THE LARGE-SAMPLE POWER OF TESTS BASED ON PERMUTATIONS
OF OBSERVATIONS!
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Summary. The paper investigates the power of a family of nonparametric
tests which includes those known as tests based on permutations of observations.
Under general conditions the tests are found to be asymptotically (as the sample
size tends to «) as powerful as certain related standard parametric tests. The
results are based on a study of the convergence in probability of certain random
distribution functions. A more detailed summary will be found at the end of the
Introduction.

1. Introduction. Let X be a random variable whose values are points z in a
space X. The probability distribution of X is characterised by the probability
measure P(A) = Pr{X ¢ A}, defined on an additive class @ of subsets A of X.
(In the applications to be considered X can be taken as a finite-dimensional
Euclidean space, @ as the family of Borel sets.) Let G be a finite group of trans-
formations g of X onto itself which also map @ onto itself. Thus, for every g in
G, every z in X and every A in @, the point gz is in % and the set g4 of points
gz, z € A, is in @ Let M be the number of elements in G. Let H be a hypothesis
which implies that the distribution of X is invariant under the transformations
in G, so that for every g in G, gX has the same distribution as X.

For example, let I be the n-dimensional Euclidean space, and let H be the
hypothesis that the components X;, -+, X, of X are independent, each X;
being symmetrically distributed about the median 0. Then H implies that the
distribution of X is invariant under changes of sign of the X;. Here M = 2".
Alternatively, if X;, -+, X, -+, X, are independent, X,, ---, X,» have a
common distribution and X .41, -+, X, have a common distribution, then the
distribution of X is invariant under the M = m! (n — m)! permutations which
permute the first m or the last n — m components.

All real-valued functions of x to be considered are understood to be measurable
(@). The expected value of a function f(X) when X has distribution P will be
denoted by E&f(X) or Ef(X).

By a test of H we shall mean a function ¢(z), 0 < ¢(z) < 1, which expresses
the probability with which H is rejected when X takes the value z. The power
of the test ¢ with respect to P (the unconditional probability of rejecting H
when P is the true distribution and test ¢ is used) is equal to Ex¢(X). If Epp(X) =
a whenever H is true, the test ¢ is said to be similar of size « for testing H.

This paper will be mainly concerned with tests of the following type. Let
t(z) be a real-valued function on . For every = ¢ X let

Y2 < tP@) < - < @)
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be the ordered values #(gz), for all g in G. Given a number o, 0 < a < 1, let k
be defined by

k=M — [Ma],

where [Ma] denotes the largest integer less than or equal to Ma. Let M *(z) and
M’(z) be the numbers of values ¢”(z), (j = 1, - - -, M), which are greater than
t*® (x) and equal to t* (z), respectively, and let

Ma — M*(z)
M'(z)
Since M*(z) S M — k £ Maand M*(z) + M°@) 2 M — k4 1 > Ma, we

have 0 < a(x) < 1.
Let the test ¢(x) be defined by

a(z) =

1 i #z) > tP),
(1.1) #(z) =<a(x) if z) = P (),
0 if ) < t®(z).

For every x € € we have
20 ¢(gz) = M (2) + a(2)M"(x) = Ma,

where D, stands for summation over all ¢ in G. If the distribution P of X is
invariant under all g in G, we have

Mo = Er 3, ¢(g9X) = 2., Bp¢(X) = MEr ¢(X).

Hence the test ¢ is similar of size « for testing H.

Tests which are essentially of the form (1.1) have been considered by R. A.
Fisher (3], Pitman [11], Welch [14]. Lehmann and Stein [8] have shown that tests
of this type, with suitable functions ¢(x), are most powerful (or most powerful
similar, etc.) for testing certain nonparametric hypotheses H against specified
alternatives.

A test of the form (1.1) differs from a conventional test mainly in that the
“critical value,” t*(X), is a random variable. This circumstance makes the
exact evaluation of its power function difficult. It will, however, be shown that
under certain conditions ¢*’(X) is close to a constant with high probability.
Then the power of the test can be approximated in terms of the distribution
function of ¢(X). '

More precisely, suppose that the objects so far considered, X = €., G = Ga,
t(x) = t.(z), etc., are defined for an infinite sequence of positive integers n. It
will be assumed that the size « of the test is fixed and that M — « asn — .
Then

k/M -1 — « asn — o,

Suppose that for a given sequence {P,} of distributions of X = X the follow-
ing two conditions are satisfied:
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CoNDITION A. There exists a constant \ such that t¥(X) — X\ in probability.

CoNbpITION B. There exists a function H(y), continuous at y = X, such that for
every y at which H(y) is continuous

Pr{t.(X) = y} — H(y).

From (1.1) we have

(12) Pr{t.(X) > (:’(X)} < Br,¢u(X) < Pr{ta(X) 2 £7(X)}.
Hence it follows that Conditions A, B imply
(1.3) Ep,¢n(X) > 1 — HQ).

It should be noted that the function ¢{(z) in the definition (1.1) of ¢(z) can be
replaced by any function #'(z) such that for every x in & and every two elements
g, ¢’ of G the difference t'(gxr) — t'(¢'z) has the same sign as t(gz) — t(¢’z). For
example, this is true for ¢'(z) = c(x)f(t(x)) + d(z), where f(y) is an increasing
function, ¢(z) > 0, and ¢(x), d(x) are invariant under G (cf. Lehmann and Stein
[8]). Thus if Conditions A, B are not satisfied, they may possibly be satisfied
after £,(z) has been replaced by a suitable function #,(z).

In general A and H(y) will depend on the sequence {P,}. It will, however, be
seen that the dependence of A on {P,} is much less pronounced than that of
H(y), in the sense that for a class C of sequences {P,} the value A is the same
while 1 — H()\) ranges from « to 1.

For every z in X let MF,(y, ) be the number of elements g in G for which
t.(gx) < y. For z fixed, F,(y, z) is a distribution function. Suppose that for some
sequence {P,} the following condition is satisfied:

ConprtioN A’. F,(y, X) — F(y) in probability for every y at which F(y) s con-
tinuous, where F(y) is a distribution function, the equation F(y) = 1 — a has a
unique solution y = X\, and F(y) 18 continuous at y = \.

It will be shown in Section 3 that A’ implies that t®(X) — A in probability,
so that A is satisfied with A\ as defined in A’; furthermore, if H is true for every
P, of the sequence, £,(X) has the limiting distribution function F(y).

Let ¢% be a test of the conventional form ¢%(z) = 1, a%, or 0 according as
ta() > An, = An, 0r < \,, where 0 < a% < 1 and ), is a constant. Suppose
that A\, and a® are so chosen that the test ¢ has size a for testing that P, = P%,
a distribution for which H is true. It follows from the preceding paragraph that
if A’ is satisfied for {P%}, then A\, — A. Moreover, if B holds,

(1.4) Ep,¢n(X) =1 — HQ).

Hence if C(\) denotes the class of all sequences {P,} for which A’, with A
fixed, and B, with some H(y), are satisfied, and if C(A) contains {P%}, then the
powers of the tests ¢, and ¢, tend to the same limit for every {P,} in C(A). The
nonparametric test ¢, can be said to be asymptotically as powerful with respect
to C(\) as ¢% . This result will be of particular interest when ¢% is a most power-
ful, or otherwise ‘“optimum,” parametric test, as in the examples of this paper.
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It also can happen that for different sequences {P.,}, t*'(X) converges to differ-
ent values A, but in every case the test ¢, is asymptotically as powerful as the
most powerful test for a parametric family of distributions to which P, belongs.
This point will be illustrated in Section 7.

In most applications to be considered, H(y) is either a (cumulative) distribu-
tion function, or H(y) = 0. In the latter case the relations (1.3) and (1.4) merely
imply that both tests are consistent (have limiting power 1). The case 0 < H(\) <
1 will usually occur when P, approaches, in a certain sense, the null hypothe-
sis. For example, let P, be the distribution of two independent random samples
of m and n — m observations from two normal distributions with means u; £ s
and common variance ¢°. Let G eonsist of the M = n! permutations of the n
observations. Let ¢,(x) be the standard {-statistic for two samples. The results
of Section 6 imply that Condition A’ is satisfied with F(y) = ®(y), where

(1.5) o) = (2n [ Ceit

Condition B is satisfied with H(y) = ®(y — ¢) if (up — w) o ' {m(n — m)/n}’
tends to a finite limit ¢. This will not be the case if, as is frequently assumed,
m/n—p,0<p<1andd = (u» — w)o " is independent of n. In this case one
can, however, conclude that if é is sufficiently small, the number N of observa-
tions required to achieve the power 1 — ®(\ — ¢) is approximately given by
8{p(1 — p)N }* = ¢, and this is true for either test. In this sense the asymptotic
relative efficiency of the two tests is arbitrarily close to one for § sufficiently small.

The main object of this paper is to indicate several methods for ascertaining
that Condition A is satisfied. By way of illustration the methods are applied
to a number of tests which have been considered in the literature. In Section 2
bounds for t*(z) are obtained which provide a simple criterion for consistency.
Sufficient conditions for the convergence to zero of the variance of the random
variable F,(y, X) are given (Section 3) and used to obtain the large-sample
power of several tests (Sections 4-7). The remaining Sections 8-10 show how
a theorem can be applied which gives sufficient conditions for the convergence
of F,(y, z™), for a sequence of fixed values . The fulfilment of these condi-
tions in probability for a sequence of random variables X is found to be suffi-
cient for the convergence in probability of F,(y, X). An extension to random
distributions of the second limit theorem of probability theory (Section 10)
generalizes a recent result of Ghosh [6].

2. Bounds for #*(x); consistency. In this section it will be shown that, given
a test ¢(x) of the form (1.1), the function ¢(z) can always be so chosen that one
or two moments of the distribution function F,(y, x) are (essentially) fixed for
all z, and the critical value t*(z) is confined to a finite interval which depends
only on a.

Let G be 4 random variable whose values are the M elements ¢ of G, each
element having the same probability M~". Then F.(y, z), as defined in Section
1, is the distribution function of the random variable ¢(Gz).
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Let m(x) and »(z) denote the mean and the variance of ¢{(Gz), so that
m) = M~ 2 oot(gz), () = M~ X, lt(gz) — m(z)]”

Let t/(x) = v(x)—’[t(x) — m(x)] if v(x) > 0, t'(x) = 0 if v(x) = 0. Then the test
¢(z) in (1.1) is not changed if {(x) is replaced by t'(x). Thus we may always as-
sume that the distribution function F,(y, ) has mean 0 and variance less than
or equal‘to 1. If a probability limit F(y) of F.(y, X) exists for all y, then F(y)
is a distribution function with the same properties. If, moreover, the probability
of t{(¢X) = t(X) for all g in G tends to 0 as n — «, then the probability of
v»(X) = 0 tends to 0, and F(y) has variance 1. In a similar way, if {(x) = 0, we
may, for instance, replace {(z) by a function #(x) such that ¢(z) = 0 and
EY(Gz) = ¢, an arbitrary positive constant.
TueoreMm 2.1. If t(x) = 0, Et(Gx) = ¢ > 0, then

21) t¥(z) < S}'
If Et(Gz) = 0, Et(Gx)? <

a 4 k) 1 bl 4 4
(22) —(1_0) =4 (x)<( - )

Proor. We have
MF®@) —0,2) Sk —1< M — Ma £k £ MF,(t*(), z),
so that

F,(t*®@) —0,2) <1—a £ F,(t% @), 2).
K t(x) = 0, Et(Gzx) = c, then for everyz > 0

1—F.(2—0,z) = Pr{t(Gz) = 2} < g

Hence (2.1).

If Et(Gz) = 0, Et(Gz)’ = ¢* £ 1, relation (2.2) follows in a similar way by
using the inequalities of Tchebycheff-Cantelli (see, e.g., [4], p. 126 or [12], p.
198)

1 .
< -
Fu(y,z) = =t if y<o,
1 .
—_ > —
F.y—0,z) 21 =T if y>o0.

Apart from providing, via (1.2), crude bounds for the power of ¢, Theorem
2.1 permits us to draw the following conclusion. If ¢.(z) satisfies either of the
conditions of the theorem and, for some sequence {P,} of distributions, H(y) =
lim Pr {¢,(X) < y} = 0 for all real y, which is a sufficient condition for con-
sistency of the tests é%, then the tests ¢, are also consistent. This result is
independent of whether ¢ (X) converges in probability to a constant.
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3. Sufficient conditions for the convergence in probability of 2 (X).

THEOREM 3.1. Suppose that for a sequence {P,} of distributions of X = X,
F.(y, X) tends in probability to F(y) for every y at which F(y) is continuous, where
F(y) is a distribution function and the equation F(y) = 1 — o has a unique solu-
tion y = \. Then t%(X) — \ in probability.

Proor. By the definitions of t¥(z) and F.(y, z),

3.1) Pr {t2(X) < y} = Pr {Fa(y, X) 2 k/M}

for every real y. Let y be a point of continuity of F(y). Since, by assumption,
k/M -1 — a = F(\), and y < \ implies F(y) < F(\), the right-hand side of
(3.1) tends to 0 if y < \. Similarly it tends to 1 if y > . Hence t%(X) — \ in
probability.

A sufficient condition for a sequence of random variables to converge in proba-
bility to a constant ¢ is that their means and variances converge, respectively,
to ¢ and 0. If the random variables are uniformly bounded, the condition is also
necessary. Hence F,.(y, X) — F(y) in probability if and only if

(3.2) EF.(y, X) > F(y), EF.(y, X)’> F(y)".
We can write
Fo(y, @) = M~ 3.,C(gz),
where C(z) = 1 or 0 according as t,(z) < y or >y. Hence
(3.3) EF,(y, X) = M 3, Pr {t.(9X) < v},
(34) EF.(y, X)* = M™* 3., 220 Pr {ta(9X) = y, ta(g'X) < g}

Let G be the random transformation defined in Section 2, let G’ have the same
distribution as G, and let G, G’ and X be mutually independent. Then equations
(3.3), (3.4) can be written as

(35) EF»(!/, X) = Pr {tn(GX) = y}!
(3.6) EF.(y, X)* = Pr {t.(GX) < y, t.(G'X) < y}.

Note that ¢,(GX) and t,(G’X) are identically distributed, but not independent
(except in the trivial case when the random variable F,(y, X) has variance 0).
Equations (3.5) and (3.6) imply that (3.2) is satisfied if {,(GX) has the limiting
distribution function F(y), and ¢,(GX) and {,(G’X) are independent in the limit.
Making use of Theorem 3.1, we can state

TuroreM 3.2. Suppose that, for some sequence {P,} of distributions, t,(GX) and
t.(G'X) have the limiting joint distribution function F(y)F(y’). Then for every y
at which F(y) is continuous

F.(y, X) — F(y) in probability,
and if the equation F(y) = 1 — o has a unique solution y = N\,

t®(X) — ) in probability.
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We also observe the following. If H is true, t,(GX) and ¢,(X) have the same
distribution. Thus if F.(y, X) — F(y) in probability for a sequence of distri-
butions invariant under g, then t-(X) has the limiting distribution F(y). An im-
plication concerning the test ¢ was pointed out in the Introduction.

The next theorem, 3.3, gives conditions under which two functions ¢,(z) and

tn(z) are, in a certain sense, asymptotically equivalent.

THEOREM 3.3. Let tn(z) = ca(x)ta(z) + da (x), where

3.7 , c.(GX) — 1 and d,(GX) — 0 in probability,
and let F'y(y, z) = Pr {{n(Gz) < y}. Then

(3.8) F.(y, X) — F(y) in probability

if and only if

(3.9 F'\(y, X) — F(y) in probability.

Proor. It is sufficient to show that (3.8) implies (3.9). As has been seen, (3.8)
is equlvalent to Pr {t.(GX) < y} — F(y), Pr {t.(GX) S y, t.(G'X) S y} —
F(y)’. Due to assumption (3.7) these relations remain true if £,(z) is replaced by

tn(z). This implies (3.9).

The fulfilment of the conditions of Thorem 3.2 can frequently be demonstrated
with the aid of the central limit theorem for vectors. One version of this theorem,
which will be of particular use in Section 6, is stated below as Theorem 3A. It
easily follows from Uspensky’s proof [12] of the central limit theorem for vec-
tors.

THEOREM 3A. Let (Yl , YY), (Y, Yz), e, (Y, ; Y,.) be n independent ran-
dom vectors, EY; = EY; = 0, E|Y,[°< o, E|Y;| < ». Let

r=Sv (s Eyz.) S 3 33 7 (z EY',.') :
1 1 1 1
p = EYY,
n n —3/2 n n R -3/2
w=ZE’|Y.-|“(EEYf-) , w’=ZElY'.-{3<ZEY'.-) .

1 1 1 1

Then for any two real numbers y, y’
[Pr{¥Y <y, V' ¢} —2@)eW) | = flo, w, o),

where ®(y) is defined by (1.5) and the function f(u, v, w) is independent of n, y, y

and of the distribution of the Y, Y, and flu,v,w) > 0asu—0,v >0, w— 0.

4, Test for the median of a symmetrical distribution. Let & be the Euclidean
n-dimensional space and H the hypothesis that the components X, , .-, X,
of the random vector X are independent and each X; is symmetrically distributed
about the median 0. H implies that the distribution of X is invariant under the
M = 2" transformations gX = (( — 1)"X;, -+, (= 1)*X,),7: = Oor1,¢ = 1,
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-++, n. The random transformation Gr of x can be written Gz = (Gia1, - - -,
Grt.), where Gy, - -+, G, are independent, G; = — 1 or 1 with probabilities
3, 3. Let ¢(x) be the test (1.1) with
n n —%
) = Sa(S2)
ori(z) = 0if D_rz% = 0. The factor (E xi)_* is invariant under the transforma-
tions ¢ and is so chosen that {(Gzx) has mean 0 and variance 1 (unless z; =

- = z, = 0). Bounds for t{* (z) can be obtained from Theorem 2.1.

It follows from the results of Lehmann and Stein [8] that the test ¢ is most
powerful similar for testing H against the alternative that X;, -.-, X, are
independent with a common normal distribution whose mean is positive; the
test ¢ with ¢(z) replaced by | t(x) | is most stringent similar for testing H against
the alternative of a common normal distribution with nonzero mean. It will
suffice to consider the former, ‘“one-sided” test. The results will be easily applica-
ble to the “two-sided” case.

Let Y, = GX;, Y: = G:X;, where all G;, G; are independent, identically
distributed, and independent of the X;. Then Y3 = Yy = X%,

n n -3
HGX) =nt) Y, (n“ZX’s> ;

Tl
n n -4
He'X) =n ) v (n"‘ fo-) .
t=l =1
Suppose that X;, ---, X, are independent and identically distributed with
mean x and positive variance ¢*. By Khintchine’s theorem,

n I IXi o+ i
in probability. Hence (t(GX), t(G’X)) has the same limiting distribution (if
any) as

(4.1) ((cf2 +u) Y, @AY Y:~>-

1 1
The vectors (Y, Yy, oo, (Ya , Y',) are independent and identically distrib-
uted, with

EY,=EY;=0,EYi=EY. =" + 4 EY.Y: = EGG'X’ = EG.EG:EX’ = 0.

By the central limit theorem for identically distributed vectors (see, e.g., Cramér
[2], p. 286), the random vector (4.1) has the limiting distribution function
®(y)®(y'). The same is true of ({(GX), {(G'X)). By Theorem 3.2, {*(X) — \ in
probability, where ®(\) = 1 — a.

Under the same conditions we have for every fixed y

lim Pr{t(X) < (y + n*w/o)(1 + (w/0))7H} = &(y).

n-—+0
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Hence if u/c is independent of n (as is implied in the assumptions) and positive,
the function H(y) of Section 1 is = 0, and the power of the test tends to 1. It
follows from the Lyapunov form of the central limit theorem and its extension
to vectors (for example, Theorem 3A) that all results remain true if the common
distribution of Xy, ---, X, depends on n, provided E | X; [’s™° = o(n}). If
(u/o)n? converges to a constant ¢, then H(y) = ®(y — ¢). An alternative in-
terpretation of this result, with u/o fixed but small, is indicated in the Intro-
duction.

The function #(z) is an increasing function of Student’s statistic for testing
whether the mean of n independent random variables with a common normal
distribution is zero. Thus the test ¢% of Section 1, with suitably chosen A, , is
equivalent to Student’s (one-sided) test whose size (for testing the normal hy-
pothesis) is equal to the size a of the test ¢. The two tests have the same limit-
ing power under the alternatives considered.

Similar results can be obtained for more general alternatives, for instance
when the X, are not identically distributed, provided only the central limit
theorem can be applied.

6. An analysis of variance test. Let X be a Euclidean space of np dimensions.
Let X = (X1,:--,X,) where X; = Xy, - ,Xsp), ¢t=1,---,n, are n
independent random vectors of p = 2 components, and let H be a hypothesis
which implies that the distribution of each X is invariant under the p! permu-
tations of its components. Then the distribution of X is invariant under a group
G of M = (p!)" permutations. For example, if in an agricultural experiment p
treatments are randomly assigned to the p plots in each of n blocks, and X;;
is the yield of the plot in the 7th block which has received the jth treatment,
hypothesis H may be assumed to hold when there is no difference in the treat-
ment effects.

Let the test ¢(x) be defined by (1.1) with

i (i (wi; — :::,;))2

t(a:) = — jeml \ $m=l - )
21 (P - 1)_1 21 (xij - xi.)2

where z; = p~' Z;‘;1$ij. If the denominator vanishes, define t(z) = p — 1
(say). The denominator, which is invariant under permutations in G, is so chosen
that Et(Gx) = p — 1 for all z.

In the traditional analysis of variance one assumes that the X, are inde-
pendent normal with common variance and means EX;; = b; + ¢; . The equiva-
lent of hypethesis H is that t; = --- = ¢,. The usual F- (or z-) statistic for
testing this hypothesis is an increasing function of #(X). '

A nonparametric test essentially equivalent to ¢(x) was considered by Fisher
[3] in the case p = 2, by Welch [14] and Pitman [11] in the general case.
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Extending the customary alternative, suppose that
Xi=Yi+b:i+t, <¢=1---,n j=1-,p
where the Y;; are mutually independent and identically distributed,
EY;=0, varY;=d">0,

and the b; and ¢; are constants. It will be assumed that p is fixed and n — .
We can write

P
2 u; (@)’
t(x) = n = P ?
n! Z (p — 1)_l Z (@i — 2-';.)2
fom]l ju1
where
u; (. =n"*_21(x,-,-—x,-_), j=1--,p.
Since

Xi—Xe=Yy;—-Y. +t -1,
where I = p™ D_J4;, has a distribution independent of ¢, the random variables
y.4
(p — 1 Z (X — X:)?, t1=1---,mn,
=1
are independent and identically distributed with mean o*(1 4+ %), where
y
52 = 0‘—2(1) bl ].).l Z (t,' bl i)z.
K1
It follows that
n P
Y (p— 1) Y (X — X:)® > ¢*(1 + §°) in probability.
toml J=1

The expression on the left is invariant under the permutations in G. Hence if
we let

t(z) = o (1 + 8H)7! Zp) u;(x)?,
‘ i=1

then (#(GX), {(G’X)) has the same limiting distribution as (¢'(GX), t'(G'X)).
We have

wz) = g Gn — p 0 (@), we(e) = n? E (2 — b2,

where §,; is Kronecker’s delta. Let
Vi=0(GX), Vi=10;GX).
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Then the random vector n'V = n}(V, ..., V,, Vi, --. , V) is the sum of
n independent random vectors, each of which has the distribution of

28 = Gy ooy Tng 2oy oo, 2,

where Z,, ---, Z, are independent, Z; has the distribution of Y; + ¢;, and
(Ri,---,R,) and (Ry, ---, R',) are two independent random vectors, inde-
pendent of the Z;, whose values are the p! equally probable permutations of
(1, -+ -, p). By the central limit theorem for sums of identically distributed
vectors, the limiting distribution of V' — EV is 2p-variate normal with the co-
variance matrix of Z*, We have

EZ21=EP_I§Z:', j=1--,p; m=12

hence

EZp; =1, varZs = o1+ (1 — p ).
Ifj =7,
EZs, Zg, = Ep'(p — 1)! %kZ ZiZ = pp — 1) ‘kz;‘; telys

=pp—1DT -p'@p -1 24,

hence
cov (Zz, , Zr;) = — o'p '8, j#7.

The Zz;. havethesamedistribution as the Zx,, and since EZz,Z»}, = E@'2Zy)*
has the same value for all 7, 7/, we have

cov (ZIH,ZR;') = C(Sa'Y)’ j,j' = 1’ Y
Hence
EV; = EV; = o,
var (V;) = var (V) = o’1 + (1 — p7)3"),
cov (V;, Vi) = cov (V;, Vy) = — o’p s, i=7,
cov (V;, Vi) = C.
Let || ci; || be an orthonormal p X p matrix with ¢,y = -+ = ¢,p, and let
P P
Wi=2caVi, Wi=2 caVi.
k=1 k=1
Then
P 2 p—1 2 P , 2 -1 ’2
2 u(@X) = X Wi, L uw@X) =X Wi
=1 j=1 F) J=1
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For j,7/ < p — 1 we obtain
EW, = EW; =0, EW;Wj =0,
EW,W; = EW;W} = 8;;6°(1 + ).

Hence the limiting distribution of (Wy, -+, Wp_y, W1, -++, W) is that
of 2p — 2 independent normal variables, each with mean 0 and variance
o’(1 + &°). It follows that the hmltlng dlstrlbutlon of (' (GX), t'(G'X)), and
hence of (#(GX), #(G'X)), is that of (x5, x,,_,), where x%_; and x,,_l are in-
dependent, each having the chi-square distribution with p — 1 degrees of free-
dom. By Theorem 3.2, {*)(X) — A in probability, where Pr {x%_ > A} =
The test is asymptotically as powerful as the conventional analysis of variance
test of the same size a.

6. Two-sample test; tests of randomness. Let X be the n-dimensional Eu-

clidean space, and let H be the hypothesis that the n components of X = (X;,

X.) are independent and identically distributed. Then the distribution of

X is invariant under all M = n! permutations of its components. Let ¢(z) be
the test (1.1) with

i(ai— a)x;
{Z(at— a)in — 1) Z(x —x)}

where a,, ---, a, are given numbers, not all equal,d = n”' S i, & =
n™' D rx;. The numbers a; = @,; may depend on n. If the denominator van-
ishes, that is, if ; = --- = x,, define {(x) = 0. The denominator is invariant
under all permutations, and is so chosen that {(GX) has mean 0 and variance 1
(unless 2, = -+ = z,).

If X has the probability density

(6.2) (2ra”)H" exp{—(za?r‘ ; (x; — ai & — nf}

and 7T'(z) denotes the standard ¢-statistic for testing § = 0, then .
T(z) = (n — 2)@)(n — 1 — t@))7,

so that T'(z) is an increasing function of #(x).

Lehmann and Stein [8] have shown that the test ¢(z) is most powerful similar
for testing H against the alternative (6.2) with £ > 0, and that the test based
on | t(x) | is most stringent similar against (6.2) with £ = 0. If

(6.1) z) =

6.3) a; = 1forz=1,---,m; a; =0fort=m+ 1, -+, n,

then (6.2) is the probability density of two independent random samples from
two normal distributions with common variance and means ¢ + » and », and
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the numerator of {(r) is, apart from a constant factor, the difference of the two
sample means. Essentially this test was proposed by Pitman [11].

We first consider a case where H is true.

THEOREM 6.1. Let t(x) be defined by (6.1),let Zy, -+, Z,, -+ - , be independent
and identically distributed with E | Z,|* < « and var Z; > 0, and let Z = Z™® =
(Z1, - -+, Zn). Then in order that for every real y

(6.4) F.(y, Z) — ®(y) in probability
1t s necessary and sufficient that either Z, be normally distributed or

max (a; — @)’

1£i<n N 0
6.5 i :
(65) > (a; — a)

7=l

Results similar to Theorem 6.1 were obtained by Wald and Wolfowitz [13]
and Noether [9], who gave sufficient conditions (stronger than those of Theorem
6.1) for F,(y, Z) — ®(y) with probability one, which, of course, implies (6.4).
An argument analogous to that employed by Wald, Wolfowitz, and Noether
will be used in Sections 8-10 below to obtain alternative sufficient conditions
for (6.4).

Proor or THEOREM 6.1. We may and shall assume that

(6.6) a=o0, >.ai =1, EZ, = 0, EZ} = 1.

1

Then
Hz) = }?, aixi{(n -t Z:: (2 — iY}—;-
Since Z — 0 and n™* 2_7Z% — 1 in probability we have
(n— D722~ 2) > 1
in probability. Hence (t(GZ), {(G'Z)) has the same limiting distribution (if any)
as (u(GZ), w(G'Z)), where
u(z) = Z:: a;x;.

Let gz = 2, = (2,, -+, 2r,), Where r = (r, -+-, r,) iS a permutation of
(1, -++, n). If R and R’ are two independent random vectors, independent of Z,
such that Pr {R = r} = Pr {R’ = r} = M " forall r, we can write (GZ, ’Z) =
(Zg , Zg'). For any two permutations r, " we have

u(Z,) = Z a;Z,, = Z as; Z;,.
1 1

U(Zrt) = Z ain; = Zas; Zi’
1 1
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where s; and s; are defined by
Tog =0, T4, =1, t=1+,n
First suppose that Z, is normally distributed. Then %(Z,) and u(Z,/) have a

bivariate normal distribution with means 0, variances 1, and correlation coeffi-
cient

prre = Buw(Z)w(Z,,) = Za,,.a,".
1

Thus
(6.7) Pr{u(Z,) =y, uw(Zr) = ¥} = 2@, ¥, o),
where
d(y,y', p) = [: j_:’ (27)7 (1 — p*) P exp {— Qi—;—(%_%#} du dv.
If both sides of (6.7) are summed over all r, 7 and divided by M’ we obtain
(6.8) Pr{u(Zz) =y, w(Zr) = y'} = By, V', prw)-

The random variable pges has the same distribution as ) ja.az,, and we get
Epze = (n — 1)™*. Hence prrr — 0 in probability.

Since ®(y, y', p) — ®(y)®(y’) as p — 0, we have ®(y, ¥’, prr') — P(¥)®(y’) in
probability. And since ®(y, ¥/, p) is a bounded function, this implies

E2(y, y', prwr) — 2(y)2(yY).

Hence ®(y)®(y’) is the limiting distribution function of (4(Zg), u(Zz)), and also
that of (((GZ), t(@'Z)). Relation (6.4) follows from Theorem 3.2.

Next suppose that (6.5) is satisfied. By assumption (6.6) this condition is
equivalent to

(6.9) max |a;| —O0.

1sign

If we let Y; = a,,Z;, Y; = a,/Z;, the conditions of Theorem 3A are fulfilled,
and we have ¥ = u(Z,), Y’ = w(Z:), p = pryw = &' = E| Z |’c., where

n
Cph = ; I a.~| 3.
Hence

(610) [PI’ {U(Z,.) é Y, u(Zr') é y'} - q)(y)q)(y,)l é g(Prr’y C,.),

where the function g(u, v) is independent of n and of the distribution of the
Y:, Y (in particular, independent of r, '), and g(u, v) — 0 as w — 0, v — 0.
Clearly g(u, v) can be so defined that g(u, v) < 1 for all u, v.

From (6.10) we obtain in a similar way as before

(6.11) | Pr{u(Zz) = y, w(Zr) £ '} — 2W)®W) | = Eg (prrr, Ca).
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Since ¢, < max |a;| Y rai = max|a;|, condition (6.9) implies that c, — 0.
Since prs — 0 in probability, g(prs’ , ¢») — 0 in probability; and since g(u, v)
is bounded, Eg(pgz’ , ¢») — 0. Relation (6.4) now follows from (6.11) by The-
orem 3.2.

Now suppose that Z; is not normal and (6.5) is not satisfied, the remaining
assumptions of the theorem being fulfilled. Still assuming that the a; satisfy
(6.6), denote by A, an a; for which |a;| = max (Ja, !, --+,|a.[). Then in-
finitely many | A, | are greater than a positive constant, and since the A, are
bounded, a subsequence {A,_.} of {A.} converges to a constant A ¢ 0. We can
write u(Z) = u.(Z) = V., + W,, where V, has the distribution of 4,Z; and
is independent of W,. As m — «, V, has the limiting distribution of AZ,,
which is not normal.

Suppose (6.4) were true. Then t(Zz), and hence u,.(Zz), would have the limit-
ing distribution ®(y). But Z; has the same distribution as Z. It would follow
that u.,(Z) tends in distribution to a normal random variable which is the
sum of two independent, nonnormal random variables. By a theorem of Cramér
([1], p. 52) this is impossible. The proof is complete.

In the sequel an extension by the author [7] of a theorem of Wald and Wolfo-
witz [13] will be required which, for purposes of reference, is stated below as
Theorem 6A. For every positive integernleta = (a;, -+, @), b= (b, -+, by)
be two vectors whose components a;, b; are real numbers and may depend on
n. Suppose that the a; are not all equal and the b; are not all equal. Let the ran-
dom vector R = (R,, -+, R,) be defined as in the proof of Theorem 6.1, and
1et

. (n— DY (o — albs,
Fn(?/,a,b)=Pl‘ = > Y - 'gy ’
I:zl: (a; — a)* ; (b; — 5)’]

whered = n' > fa,, b = n™' D 1b;.
THEOREM 6A. A sufficient condition for

(6.12) F.(y, a, b) — ®(y)

asn — o 18 that
T@-e  Ee-by
[2 (ac — a)z]" [So.- 5)2]’

Condition (6.13) is satisfied if

(6.13) ¥

-~ >0, p=34,--.

max (a; — @)° max (b; — b)?
(6.14) n laisn isise — 0.

n

Sle—at 30— by

1
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The next theorem is concerned with the behavior of {*(X) under an alterna-

tive which generalizes (6.2).
THEOREM 6.2. Let t(x) be defined by (6.1), and suppose that

X:=2;+d:, t=1 - ,n,
where Zy, -+ , Ly, -+ are independent and identically distributed with

E|Z ' < o
and varZ, > 0, and d,, - - - , d. are constants (which may depend on n). Then
(6.15) t®(X) — X\ in probability,

where PA) = 1 — a, if
max (a; — i)’
(6.16) Zyis normal or 2255 50

n

2 (e — a)’
1
and
Xla—a’  X(d-ady
: ; =0, p=34- -,

the latter condition being satisfied if

(6.17) n¥ !

max (a; — a)" max (d; — d)’
(6.18) piEiET EIED — 0.

Z:: (@ — @)’ Z d — dy*

Relation (6.15) also holds if (6.16) is satisfied and

(6.19) ! 21: - d)P—0

or if (6.17) is satisfied and

(6.20) Y (d — d)? - .

1

Proor. We again make the simplifying assumptions (6.6). In addition we may
set

i

= 0.
We then have
X,'—X=Z¢""Z+di,

Y (Xi— X =02 (Zi — Z)* + Dy + 2Das,,
1 1
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where
i
i ]

n n n ..}
D, = <n“ Zdi) S = . d; Z; (n Edﬁ) .
1 1 1

We have n™' 3 1(Z; — Z)* — 1 in probability. Since Es% = n™", s, — 0 in
probability. Also 0 < 2D, < 1 + D%. Hence

’n—l Z (Xi - X)2
1
1+ D%

— 1 in probability.
Thus if we let
() =1+ DU 2 aw = (1 4 D2 Hu(z),
1

then ({(GX), t{(G'X)) = ({(X&), (X)) has the same limiting distribution (if
any) as (¢'(Xz), ' (X&)).
Let

n n -3
v(r) = ;aid,‘ (n_l ;dﬁ) .
Then
u(Zx) + D,.v(R) u(ZB') + Dnv(R’) .

(14 D) (1 4 D)}

Suppose that conditions (6.16) and (6.17) are satisfied, and consider the
joint distribution of w(Zz), v(R), u(Zz'), v(R') as n — . It is seen from the
proof of Theorem 6.1 that if (6.16) holds true and p,M* denotes the number
of pairs of permutations (r,r’) for which | Pr {u(Z,) £ y, w(Z,,) < ¢'} —
®(y)®(y’) | is less than a positive constant, then p, — 1 as n — «. By the con-
tinuity theorem for the Fourier transform an analogous relation holds for the
difference of the characteristic functions,

E exp (itu(Z,) + it'u(Z,")) — exp (—4& — ).
Hence it follows that the characteristic function of (v(R), v(R’), u(Zz), u(Zz)),
M3 3 exp (iru(r) + ir'o(r"))E exp (itu(Z,) + it'w(Z..)),

(6.21) (Xz) = t'(Xp) =

differs arbitrarily little from
Eel"rv(R)Eei‘r'v (R')e-}ﬂ —4tr2

if n is sufficiently large. By Theorem 6A, condition (6.17) implies that v(R) and
v(R’) have the standard normal limiting distribution. Hence the limiting joint
distribution of v(R), v(R’), u(Zz), u(Zr') is that of four independent standard
normal random variables. By (6.21) this implies that (#/(X3z), #(X»-)), and hence
(t(GX), t(G'X)), has the limiting distribution function &(y)®(y’).



186 WASSILY HOEFFDING

If (6.19) is satisfied, then D, — 0. Since Ev(R)’ = n(n — 1)™* is bounded,
this implies that D,v(R) — 0 in probability, and (¢/(X&), t'(X&)) has the same
limiting distribution as (u(Zg), w(Zs)). When (6.16) holds, we can apply
Theorem 6.1.

Similarly, if (6.20) is satisfied, (¢(X&), t(X&-) has the limiting distribution of
(v(R), v(R’)), which, under condition (6.17), is given by Theorem 6A. In every
case the limiting distribution of (#(GX), {(@'X)) is ®(y)®(y’), and relation (6.15)
follows from Theorem 3.2. That condition (6.18) is sufficient for (6.17) is stated
in Theorem 6A. This completes the proof.

If, in particular, X has the normal distribution (6.2), we have d; = a.;¢ + »,
and the conditions of Theorem 6.2 are fulfilled if either

A\
1-2) zl: (a; — a)
(6.22) wen T T T, P =34,

[i (a: — d)z]

max (a; — a)?
(6.23) ptlsisn 0,

23

2 (a; — a)’

1

or

(which implies (6.22)), or
(6.24) nt Y (e — @)’ —0.
1

In the two-sample case (6.3) the conditions (6.22) and (6.23) are both equiva-
lent to

’

—2
n(m')? = n? (%) -0,

where m’ = min (m, n — m). Condition (6.24) is fulfilled if and only if

’

™ o
n
At least one of the two conditions is satisfied if m/n tends to some limit.

If the conditions of Theorem 6.2 up to and including (6.16) are satisfied,
t(X) is asymptotically normally distributed as n — . If the power of Student’s
(one-sided) test of size « tends to a limit, the power of ¢ tends to the same limit.
Theorems 6.1 and 6.2 can be easily extended to the case where Z,, - -, Z, have
a common distribution which depends on =.

7. The two-sample test when one sample is small. It is of some interest to
investigate what happens when the necessary and sufficient condition of The-
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orem 6.1 is not satisfied. In the two-sample case, which will be discussed in this
section, this occurs only if m or n — m does not tend to infinity with n.

We first consider a somewhat more general situation. Let & be the Euclidean
n-dimensional space and G the group of all M = n! permutations of the n co-
ordinates of a point in X. Let the components X, , - -+, X, of X be independent.
The function {(x) can be arbitrary, subject only to the conditions to be stated.

First assume that {(z) = w(z1, -+, z») is a function of x;, --- , z,, only,
where m is fixed as n — «. The proportion of pairs of permutations r, ' for
which the sets (11, -+ , rm) and (r1, - - - ,.7m) have no elements in common tends
to 1 as n — . Hence #(X,) and ¢(X,) are independent for a proportion of pairs
r, v’ which converges to 1. Suppose now that X;, --- , X,» have a common dis-
tribution and X m41, - -+ , X, have a common distribution. Then for a proportien
of permutations r which tends to 1, {(X,) has the distribution function of ¥(X 41,

, X2m), which will be denoted by F(y). It follows that (¢(X&), {(X/)) has the
limiting distribution function F(y)F(y’). If the equation F(y) = 1 — « has a
unique solution y = A, t*(X) — X in probability by Theorem 3.2.

The same conclusions hold under the more general assumption that #(z) is
of the form c(x)u(z:, - -+ , *m) + d(z), where ¢(Xz) — 1 and d(Xz) — 0 in prob-
ability, as follows from Theorem 3.3.

Now let ¢(x) be defined by (6.1) with the a; given by (6.3). Then

t(z) = {m(n —my E (z; — x)} (i z; — mi).

Suppose that m is fixed, and that the common distribution of Xm41, -+, Xa
has mean x and variance . Then

X= “ZX =, ‘Z(X X)) —4
in probability. Hence the preceding results can be applied with
War, oy Tm) = m 0T 20 (2 — p).
1

Observe that the probability limit A of t*'(X) depends on the distribution of
X m+1 . Now it follows from (8] that the two-sample test ¢ is most powerful simi-
lar for testing H not only against the normal alternative (6.2), (6.3), but also
against any alternative with a density of the form

(7.1) fIlf(xf, 6) - i_f[“f(x.', 82),

where
f(y, 6) = A(0)B(y)e™, 6, > 6.

On the other hand, the most powerful test of size « for testing that Xy, -+ , X
are independent with the common density f(y, ), where

0 = (mb + (n — m)6)/n,
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against (7.1) is of the form ¢*(z) = 1 or 0 according as m ™} D (@i — ) > ca
or < ¢, , where ¢ ¢, converges to the probability limit A of {*'(X). In other
words, t*®(X) always tends in probability to the “correct” value A, so that the
test ¢ is asymptotically as powerful as the most powerful parametric test for
the case where the function f(y, 6) is known. This phenomenon is analogous to
the relation between, say, the one-sided two-sample ¢-test for normal distribu-
tions with unknown variance ¢° and the most powerful tests (corresponding to
the different values of ¢*) when o” is known.

8. An alternative approach. In the remaining part of the paper an alternative
method of proving that F,(y, X) tends to F(y) in probability will be considered.
It is an extension of an argument used by Wald and Wolfowitz [13].

Suppose that the quantities a; = @.;, b; = ba; in Theorem 6A are random
variables which have a joint distribution for all < and all n, and suppose that one
of the conditions (6.13), (6.14) is satisfied with probability 1. Then (6.12) holds
with probability 1.

For example, let X = (Uy, Vi, U, V,, ---, U., V,), where the pairs
(Ui, V),7i=1,---, n, are independent and identically distributed, and let
H be the hypothesis that U; and V; are independent. When H is true, the dis-
tribution of X is invariant under the M = (n!)* permutations which permute
(Ui, -+, U)or (Vy,---,V,). Let

(n = 13 (s — @i = B)
n n 3
P

A test equivalent to the corresponding test ¢(x) was considered by Pitman [11].

Since ¢(x) is invariant under permutations of the pairs (u; , v;), the distribution
of {(Gz) is the same as the conditional distribution with u;, --- , u, held in a
fixed order and only the v; permuted in all possible ways. Hence if in Theorem
6A we let a; = u;, b; = v;, then F,(y, a, b) is identical with F,(y, x). Suppose
that U; and V; have finite moments of any order. Then the strong law of large
numbers implies that condition (6.13) of Theorem 6A, with a; = U;, b; = V;,
is satisfied with probability 1. Hence F,(y, X) — ®(y) with probability 1, and
a fortiori in probability. Theorem 3.1 can now be applied.

That condition (6.13) is satisfied with probability 1 can be shown under
weaker assumptions (cf. Noether [9], [10]). Since, however, only weak convergence
(in probability) of F,(y, X) is required for our purposes, a proof of strong con-
vergence seems redundant. In fact, it will be shown in Sections 9 and 10 that if
the conditions of Theorem 6A are satisfied as limits in probability, then the
conclusion holds as a limit in probability.

t(x) =

9. Ordinary convergence and convergence in probability. Let f.(x,), ¢.(z.),
n =12 ---,be two sequences of real-valued functions of elements z, in a
space X, . Let X, denote a random variable with valuesin 9, ,n = 1,2, --- .



LARGE-SAMPLE POWER 189

THEOREM 9.1. If f.(x,) — O tmplies ga(xa) — 0, then fu(X,) — 0 in probability
implies g.(Xn) — 0 in probability.

Proor. Suppose the theorem were false. Then there exist two sequences of
functions {f.}, {g.} such that f.(z,) — O implies g.(z,) — 0, and a sequence of
random variables {X,} such that f,(X,) — 0 in probability but, for some 6 > 0
and some ¢ > 0, Pr {| g.(X,) | > 8} > e for infinitely many n. Let m be an
arbitrary positive integer. Consider the events

A, = {|g.(X) | > 8}, B = {|fa(Xa)| < m}.

We have Pr {4,} > ¢ for infinitely many n, and there exists a number N
such that Pr {B{} > 1 — teforn > Nn.If A,-BS™ denotes the joint occur-
rence of A, and B{™,

Pr{d4..B™} 2 Pr{d,) +Pr{B™} —1>e+1—-2e—1>0

for infinitely many n.
Hence for every positive integer m there exists a sequence {z\™}, '™ e, ,
such that | fa(z™) | < m™ for n > N,, and | g.(2%™) | > & for infinitely many

n. For every m = 1, 2, - - - there exists an integer K, = N.41 such that
| gra(ziy) | > 8
and K; < K, < «++ . Let K, = 0,
Ton=2™forn =Knma+1 -, Kn; m=12 -

Then | fa(zh) | < m™ for n > K., hence fu(zn) — 0, and | ga(z5) | > 6 for in-
finitely many 7. But this contradicts the assumption.

Let, in particular, x, be the vector (a, b) of Theorem 64, f, the left-hand side
of (6.14) and g, = F,(y, a, b) — ®(y). Then Theorem 9.1 shows that if @ and/or
b are replaced by random vectors, the fulfilment of (6.14) in probability implies
that (6.12) holds in probability. Theorem 9.1 does not suffice to draw the same
conclusion if the infinitely many relations (6.13) are satisfied in probability.
That the conclusion is permissible will be shown in Section 10.

We conclude this section by stating, without proof, conditions which imply
the fulfilment of (6.14) in probability. It can be shown that

max (X; — Xy
(9.1) p!tmCM 1gisn — 0 in probability
2 (X - X)
1
if Xy,-++,Xn, - are independent, identically distributed, E | X, " < o

for some h = 2. Relation (9.1) with A~ = 2 also holds if X, ---, X, are in-
dependent with common mean and finite second moments and satisfy the Linde-
berg condition of the central limit theorem. More generally, (9.1) holds if
EX; = d;, the X; = X; — d; satisfy one of the previously stated conditions
and .

max (d; — d)?
1—(2/h) 15i<n

i@—w

n — 0.
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Hence one can obtain alternative sufficient conditions for t&(X) — A in proba-
bility in the examples of Sections 6 and 8. Thus in the case of Section 8 it is
sufficient that U; and V; have finite moments of order 4.

10. The second limit theorem for random distributions. A generalization by
‘Fréchet and Shohat [5] of Markov’s so-called second limit theorem of probability
theory states that if the distribution function F(y) is uniquely determined by
its moments and {F.(y)} is a sequence of distribution functions whose moments
converge to the corresponding moments of F(y), then F,(y) — F(y) at every
point of continuity of F(y). An extension of this theorem to the case where the
F.(y) are random distribution functions and ordinary convergence is replaced
by convergence in probability was given by M. N. Ghosh [6] under certain addi-
tional assumptions concerning F(y) and its moments. The following theorem
shows that the extension holds with no restrictions.

TeEOREM 10.1. Let F(y) be a distribution function on the real line which is
uniguely determined by its moments

w= [~ arp, k=12,
Let {F.(y)},n =1, 2, ---, be a sequence of random distribution functions with
moments un , and suppose that
Hnr — ux tn probability asn — «, k=12,--
Then
Fa(y) — F(y) in probability

at every point of continuity of F(y).

The proof is based on the following lemma.

LemMma 10.1. Let F(y) be a distribution function which is uniquely determined
by its moments ur , k = 1,2, --- . Then for every y’ at which F(y) s conlinuous
and for every € > 0 there exist a posilive integer m = m(y’, ¢) and a positive number
& = 8(y’, ¢) such that for every distribution function G(y) whose moments v, satisfy
the inequalities

[ —ml <3, k=1,---,m,
we have
|GW') — F¥) | < e

Proor.? Assume the lemma to be false. Then for some y’ at which F(y) is
continuous and for some ¢ > 0 there do not exist positive numbers m, § for

* The author is indebted to H. Robbins for the proof of Lemma 10.1.
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which the conclusion of the lemma holds. Hence for every positive integer m
there exists a distribution function G..(y) with moments v..; such that

Iv,,.k—-uk|<m-l, k=1,¢++,m,
and
|Gn(y) — F@) | 2 e
But {Ga(y)}, m =1, 2,---, is a sequence of distribution functions whose
moments, vni, converge to u; for all ¥ = 1, 2, --- . By the aforementioned

theorem of Fréchet and Shohat, G..(y') — F(y’), which leads to a contradiction.

Proor orF TaeorEM 10.1. Let 4’ be a point of continuity of F(y). Given
€e> 0, let m =m(y, ¢, § =8y, ¢ be defined as in Lemma 10.1. Given
n > 0, choose N so that

Pri{lpn —m|<dk=1---,m}>1—n forn > N.

It follows from Lemma, 10.1 that | F.(y') — F(y’') | < e with probability > 1 — 9
for n > N. The proof is complete.

It will now be shown that if the relations (6.13) are satisfied as limits in proba-
bility, (6.12) holds in probability. It can be seen from the proof of Theorem 6A
in [7] that if (6.13) holds for p = 3, 4, - - - k, then the moments up to order k
of the distribution F,.(y, a, b) converge to the corresponding moments of ®(y).
By Theorem 9.1 this implies that if (6.13) holds in probability for every p = 3, 4,
.-+, then every moment of F,.(y, a, b) converges in probability to the corre-
sponding moment of ®(y). By Theorem 10.1, F.(y, a, b) — ®(y) in probability.

Relations (6.13) can be shown to hold in probability under conditions which
are slightly weaker than those indicated at the end of Section 9, though the gain
does not seem to be considerable.
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