,
(30) ET:; =k Z e Z d(il) Yil) e d(ir’ Y'})’

1=l ip=1
can be written as a sum of terms of the form
(31) ‘I(T, €1,°° em) = Z,‘ Edel('il, Yc'l) e den(":m ’ Yc',,.)’
Qpet e i

wheree; > 1,6 + - -+ + en = r. The number of terms (31) is independent of n.
It will be shown that

(32) lim I(r,e1y+++y6m) =0 unless r = 2m, 0 = +00 = €y = 2,
n =0
.(33) lim I(r,2,---,2) =1 if r even,

n=+0
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and that the number of terms I(r, 2, ---, 2) in (30) with  even equals 1-3 - - -
(r — 1). Then (29) holds, and the theorem will be proved.
We have for n —

(34) I(ryer,+ -, em) ~n " E Z' dM (21,71 + - d™(m s Jm)-

*oim J10

The right-hand side can be Written as a sum of terms which, apart from the sign,
are of the form

n-mJ(r’ Dy qyéer, e ) €m)

=n" Z Z Z Z d (7'01’.7411) dem(i%’jdm)’

]l tpml jimml Jq=1

(35)

where i
1<p<m, 1<¢<m,
1<¢ <0, 1<di< g (g, b =1, ,m),
and for every integer 4, 1 < u < p(1 < u < ¢) at least one c¢,(d;) is equal to u.

The number of terms (35) is independent of n.
The sum J in (35) can be written as a product of s > 1 sums of a similar form,

(36) J(r) Ds 9 31)""em) = HJ(TIH Dy Qs Lr1y *** ,3lcm))’
where
(ekl,"’,ekmg), k=1’...,g’

are s disjoint subsets of (e1, --- , em),

e+ oot Gemy = Ty nt e tn=,
@37 mt e+ p=0p, ot +a=gq
m+ -+ m, =m.
We observe that
(38) 1<pe<me, 1Zq@p<m, mr.

It will be assumed that s is the greatest possible number of factors into which
J(r,p,q, €, ,enm) can be decomposed in the form (36). If s = 1, the number
of equalities between the subscripts ¢ or between the subscripts d in (35) must
be at least m — 1. The total number of subscripts ¢, d being 2m, there are at
most m + 1 distinet subscripts, so that p + ¢ < m + 1. If

(39) (cg, dy) = (cn,dn) for some (g, h), g # h,
we have strict inequality. For an arbitrary s we have in a similar way

(40) e+ @ < i+ 1, k=1,---,s
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and hence
(41) p+gqg<m+s,

with strict inequality in the case (39).
By Hélder’s inequality, from (35),

IJ(T:P:Q,en"',em)[ -<-I:Il('zl:"';;"'Zld(i%’jda)lr)%/r

= H (np+q—-1 Mr,n) “ol” = npﬂ-l Mr,n .

g=1
Similarly,
+ar=177
|J(rk1pk7qk’ek1’ cee ’ekmk)t < nPT Mrg.no

Hence, by (36), ,
(42) " | J(T, D,q €, ", em) | S. np+q-s—mﬂr1.n b Mr.,u .

If, for some k, v, = 1, then, by (38) and (37), px = ¢x = mi = exx = 1, and hence
J = 0 by (21). Thus we may assume r, > 2, k = 1, ---, s. Then, by (28),

M., - M,,— 0unless r, = --- = r, = 2. It now follows from (42) and
(41) that
(43) lim n " J(r,p, g €1, s 6m) =0
except perhaps when ry = -+ = 1, = 2.
Ifry =--- =7, = 2, we have
(44) n—‘mJ(r, p,g, e, -, em) = O(np-l-q—o—m).

By (88), 7 = 2 implies my = 1 or 2. If m;, = 2, then 1 = ez = 1 and pr +
¢ < 3 by (40). If pr. + gr = 3, the corresponding J-factor is of the form

; ; :Z d(s, j)d(, k) or 4‘\__‘, ’E ; d(i, k)dQj, k),

both of which vanish by (21). If m; = 2 and pr + ¢ = 2, we have case (39)
and hence, by the remark following (41), p + ¢ — s — m < 0. By (44), this
implies (43).
Thus the only case where (43) need not hold isr, = 2, m;, = 1fork =1, ---,s.
Then px = g = 1, &1 = 2, hence
r = 2s = 2m, p=gq=r/2

G = e = ey = 2.

This proves relation (32), and (33) follows from

1(7:21“"2) qu/2J<r>%’%)2:"”2>

= n—r/2 [J(zy 1, 1) 2)]1‘/2
= Mii =1
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It remains to determine the number of terms I(r, 2, -+ - , 2) in (30) when r is
even. This is the number of ways the subscripts 4, « -+ , 7, can be tied in /2
groups of two, which is (r — 1) (r — 3) - -+ 3-1. The proof is complete.
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