THE DISTRIBUTION OF THE NUMBER OF ISOLATES IN
A SOCIAL GROUP!

By Leo Karz
University of North Carolina and Michigan State College

1. Summary. The exact chance distribution of the number of isolates in a
social group is found in this paper, using methods due to Fréchet. The binomial
distribution fitted to the first two moments of the exact distribution is shown
to give reasonably good approximation and a slightly coarser binomial approxi-
mation is indicated.

2. Introduction. Consider a group consisting of N individuals. Each designates
d of the others with whom he would prefer to be associated in some specified
activity, that is, each chooses d from N — 1 possible associates. In the context
of the group and the specified activity, an individual is said to be an 7solate if
he is chosen by none of his fellow group members. It is immediately obvious that
the number of isolates depends upon the size of the group, the number of choices
permitted and the extent to which the group, as a social organism, provides ac-
ceptance for joint activities for the individuals who compose the group. Thus,
when N and d are fixed, the number of isolates becomes an important characteris-
tic of the group structure. When it is important to state whether the number of
isolates is unusually large or small, it is necessary that the chance distribution
of this number be known.

The history of attacks on the distribution problem is brief. Lazarsfeld, in a
contribution to a paper by Moreno and Jennings [8], gave the expected (mean)
number of isolates as

NNV —d - 1)/ = DI"7,

but made no attempt to obtain the distribution. Bronfenbrenner [1] gave (with-
out proof) an incorrect version of the distribution function. He gave the expres-
sion, which he claimed was “developed deductively and checked by empirical
methods,”

(N —i—2)?

(1) P(¢) = Pr {7 or fewer isolates} = 1 — W=D

where a® = a(a — 1)(@ — 2)---(a — b + 1). This form gives completely non-
sensical results in application. Edwards [2] conjectured that the Bronfenbrenner
formula gives the probability of a given person’s including in his list of d at least

1 Work done under the sponsorship of the Office of Naval Research at Chapel Hill, North
Carolina, and presented at the Chicago meeting of the Institute of Mathematical Statistics,
December 27, 1950.

271

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. FIEGIE ®

WWww.jstor.org



272 LEO KATZ

one of ¢ 4+ 1 specified names. Edwards then gave correctly the probability of
the maximum possible number of isolates,

(d + 1)(N—1—d)
R
d

where <Z>, b £ a, is the binomial coefficient a!/[b!(a — b)!]. Note that there

(2) PI[N —1—d] =Pr{N —1—disolates} = (N _A; _ d>

cannot be N — d isolates, since d persons can be chosen only for a maximum total
of (N — 1)d times, less than the Nd choices actually made.

In the last paper cited above, Edwards went on to set up the probability of
N — 2 — d isolates by eliminating irrelevant cases from those in which the
isolates name d from a list of d + 2 while the nonisolates choose d from a list
of d + 1 names, and indicated that the process might be continued to obtain
the probabilities of N — 3 — d isolates, etc. The form of these results, it is stated,
would indicate a complicated algebraic expression for the required probability
distribution and the question is then raised whether the existing technique of
experimentation should not be modified to meet the practical requirement of
simple mathematical treatment.

In this paper, we shall first obtain the exact distribution of the number of
isolates on the assumption of random choice and second, we shall obtain an
approximation which does satisfy the requirement of simple mathematical treat-
ment. An example will be given to indicate the accuracy of the approximation
for a typical application.

3. Exact distribution of the number of isolates. It should first be remarked
that any division of the group into those who are isolates and those who may not
be produces two distinct patterns of choices. Each isolate selects d from among
all those in the second group, but each member of the second group must select
d from among those members of the second group not including himself. Let

Diyvig.eooip = Priindividuals 4, 72, - - -, % are isolates}.

As an immediate consequence of the remark made above and the symmetry of

the situation,
N—Ic)” (N—Ic—l)""‘
d . d

R (R NG N
d d

for every (i1, %2, - -+ , ). Setting

4) S = (Jlf) Pivsig. ooy = (ZID (N ; Ic>"<N —; - 1>~—k<N; 1>—N

the principle of inclusion and exclusion ([3], ch. 4) gives immediately

N—1—d s
(5) P, = Pr {exactly k isolates in the group} = > (=1 (}Z) S;.

1=k
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Equation (5) gives the exact probability of k isolates, in a group of N where
each individual makes d choices, as a linear combination of the S; .

The values of S; may be computed directly from (4) or recursively, noting
that S = 1 and

©® %-N-k—d[N -’c-d]"“ [AL:_k_—:_d]
Skt N-—F N k-1 :

The form of the last term in (6) suggests interesting asymptotic behavior. We
are, however, less interested in asymptotic characteristics of the distribution
than in its properties for moderate values of N. We may take the asymptotic
behavior to give an indication of what may be a reasonable approximation, but
the quality of the approximation must be judged by results for typical cases;
here, N is usually between 10 and 100. We shall later consider one such typical
example in which N = 26, d = 3.

If we do not require the values of the individual Py;; but are only interested
in the moments of the distribution of isolates, it turns out that the S, quantities
are of central importance. Fréchet [4] has shown that

(7) Ay = IC' Sk )

where ag) is the kth factorial moment of the distribution, given by auy =
> A4 %Pl . We shall have occasion to use these factorial moments in the
following section.

4. Approximate distribution of number of isolates. Since we know the exact
distribution, an approximate distribution is useful only if it is more easily com-
puted. It is easily shown (see Feller [3]) that, for d fixed, the limiting distribution
is Poisson with Pr(k) = eA\*/k!, where A = N(1 — d/(N — 1))"~". However,
for moderate values of N, the approximation is not good; an example is given
later.

Following the procedure of Kaplansky [7] produces a modified Poisson ap-
proximation which is quite good. The drawback to this procedure is that com-
putations are almost as difficult as for the exact distribution. Therefore, we seek
another approximation to satisfy the dual requirements of accuracy and sim-
plicity.

From (4) and (7), the mean and the variance of the number of isolates are

respectively,
d N—-1
a(1)=N(1'—'N_1> 5

. 2
variance = aq) + aq — a@

® —N<1——]—V—‘i—l>N~l[1+(N—1—d)(1—N—_z-

(8) mean

{ &
~_
=

s
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From (9), wesee var (k) = mean (k) [l — (d + 1)(1 — d/(N — 2))" > 4+ O(N %]
~ mean (k) [1 — (d + 1)e™]. Since the variance is less than the mean, the bi-
nomial distribution, b(x; n, p), is strongly suggested (choice being restricted to
simple distributions). We shall not insist that n be an integer; thus, we have es-
sentially a beta distribution. For this distribution, a¢y = n”p" and, fitting the
first two moments, we have

d N-1
(10) np = aw = N(l - ﬁ“—“i) ,

1— ay B _l 3 d N—2
an - o=1 a%n_l (1 N)[I (N——2)(N—1—d)] :

Also, since a¢4n/a¢ = (n — r)p, we form the functions,

(12) D, = 2ot _ 2D L (0 agy, r=2323,4,---,

Q(r) aq()

which vanish identically for the binomial distribution. These functions are equiva-
lent to the “total criteria” proposed by Guldberg [6] and Frisch [5] for judging
whether an observed series may be approximated by a binomial frequency func-
tion. In their work, the approximation is considered to be good when the criterion
functions of the moments of the observed series are close to zero. We shall extend
the notion to cover the case of approximation of a more complicated probability
law by the binomial law.

Setting r = 2 and r = 3 in (12) gives two functions which are exactly equiva-
lent to the two criteria given by Guldberg (allowing for an omitted term in his
second result). Also, the complete set (12) is equivalent to Frisch’s total criteria
forg = 1, h = 1,2, 3, - - in his notation. Since his criteria for all other values
of ¢ may be expressed in terms of those for ¢ = 1, (12) is equivalent to the com-
plete set of conditions given by Frisch.

Substituting from equation (7) into (12), we have

Sr+1
S,

D, =(r+1)
or, using (4) and (6),

_ r—1 _ _ _ N—r—1
D. = (N - ’—d)<N—N{'1—d> <NN—:;_1.—1d)

N-2-d\"" N -1-d\""
o) e o (YY)
For large N, each power of a fraction in (13) of the form ((a — d)/a)® is ap-
proximately equal to ¢ and D, = 0, approximately. In the limit, every D, = 0,
the asymptotic form of the distribution in this sense is, therefore, binomial.
Further, the approximation should remain good even for moderate values of
N (particularly when r is small) since the errors made by the exponential ap-
proximation are not only small but tend to compensate for each other.

—2rd (- 18,
S,

(13)
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We may, then, use a binomial probability law approximation with p and n
given by (10) and (11). (If 1/n in (11) is evaluated to terms of O(N %), we find
I/n=(Wd+1)/(N —1—d)orn = N/({d+ 1) — 1, approximately. This seems
consistently to understate the value of n from (11); accordingly, it is suggested
that n be approximated by

ne N __1
d+1 2°
In the next section, we shall compare this approximation with the exact dis-

tribution for a typical pair of values of N and d. We also give, for comparison,
the Poisson approximation.

(11a)

TABLE 1

Comparison of the exact and approximate distributions of the number of isolales
for N = 26,d = 3

) S, Py (exact)| p;(approx.) p; — Py pi = ¢ ;)\' pi — P
- )
0 [1.000 0000 .309 794| .311 098 +.0013 | .344 989 +.0352
1 11.064 2429 .402 574 .399 727 —.0028 | .367 152 —.0354
2 ' 474 9281 .214 316/ .215 365+ +.0010 | .195 370 —.0189
3 | .116 8650*  .061 532/ .062 473 +.0009 | .069 306 - .0078
4 | .017 5606 .010 564/ .010 354 —.0002 | .018 440 +.0079
5 | .001 6882 .001 138 .000 943 —.0002 | .003 925~ -+ .0028
6 | .000 10596  .000 079 .000 039 —.00004 | .000 696 -+ .00062
7 | .000 0043 61 .000 003[ .000 0002 —.000003/ .000 106 - .000103
8 © .000 0001 17 .000 014
9 } .000 0000 02 .000 002

6. An example. Moreno and Jennings [8] considered in some detail the case
N = 26, d = 3. Since, also, a number of later writers have treated the same case
as a reasonably typical one, we will test the accuracy of the approximation in
this situation. The computation of the exact probability distribution seems to be
best performed in two stages. In the first, the logarithms of the ratios S;41/S;
of equation (6) are obtained using 7-place tables, and the S; themselves obtained
from the partial sums of the logarithms. These values appear in the second
column of Table 1. In the second stage of the computation, the exact probabili-
ties are found by sctting the S; into (5). The exact probabilities are given to six
decimals in the third column of the table.

In the computation of the approximate probabilities, we take advantage of
the already computed values of S; and S; and equation (7) to obtain directly
the factorial moments of (8) and (9). From (10) and (11), we have p = .1717247
and n = 6.197378. We then compute the binomial probabilities, p; = b(z; n, p),
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1=20,1,2,---, ([n] 4+ 1), where [n] is the largest integer in =, in this case, 6,
using po = (1 — p)" and p;/p: = (n — 29)p/(¢ + 1)(1 — p) as suggested by
Guldberg [6] and others. The approximate probabilities, p; , appear in the fourth
column of the table to six decimals. It will be seen that the fit to three decimals
is almost exact and certainly good enough for tests of significance. The dis-
crepancies, p; — Py, are given in the fifth column. The Poisson probabilities
and errors appear in the sixth and seventh columns.

The discrepancies for the ‘binomial’”’ approximation are not particularly
systematic except in the upper tail of the distribution, where the binomial gives
zero probability for all numbers of isolates above seven. Although numbers
through 22 are possible, they are so unlikely to occur by chance that this pos-
sibility may be practically disregarded. For example, the exact probability of
eight isolates by chance is about one in ten million. The Poisson distribution
appears to be “flatter” than the exact, understating probabilities for the central
values and overstating for both tails.

As a further check on the accuracy of the approximation, the values of v, =
us/us” and v2 = pa/us were computed for the exact distribution and for the “bi-
nomial”’ approximation. These computations give v = .7193 for the exact,
.6993 for the approximate distribution; y2 = 3.2620 and 3.1663, respectively.
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