CONFIDENCE BOUNDS FOR A SET OF MEANS

By D. A. S. FrasEr
University of Toronto

1. Summary. Professor John Tukey suggested the following two problems to
the author: given that X; , Xz, --- , X, are normally and independently distrib-
uted with unknown means u; , pz, - * - , 4 and given variance o*;

ProsrEM A: Find a B-level confidence interval of the form

G@1y = 3 Tn) Z 1y oyl = — O,
ProBLEM B: Find a B-level confidence interval of the form
g(xl, s ,xn) 2 K1y °°° 5 ln = h(xl’ e ’x")°

The main result of this paper is the nonexistence of intervals satisfying mild
regularity conditions and having an exact confidence level (unlessn = lor 8 =
0, 1). However for each problem an interval is given for which the confidence
level is greater than or equal to 8 (formulas (2.1), (4.1)); these intervals are
apparently shorter than those previously used in practice. Also the procedure for
obtaining any interval with at least 8 confidence is described.

Some results are discussed for distributions other than the normal.

2. Introduction to Problem A.

2.1. Normal distributions. If X;, ---, X, are normally and independently
distributed with known variance ¢* and unknown means u; , + -+ , tn, then Prob-
lem A is to find an upper B-level confidence bound for the set {u, « -, ua};
that is, to find a function g(z:1, ---, ) such that Pr{g(Xy, ---, X,) 2
max p;} = Bforall i, -+, pa.

One approach to this problem is to look for exact B-level confidence bounds:
the above condition on the function g(x:, - -+ , %.) is replaced by Pr{g(X,
.+, X,) = max u;} = gforall p, -, u,. This more restrictive condition
in a confidence region problem is of course analogous to the requirement of
similarity in the theory of hypothesis testing.

In Section 3 Problem A is analyzed but attention is confined to measurable
functions g(z; , - -+ , *,) which satisfy two mild restrictions. These restrictions
are given by the following assumptions concerning the function g(z:, - -+ , Z.).

AssuMpTION 2.1. For all 1, «++ , Zn, g(@ + 8, -+ , T» + &) s a monotone
nondecreasing function of 8.

AssumprioN 2.2. If z; = max z; (£ = 1, - -+, n), then g(x1, -+ , Ta) satisfies

g(xl; te ’xn) ég(xly °e ’xi—lyxf+6’xf+1: "’,117,.)

for all 2, --- , z, and for any positive 8.
" The second assumption seems reasonable since a bound would certainly be
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576 D. A. 8. FRASER

suspect if it were smaller for 27.2, 25.5, 26.3, 27.8 than for 27.2, 25.5, 26.3,
27.5.

It is then proved by Theorem 1 that there does not exist an exact B-level
confidence bound which satisfies these two assumptions.

As a by-product of Theorem 1 a bound having at least 8 confidence is ob-
tained; it is
(2.1) 9@, -+ ,2%,) = max z; + Nis o,

where N is the 1 — B point of the unit normal; that is,

_.1_ / ® —422 dx =
m - e T = Q.
The optimum properties of this bound will be discussed in a later paper.

The above bound, however, is not the only confidence bound. In Section 3 a
procedure is given for constructing bounds having at least 8 confidence. For this
it is convenient to restrict attention to bounds satisfying a more restrictive ver-
sion of Assumption 2.1. This assumption 2.1* is obtained by applying the princi-
ple of cogredience to the problem using the transformations ;=2 + C, ¢ =
1, .-+, n, for all C.

AssumpTION 2.1%. The function g(x,, -+ , Ta) Satisfies the equality

g+ 8, - ,xa+08) =g@1, -+ ,2) + 9

forallz,, -+, z., 6.

2.2. The general problem. The problem as described above is a particular case
of the following: given X, , - -- , X, are independently distributed with proba-
bility density functions f(x — ui), -+, f(x — ua), find a B-level confidence
bound for the set {ui, -+, ua}. Theorem 2 shows that if f(x — u) satisfies a
condition of bounded completeness, then exact S-level bounds do not exist.
A bound having at least 8 confidence can of course always be obtained by adding
to max z; the 1 — B point of the distribution f(z) (that is, with u = 0).

3. Analysis of Problem A.
3.1. Characteristic function of a confidence bound. We define a characteristic

function for the bound g(x:, --- , z.) as follows:
(3.1) . bo(T1, <+, Ta) =1, g, *+ , Ta) 2 6,
) =0, g(xly""xn)<0'
From assumption 2.1 we can infer that ¢¢(z1 + 8, - -+ , . + 8) is a monotone
nondecreasing function of §.
To derive conditions on @g(x;, -+ , %,) from Assumption 2.2 we first define
disjoint sets S;, ---, S. which cover R™ except for a set of measure zero:

(3.2) Si = {(xy, -+, z0) |2 > max ;).
174
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The second assumption insures that for points (z1, -+, z.) € S: ¢o(x1, - ,
Xio1, i, Tip1, **° , Ty) IS & monotone nondecreasing function of z; .
3.2. Theorem for normal variables. To prove Theorem 1 we shall need the fol-

lowing
Lemma 1. If Yy, ---, Y, ate normally and independently distributed with

means py, * - , 4a and unit variances, then the set of densities corresponding to all
(w1, -+, pn) € [—, 0]" 7s boundedly complete; that is,

E{¢(Y17 B} Yn)} = 0’ (:ul ’ ;/J'ﬂ) & [—w;O]ny

and
ld’(yl, e 1.2/")] <M
tmply
¢(:l/1, ,y") =0
almost everywhere.

Proor: The above set of distributions is complete; see Lehmann and Scheffé
[1]. Since completeness implies bounded completeness, the lemma follows.

Taeorem 1. If X1, ---, X. are normal and independent with means
d1, -+, ka and variance o°, there does not exist (unless 8 = 0, 1, or n = 1) a meas-
urable function g(x1, -+ , T.), satisfying assumptions 2.1 and 2.2, which is an
exact B confidence bound for max u; .

Proor: Without loss of generality let ¢ = 1. We consider a measurable
function g(x;, -+ , *,) satisfying assumptions 2.1 and 2.2 and, assuming that
g is an exact $-level confidence bound, we shall find that a contradiction results.

We have

B = Pr{g(Xy, -+, X,) = max p}
(3.3) = E{¢s(X1, -+, X,) | max p; = 6}
= B{" (X1, -+, Xica, Xiwa, -+, X | max u; < 0},
where

—}(z;—0) 2
$(zi—0) dx; .

v—o0

) 1 °
(34) 6(5)(371, ety X1y Tiga, 0t ’xn) = ‘\—/—2—7' [ ¢0(xly"' 2xn)e

We now derive conditions on the function 8§” and for simplicity let § = 0.
From the expression above it is seen that
E{B" (X1, Xica, Xivay ooy Xn) — B | max ; < 0} = 0;
hence from Lemma 1, we conclude that
(3.5) B (@1, r ity Biga, o0, Tn) = B

~ almost everywhere.
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Using the above condition on ﬁé", we obtain conditions on the function
¢o($1 y "0 xﬂ)-
B =B ®r,  Tict s Tig1y " 5 Tn) almost everywhere

(3.6) 1
- '\/___2; _[ Go(®1, -+ ,x,,) e"*’f‘ dz; .

Consider fixed x;, -+, Zi-1, Tit1, *** , &n (nOt of course belonging to the
exceptional set of measure zero for which the equality (3.5) might not hold).
For z; > max;; ¥; , o(T1, -+ - , Z») is a monotone function; and since it is a char-
acteristic function it will have the following form

%o (1171,"',33") =0, max xj <@ < U@, r0, Tict, Tiyr, * )xn)’
(3.7) Jhi N
=1, U@y, Timt, Tig1y ot 5 Tn) < T < @,

@1, vty ety Tiwr, cct, Tw) is taken to be the value of z; at which
@o(21, **+ , Z,) jumps from 0 to 1 or max;x; z; , whichever is larger. Using the
function u(z; , -+ - , %.), we obtain

1 mexzj ;
= :\_/——2—7;' ["“ ¢o($1 1% xn)e_h? dxi

(38) -

+ __f
\/21r U(Z1,0 T = 11T 41070 1%n)

—3p2
e da; .

However, since

maxzj

1 naxzi iz
0= TZR‘_[”“ - CPREE 7xn)e *?dxi,

0

1 i a2
=5 [2 et

= Pr(X; £ max z;),
Ik

then

(3.9) No S u@i, ++y Bicty Tig1, =+ 5 Tn) = Nﬁ—P(n;:‘gz,') ’
ki

where

P(max z;) = Pr{X; £ max z;}.
i ki

The inequality on wi(z;, --- , .) implies that ¢o(z:, ---, 2.) is equal to
zero for almost all points in S; having z; < Njg . This is true for all ¢; hence
(21, -+ , %) = 0if max z; < N . Consider now (z1, «+- , Tiz1, Ti1, ***
z,) having max;.; ; < Nj ; in expression (3.8), the first integral vanishes leaving

1.2
e oF dz;.

1 0
8=—=/
27 w(Z1,0 2 Zi~1:%i+1,°*1%n)
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Therefore

Wy, -+, Tic1, Tigay *°* »&n) = N,  max z; < Ng.
JA

From the above equality on w(z1, -+ , Tiz1, Tix1, *** 5 Tn); WE obtain the
following conditions on ¢o(%1, **+ , Tn):

n
¢o(x1,-~,:v,,) =0, if max z; < Ng,
1

=1, if exactly one z is larger than Ng.

But since ¢o(x1 + 8, -+ , T + 8) is monotone in 3, we have

(310) ()50(1131 y " xn) = 07 . lf max o < Nﬂ I}
=1, if max z; > Nj.

Therefore
gl@r, ++,20) <O, if max z; < N,
= 0, if max z; > Nj.

Similarly
Ty, 00 ,xa)< 0, if max z; < Ng + 6
(311) g( 1 ’ ) ' 8 )
=0, if max z; > Ng + 0.

This completely determines g(xy , «++ , a);

g(zy, +++ , 2s) = max z; — N,
(3.12) o ?
max z; + Ni-s .

However, contrary to our original assumption, this function g(x1, +-+ , ) is
not an exact -level confidence bound unless 8 = 0, 1, or n = 1. For consider

B(()l)(x2’ tt xn); (35) gives
B(()l)(x2 y *° xn) = B

almost everywhere, while the functional form of g(z:, -+ , ) above implies

1
B (may oo+, 20) = B, max z; < Ny,
ikl
=1, max &; > Ng.
il

These are obviously in conflict unless n = 1 or 8 = 0, 1. This completes the
proof of Theorem 1.

3.3. Examples of normal confidence bounds. Although an exact B-level confidence
bound satisfying assumptions 2.1 and 2.2 does not exist, bounds with at least
8 confidence do exist; an example of one was obtained in the course of the proof
of Theorem 1, namely, :

9@y, +++ , %n) = max z; + Nigo.
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It is easily seen from the form of B"(zz, - - - , &) that this bound has at least
B confidence,
B‘gl)(x‘l: s, %) =B, m:Xx;,é Ng,
J#*#
]
=1, max z; > Ng.
i
The confidence level is
E{B:"(Xs, -+, X,) |max p; < 0} 2 8.
%1

We define a bound ¢ having confidence at least 8 to be uniformly better than
a bound ¢’ having confidence at least 8,if ¢ < ¢’ for all (x;, +++, z,), and g <
¢’ on a set of positive measure. It is not difficult to see that bounds, uniformly
better than the example above, do not exist. This obtains from the following
simple property of the normal distribution. Let ¥ be normal with mean 6 and
variance 1; then for § positive, all the probability less than C can be made arbi-
trarily small with respect to the probability in any small neighborhood of ¢ + &
by taking 6 large enough.

Since it may be desirable to obtain bounds other than the example given
above, we outline the procedure. For spherically symmetric normal distributions
in R™ having variance o° and mean (u; , *+- , u,) With max u; = 0, we look for
a region whose size is greater than or equal to 8 and whose characteristic function
¢(xy + 8, -+, , + 6) is monotone nondecreasing in §; then a g3 level bound
g(x1, -+, &) satisfying Assumption 2.1%* is the following:

g(xly e ,117,.) = ¢

where 8’ is the value of é at which ¢y(xy — 6, --- , o — &) jumps from 0 to 1.

3.4. Bounds for nonnormal distributions. As remarked in Section 2, confidence
bounds for max u; may be wanted for distributions other than the normal;
U1, *°* 5 M, would of course be values of the location parameter corresponding
to the random variables X;, - -+, X, . Consider the density function f(x — u);
we shall say it is boundedly complete (one-sided) if

[” g@)f(z — u) dz =0

for any dense set of u < 0 and | g(z) | < M imply g(x) = 0 almost everywhere.
From a theorem of Lehmann and Scheffé which was mentioned in [1], we can
conclude that if f(x — p) is boundedly complete (one-sided) then

'[_: [:g(xl’"‘:x")IiIf(xi'—/“i)IiIdxi =0

forall uy, ~++, un < O0and | g, -+, %) | < M imply g(z1, -+, 2,) =0
almost everywhere. This conclusion takes the place of Lemma 1 for the following
theorem:
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Tueorem 2. If X, ---, X, are independent and have probability density
functions f(x — 1), -+ , f(x — u.), where f(x — p) is bounded complete (one-
sided), then there does not exist (unless 8 = 0, 1, or n = 1) a measurable function
g(@y, -+, Tn), satisfying Assumptjons 2.1 and 2.2, which is an exact 8 confidence
bound for mazx u; .

Proor: The proof is essentially that of Theorem 1.

4. Introduction to Problem B. The second problem is to find a confidence
interval for a set of means; if X;, ---, X, are normally and independently
distributed with known variance ¢° and unknown means u; , -+ , s , Problem
B is to find two functions g(z1, - -+ , Z.), h(x1, + -+ , Zs) such that

Pr{g(Xl; et )Xn) g”la ct ,ﬂn;h(Xl{“‘ ;Xn)} = 6.

We also study the problem of finding an exact 8-level confidence interval for
which the above condition is replaced by

Pr{g(Xls"'aXn)g#la"'a”n%h(X17'“ Yn)}‘_-'ﬂ-

In Section 5.3 we establish the nonexistence of exact £ level confidence in-
tervals among pairs of functions (h, g) satisfying several m rderate and reason-
able restrictions; these restrictions are:

AssumpTIiON 4.1. The functions g(xy , « -+ , ) and h(xy, -+, T.) salisfy the
equations

g(xr+6,~--,xn+6)=g(x1,~~-,x,,)+6,
hxy + 6, -« , 2+ 86 ="h(@, - ,2:) +

for all &y, -++, Zn, O.
AssumprioN 4.2. The equation

g(xly e ’xn) = _h(_xla IR} —xn)

holds for all xy , +++ , Zn .

AssumprioN 4.3. The functions g(x1, -+ , x,) and h(z1, -+, %) are sym-
metric functions.

AssumprioN 4.4. If x; = max z;, then the function g(z1, -+ , T.) satisfies

g;(xl, ,xn) = g(xl, ;xf—lyxj+6)xi+1, ,xn)

for any positive 8.

AssumprioN 4.5. For all xy, -+ ,%n,g@1, -+ ,%s) = T + ¢, where
& = Y zi/n and ¢, > 0, may depend on g but not on xy, -+ , Tn .

As a corollary to Theorem 3 we obtain a confidence interval for the means
which has at least 8 confidence; it is (4.1) (h, g) = (min z; — Na—s) o, max z; +
Nia_s o) where N, is the « point of the unit normal. Also in section 5 we indi-
cate the procedure for constructing intervals having at least 8 confidence.
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5. Analysis of Problem B.

5.1. Justification of assumptions. The first three assumptions (4.1, 4.2 and 4.3)
are obtained by applying the principle of cogredience to the problem. The set
of transformations .

zi=z;+Ci=1 - ,n, C ¢ R
produces the conditions contained in Assumption 4.1. Similarly the transforma-
tions

4 .

Ti= —Ti,t=1,-2+,n,

’ .

Ti=Tjs,1=1c0,m,

for all permutations (ji, --- , J») of (1, -+, n) produce respectively the con-
ditions of Assumptions 4.2 and 4.3. :

Assumption 4.4 is similar in form and justification to Assumption 2.2. Assump-
tion 4.5 is not too restrictive for practical confidence intervals: it is introduced
merely from necessity in the proof. Nevertheless, it seems reasonable to suppose
that Assumption 4.5 is not essential for the conclusions of the theorem.

5.2. Characteristic functions. A characteristic function similar to (3.1) could
be defined for the interval (h, g). However, the symmetry introduced by
Assumption 4.2 enables us to use the characteristic function (3.1); for
g(xy, -+, x,) in (h, g) we define g1, -+ , ) as in (3.1).

The present assumptions yield for ¢s(x1, « - , z,) the properties derived in
Section 3.1, namely,

(1) ps(xy + 8, - - , x, + ) is monotone nondecreasing as a function of §, and

(2) for points (xl, vy :c,,) & Si, ¢o(.’l§1, oty L1y iy L1y 0, :1:,.) is a

monotone nondecreasing function of z; .

5.3. Theorem for normal distributions. To establish the nonexistence of exact
B-level confidence intervals satisfying Assumptions 4.1 to 4.5, we have

TueoreM 3. If Xy, --- , X, are normally and independently distributed with
means py , -+ - , un and variance o*, there does not exist (unless 8 = 0, L or n = 1)
a pair of measurable functions (g, h) which satisfies Assumptions 4.1, 4.2, 4.3, 4.4,
4.5 and which is an exact B-level confidence interval for the set {u1, -+, un}.

Proor: The proof is somewhat different from that used in Theorem 1, but
several results obtained in the course of that proof are used here.

Let ¢® = 1 without loss of generality. We consider a pair of functions (h, g)
satisfying Assumptions 4.1 to 4.5, and, assuming (h, g) is an exact 8 level con-
fidence interval, we shall find that a contradiction results.

For the characteristic function ¢g(x;, --+ , z.) define according to (3.4) a
conditional expectation 85" (21, ++* , Ti1, Zis1, *** , Ta. In the following ex-
pressions we shall use a symmetric multivariate normal distribution with vari-
ance 1 and mean given after the condition bars. Using Assumption 4.1, we have

B = Pr{g(Xl, ceey X,.)é O, h(Xl + 0n~1, MY Xn + 0n—1)
= OI(G; — b1y o, = 0"—1)}
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if welet 0 < 6, < +-+ £ 0, . Using Assumptions 4.1, 4.2, 4.3,
1 —=8=E{1—¢(Xs, -, Xa)| 0, =01, , = 6a)}
+ B{(l — ¢o(Xs = nsy =+ y Xo = 6a2)) | (0, 61, -+, 6na)}
—E{(1 — ¢o(X1, -+, X)) A — po(— X1 — b1, ++ , — X — 0n1))
[0, — 61, -+, — 6n1)}
= E{(1 — (X1, -»+, Xa) | 0, — 01, -+, — 6a)}
+ E{(1 — ¢o(X1, -+, Xa)
| (—6n1y, — (Ones — 61), -++, — (62a — 6as), 0)}
— B{(1 — ¢o(X1, ++, X)) 1 — ¢o(—X1 = bua, o, =X — 041))
10— 81, e, — B,

If we restrict the values of the #’s it is possible to make the third term on the
right hand side of the equation equal to zero. From Assumption 4.5 the first
factor 1 — ¢o(21, « - , ,) is equal to zero if g(x;, -+ ,2,) = 0orif Z + ¢ = 0.
Similarly the second factor 1 — ¢o(—21 — a1, -+, — Zn — 0,_1) is equal to
zero, if —z; — 6,y + ¢ = 0 or if £ + ¢, < 2¢, — 6,1 . The product of the

two factor will certainly be zero if 6,1 < 2 ¢, . Therefore we have
1—-8= E{(l - ¢0(x1’ e ’x"))l(o, — 0,0, = 07&*1)}
+ E{(l - ¢0($1’ ] 17")) ’ (O) - (0'!—1 - On—2)) Tty T (0n—1 - 01))}

for all 6;,- -+, 0, satisfying 0 < 6; < -+ = 0,1 < 2¢ .
We now derive a property of the conditional expectation B§° (2, - - - , @) =
B(xz, -+, x,). We have '

1 1< 9
1-8= (2,,)%(1;—1)_[(1 — B(x2, -+, %)) exp [_Q{; (2 + 6i1) }:I dx; - - - dx,
1
+W(,,—_f)f(1 — B(@s, -+, T)
n—1
© exp [—%{ 223 (@i 4 Ony — 0:0)” + (20 + o,,_l)z}] day -+ dz,.
We note that the following functions satisfy the conditions for a pdf in R*:
-1 ol =15 @ + 0.
h= W{ekp[ 5 ; (z: + 0:1) ]
1 n—1 ) L )
+ exp ) ; (@i 4 0n1 — 05)” — 2(z0 + 6, — 1)° |7,

f2=21 —ﬁixfi,--ﬂ--’xn)fl.
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For the integral

f fidx2~‘-dxn=1,
Rn—1

the conditions are satisfied for differentiating any number of times under the
sign of integration with respect to 61, -+, 0,1 . lf weset 6, = ++- = 0,y = 0
in the equation

grate -+

P day -+« dz, =0,

we obtain equations from which all the moments of f; (with all ’s equal zero)
can be obtained. However, the equations do not depend on ¢; hence f; and fo
have identical moments. But for these multivariate normal moments, the density
corresponding to them is unique (generalization of moment condition on p. 176
in [2]); therefore,

1 _B(x2)”"xn) = %(1 _B)
or
ﬁ(xg,n-,x,.) = '21(1+6) =5*~

Now if we use part of the proof of Theorem 1 from formula (3.5) to formula
(3.12), we obtain

max z; + Nig+,

g(xlr"'yxn)

max z; + Nya-p ,

and by Assumption 4.2, we have
h(:l}l y 'ty CI},.) = min X; — N;a_g) .
Therefore

(h,g) = (min T; — Ng(1..g) , Max ; + N;(l..g)) .

It is easily seen that for this interval the confidence level is greater than 8 (unless
B = 0,1, or n = 1). Since this is a contradiction the theorem is proved.

5.4. Example of normal confidence intervals. Intervals having af least 8 con-
fidence do .exist; for example

(min Xy — O’N;(l._g) , Nax &; + O'N;u__g)).

The confidence level for this interval is always larger than 8 and it seems reason-
able to expect that it is bounded away from 8. In other words the above interval
might be refined by using a constant smaller than Njq_g . The answer to this
question will most likely be obtained only by applying a numerical procedure
-analogous to that described at the end of Section 3.4.
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Any bounds for Problem A can be used to provide an interval for the present
problem. Let 1 — 8 = a; + a; where o; and o, are positive, and let gi(z1,- -« , Za),
Gy(x1, -+, xa) beat least 1 — a;, 1 — o, confidence bounds for problem A. Then
an interval having at least 8 copﬁdence is

(_gz(_xl y "y, xn), 91(961 y "0 xn))
This follows from the argument at the beginning of the proof of Theorem 3.
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