TESTING MULTIPARAMETER HYPOTHESES!

By E.‘ L. LEEMANN
Stanford University and University of California, Berkeley

1. Summary. Let the distribution of some random variables depend on real
parameters 6; , - - - , 6, and consider the hypothesis H: 6; < 6*,7 =1, --- , s.
It is shown under certain regularity assumptions that unbiased tests of H do not
exist. Tests of minimum bias and other types of minimax tests are derived under
suitable monotonicity conditions. Certain related multidecision problems are
discussed and two-sided hypotheses are considered very briefly.

2. Introduction. The extensive literature on optimum tests has been concerned
mainly with hypotheses specifying a set of values for a single real valued param-
eter. Important exceptions are some cases that can be reduced to the one-param-
eter situation by the prmaple of invariance, such as the linear (univariate)
hypothesis and Hotelling’s T*-problem. These have been used to illustrate a
number of different principles, the successful application of which however seems
to rest on the symmetry whose full exploitation makes the problems unipara-
metric. Another exception is the theory of tests with local optimum properties, in-
itiated by Neyman and Pearson [1] and recently developed further by Isaacson [2].

We shall here concern ourselves mainly with hypotheses which, rather than
specifying the values of the parameter in question, state that these parameters
do not exceed certain bounds. The following examples illustrate the way in
which such problems arise.

Example 2.1. Let p and p’ denote the number of major and minor defects in a
lot. Then the lot will be considered acceptable provided p < p, and p’ < po,
where p, < po.

Ezample 2.2. It may be desired to compare some new treatments with a
standard one. Here the hypothesis would specify that none of the new treat-
ments is better by more than a givén amount than the standard.

Ezxample 2.3. Let @, --- , z, be a sample from a normal distribution with
mean £ and variance o°. The population in question may be considered adequate
ift < fHando £ oy .

In some of the above examples we are dealing with bona fide testing problems
while in others we are faced with a choice among more than two decisions. Which
of these is the case cannot always be seen from the mathematical formulation
alone. Thus in Example 2.1 it clearly depends on the disposition that is made of
a rejected lot. If there is complete screening, the reason for rejection is immater-
ial. If on the other hand a lot rejected for major defects is treated differently
from one rejected only for minor defects the decision problem becomes more
complicated.

1 Work done under the sponsorship of the Office of Naval Research.
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We shall in the following concern ourselves mainly with the one-sided case
of the straightforward testing problem. The two-sided situation and the multi-
decision problem will be discussed only rather briefly. For simplicity we shall
take the number of parameters to be two. The extension to the higher dimen-
sional cases is immediate.

3. Unbiasedness and the minimax principle. The success of the concept of
unbiasedness in the one-parameter case suggests the use of this approach also
for the present problems. Unfortunately it turns out that in general unbiased
tests of the hypotheses in question do not exist. Let us consider the case of two
parameters 6; , 6; and the hypothesis H:6; < 67, 6, < 65. We shall assume that
the power function 8(6; , 6;) of any test is analytic in 6; and 6, in the sense that
it can be expanded in an absolutely convergent double power series. Then we
shall show that for any unbiased test we have §(6; , 6;) = , so that any unbiased
test is equivalent to the trivial one that rejects with probability « regardless of
the observations. This incidentally proves this trivial and most unsatisfactory
test to be admissible for the problem under consideration.

Without loss of generality assume that 6f = 65 = 0. Then unbiasedness
states that 8(6;, 6;) = « in the third quadrant of the 6; , 6:-plane, and = « in
the other three quadrants. By continuity we have §(6;, 0) = « for 6; = 0 and
hence by analyticity 8(6;,0) = «for all 6;. Analogously 8(0, 6;) = «. Consider
now (3(6y, 6;) for any fixed 6, > 0 as a function of 6, . It has a minimum at 6; = 0
so that 98(0; , 62)/86: | o,—0 = 0 for all 6, = 0. Since dB(6: , 62)/36; | o, = o is again
analytic in 6, , it follows that (8(6: , 62/861) | 6, = o is identically zero. Consider
now B(6; , 6;) for some fixed value 6, < 0. Since 8(6: , 6;) Z & as 6; = 0 and since
at 6; = 0 the derivative is zero, 8(6; , ;) must have a point of inflection at O
and consequently the second derivative 9°8(6y, 02)/065 | 4, = o = O for all 6,
< 0 and hence for all 8, . Since the, order of the first non-vanishing derivative
3°B(6y , 65)/06" | 8,=0 must be even for 6, > 0 and odd for 6; < 0 we see in this
manner that for any fixed 8. 8 8(6y, 6,)*/06% | gm0 = Ofor allk =1,2, ---. By
analyticity it follows for each fixed 6, that 8(6: , 6;) must be a constant, that is,
be independent of 6; . By symmetry it now follows that (6, 62) must be iden-
tically constant, as was to be proved.

We digress for a moment from our search for a reasonable test of the hypothe-
sis 6;, 6 < 0 to point out that there do exist non-trivial tests of H satisfying
the condition of similarity

B(6:,0) = B0, 6,) = «

for all 6;, 6, . Suppose for example that X and Y are independently distri-
buted with joint density fs,(x)fs,(y) and that & = 1/m where m is an integer.
Then we can obtain a particularly simple class of similar regions as follows. Let
Si, -+, S» be mutually exclusive and exhaustive sets on the real line such that

ffo(x)dx=a, 1:=1,...’m.
8;
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In the z, y-plane define the set w; to be the Cartesian product of S; with itself,
and let w = wi + -+ + wn . Now when 6, = 0, X is a sufficient statistic for
6, and for every = we have

PooXY) e W |2) =

and hence Py (X, ¥V) e W) =

We now return to the original problem, and investigate the test that max-
imizes the minimum power over a certain class «’ of alternatives. For «’ we
take the set of points (6, , 6;) for which either 6, = 67* or 6, = 65*. Let us con-
sider first as an example the case that X and Y are independently, normally
distributed, with known variances and with means 6, and 6,, respectively.
Then it would seem as if any reasonable test should satisfy the following two
conditions: ’

1) B(6., 6y) = B(61, 65) whenever 6, < 01, 6, < 05, if ¢ denotes the critical
function,

(i) ¢(z, y) < ¢(2', y') whenever z < 2/, y = y'. It is easily seen that (i)
implies (i); we shall now show that the test ¢ that max1m1zes inf o’ B(6: , 02) does
not possess property (i) and hence also not (ii), provided 6F* — 6f and 65* — 67
are sufficiently large so that ¢ is not 1dent1cally equal to a. Let 8 denote the
power function of ¢ and suppose that inf ’ 8(6: , 6;) = v > . Then condition
(i) implies that under the hypothesis 8(6; , #:) = « only when 6, = 6f and 6; =
05. For if B(6; , 6:) = a also for some other point in H, it would also equal « on
the line segment connecting these two points and hence by analyticity on the
whole line containing this segment. But this would imply that 8(6:, 6:) = « also
for points in ' where by assumption 8(6: , 6;) = v > . Another consequence
of condition (i) is that 6(01 , 65) > « for all points in «’ so that the minimum point
~ is never attained in «’ and is approached only as either 01 or 6, tend to — .
For if, for example, 8 (01 , 02) = y for some point with 6; = 65* and finite 01
we would have B(6; , 6;) = v for all 8, < 9: and hence for all 6, . This would
imply 8(6, 6;) = v for all (6;, 6;) with 6, = 0¥* , 6, < 6, and therefore B(6;, 6)
=7.

From these two remarks and Theorem 3.10 of Wald’s book Statistical Decision
Functions [3], it can be shown that there exists a sequence \; of probability dis-
tributions over ' with the following properties: (a) For any real number A
the probability under X\; of the intersection of «' with the quadrant
{6:,0,] 61,0, = A} tends to zero as 7 — . (b) The power of the most power-
ful level « test for testing H':0, = 6%, 8, = 65 against the simple alternative

f Dou02(®, ¥)d Ni(81 , 8;) tends to v as ¢ — . But from (a) it follows easily

that as 7 — « f Doy, (&, y)d Ni(61, 62) can be distinguished arbitrarily well

from po,»0,° (%, ¥). This leads to the contradiction y = 1.
We have given the proof explicitly only for the case of independent normal
variables. However it applies equally well to any problem in which, in addition
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to the analyticity assumption of the present section, also the assumptions of
Theorem 4.1 are satisfied.

4. Monotone regions. In the pregvious section we showed that for the hypothe-
ses under consideration neither unbiasedness nor the minimax principle lead to
desirable results. In order to arrive at a reasonable test we now impose the fol-
lowing preliminary conditions suggested by the negative results of the last sec-
tion. We ask first that the test be nonrandomized, so that we can speak of a
region w of rejection. The second restriction is one of monotonicity. Let us assume
that we are concerned with two random variables X and Y whose joint distribu-
tion is given by pe,.6,(z, ¥). Then we shall say that the region w of rejection for
the hypothesis H:6, £ 65, 6, £ 65 is monotone (nondecreasing in x and y) if

(4.1) @y ewaz =2,y <y imply (@,y)cw,

that is, if its critical function is nondecreasing in both variables.

The restriction to monotone regions is of course suitable only in certain prob-
lems, namely, roughly speaking, when increased values of the parameters lead
to higher values for the observations. To make this precise let 6, < 6/, 6. = 62’
and let ¥ and G be the cumulative distribution functions of X and Y correspond-
ing to (6, , 6:) and (6, 6;'), respectively. Then we shall consider the condition of
monotonicity appropriate provided for every monotone non-decreasing region w

(4.2) fw dF < f.,, dG.

Frequently the simplest way to prove (4.2) is to establish the existence of
functions 2’ = f(z, y), ¥’ = g(z, y) with 2’ = z, ¥y’ = y and such that when ¥
is the cumulative distribution function of (X, Y), that of (X', Y”’) is G. Sometimes
it is more convenient instead to prove the existence of random variables, say
Zy, -+ Z,, and functions X = f(Z1, --- ,2Z,), Y = g(Z,, -+, Z,), X' =
ffZy, - ,2),Y =¢g(Z, -, Z) such that X < X', ¥ £ Y’ and the
cdf’s of (X, Y) and (X', ¥’) are F and @ respectively. Both of these conditions
clearly assure the validity of (4.2) since for any w that is nondecreasing in z and
y they imply

(4.3) f dF = P((X,Y) ew) = P((X, Y") e w) = f da.

A remark is required also in connection with the restriction to nonrandomized
tests. When dealing with discrete problems, for example binomial distributions,
we must permit a certain rather trivial kind of randomization. A formal way of
handling the distinction is provided by a representation of randomized tests due
to M. Eudey [4]). Let X denote the number of successes in n binomial trials, and
let U be uniformly distributed over [0, 1]. Then any randomized test in X is
equivalent to a non-randomized test in X + U, and we shall consider monotone
non-randomized tests in the continualized variables X + U, Y 4+ V. Here mono-
tonicity insures that no very heavy use is made of randomization. In fact, in
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the original variables X, Y randomization will occur only on the boundary of
the critical region.

We shall now derive that test of the hypothesis H:6; < 67, 6; < 65 that among
all monotone regions maximizes inf,. 8(6; , 6:) where «’ is the set of points
(61, 6,) with 6, = 6F* or 6, = 63*. Here 67* = 6F and 65* = 65. It may be of
interest to point out that if we let 67* = 67, 65 = 65, we get the monotone
region with minimum bias.

THEOREM 4.1. Let the joint density of X and Y be pg,.0,(x, y) where the param-
eter-space is a finite or infinite open rectangle 6, < 6; < 81, 8 < 6. < 0, and
the positive sample space also vs an open rectangle z < z < &, y < y < § tndepen-
dent of the 6’s. Suppose that (4.2) holds, that the marginal distribution of X depends
only on 6, , and that of Y only on 6 , and that X tends in probability to x as 6, —
01, while Y tends to y as 6, — 8. Then the test that among all monotone non-
randomized tests of H maximizes the minimum power against o' s given by the
region of acceptance S:

(4.4) r=<a y=0b,
where a and b are determined by the conditions
(4.5) PX<a,YZb|65,6)=1—a
and
(4.6) PX Za|6f) =P(Y £b|6™.
Proor. We point out first that forany z > z,y > y

4.7) Jim PX S2,Y<yl6,0)=PY=y|6)

1791

Jim P(X S2Y=yl6,6)=PX=q| 61).
For

PX=22,Y2yy=PX=r)—PX==z,Y=2y)
while
0=PX=2Y>y =PY >y)

and

lim P(Y > y|6) = 0.
099 2
For any monotone test the limit of the power 3(6; , 62) as 6; — 6; clearly exists
and we shall denote it by B8(6; , 62). The minimum power in ' is then the smaller
of the two quantities 8(8; , 65 ) and B(67™, @). Since for the test given by
(4.5) we have B(6:, 65%) = B(67™, 6;) we could, if the theorem were false, in-
* crease both 8(6; , 65*) and B(67%, 8).
Clearly any monotone test has a region of acceptance S’ of the form y = g(x)
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or equivalently z < h(y) where g and h are non-increasing. If S’ £ S is to be of
size < awe have P(S' | 67, 65) = P(S | 67, 67) and hence either lim,.. g(x) > b
or lim,,,h(y) > a. Suppose that the first of these conditions is satisfied and let
us denote the complement of S and S’ by S and &', respectively. Then there
exists a constant % such that x = k for all points in S A §’, and a subset S” of
S A 8 such that P(S” | 6, ,8,) > O for all 6, , 6, and z < k for all points in S”.
Hence by (4.7)
PSA S |6,6% =0
and
PSAS 6,6 =Pb=Y < lim g(x]|63* >0,

which leads to .
P(S' | 61, 65%) > P(S | 8., 65%),

and hence to the desired result.

The theorem becomes particularly simple if the joint density of X and Y is
symmetric in its two variables when 6; = 6, . For then if 6 = 65 = 6*, 67* =
3% = 6™, it is seen from (4.6) that a = b. Thus the test accepts if max(X, Y)
< a where a is determined by (4.5), and hence is independent of 6**.

The assumptions made in Theorem 4.1 concerning the shape of the parameter
and sample spaces are unnecessarily restrictive. The theorem remains valid if
we assume that both the parameter space and the positive sample space are
convex open sets. The proof is essentially the same, however the notation
becomes considerably more complicated.

If the roles of hypothesis and class of alternatives are interchanged, we obtain

THEOREM 4.2. For testing the hypothesis H':0, = 67* or 6, = 65 * against the
class of alternatives w:6; < 6, 6, < 65, let S be the region of rejection xz < c,
y = d, where ¢ and d are determined by

(4.8) PX <c|6*)=PY £d|6" =a

Then under the assumptions of Theorem 4.1 S is uniformly most powerful among
all regions of rejection that are monotone non-increasing in both variables.

Proor. Consider any monotone region given by z < ¢g(y) or y < h(z) with
g and h non-increasing. Since the probability of rejection must be not greater
than o at (67%, 6») and (6;, 62*) we must have
4.9) lim g(x) £¢, lim A(y) =d.

Tz v

But any monotone region satisfying (4.9) is contained in S and hence is uniformly
less powerful than S.

6. Examples. In the present section we shall apply Theorem 4.1 to some specific
problems. All other assumptions being trivially satisfied we shall in each case
only cherk condition (4.2).
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Ezample 5.1. Let X, Y have a multinomial distribution

n!
T zlylln — 2 — y)!

(410) P(X =2,Y =y) 61051 — 6, — 62)" 7.

To see that (4.2) holds let Z, , -- - , Z, be uniformly distributed on (0, 1) and
let U, V denote the number of Z’s in the intervals (0, 6;) and (1 — 6., 1) re-
spectively. If U’, V' are defined analogously with respect to 61, 65 it is seen
that (U, V) has the distribution (4.10) while (U’, V’) has the corresponding
distribution for 6; , 6 . Since U £ U’, V £ V' the validity of (4.2) follows.

The same proof works of course in the case that X and Y are independently
distributed, each according to a binomial distribution.

Ezample 5.2. Let X, -+, X. be independently and normally distributed
with mean £ and variance ¢°, and consider the hypothesis H:f < & ,¢ < 0o.
Since X and §* = D> (X; — X)® are sufficient for £ and ¢, we may restrict atten-
tion to these statistics. However, if we try toset X = X, Y = 8%, 61 = £, 6, = ¢
we encounter certain difficulties. First the distribution of X does not depend
only on 6; as we require in Theorem 4.1. While this is not a very important con-
dition of the theorem, a second consideration shows that it is impossible to apply
the monotonicity restriction at all to the present set-up. For the joint cumula-
tive distribution function of X and S does not satisfy condition (4.2).

This exhibits an unpleasant feature of the present approach. In a given prob-
lem it is not known a priori whether there will exist variables X, ¥ and a choice
of the parameters 6; , 6 so that (4.2) will be satisfied. On the other hand, when
such variables and parameters have been found, it is not clear that these are
the only possible choices. While it would of course be interesting to investigate
existence and uniqueness questions, the monotonicity condition is an extraneous
restriction anyway, whose suitability must be judged for each problem in terms
of the choices for X, Y, 6,, and 6 .

In the present case we may take X = (X — £&)/8,Y = &, 6, = (¢ — &)/o
and 6, = ¢". To check condition (4.2) assume without loss of generality that
to=0andlet b = £/o < &/’ = 01,0 < . If o' = k¢ = ki + ¢, let Xi =
kX + ¢, so that 8’ = kS, X’ = kX + c. Since k£ > 1 and ¢ <¢'/k we see that
¢>0and X’ > X, Y’ > 7, so that (4.2) follows.

As a last problem let us consider one in which nuisance parameters are present.

Example 5.3. Let X;, --+, Xm; Y1, -+, Y, be independently normally
distributed with common variance ¢*; let E(X;) = ¢ E(Y;) = 75, and consider
the hypothesis H:# 2% , 7 < n . This time X, 7, and §* = 2 (X: — X)* +
> (Y; — Y)*from a set of sufficient statistics, and again the question arises how
to choose X, Y, 6, , and 6, . Here the principle of invariance (see [5]) leads to a
solution very simply. If one rewrites the hypothesis in the form: (¢ — &)/¢ = 0,
(n — mo)/o < 0itisseen that X = (X — &)/8S, Y = (¥ — m0)/8 constitute a
maximal invariant under a suitable group of transformations. The corresponding
parameter invariants are of course 6; = (¢ — &)/o, 62 = (n — m0)/0.
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It remains, once more, to check (4.2). For this purpose let & 7, &, 7/, ¢ be

numbers such that
’

~

g:gl’ ?:02, ?.:g{’ 1 = ¢
ag g ag g
andlet Uy, --+ ,Un; Vi, ---, V, be independently normally distributed with

common variance o> and means E(U,) = ¢ E(V,;) = . If T* = X (U; — U)* +
2(V; — V) the joint distribution of U = U/T, V = V/T is that corresponding
to (61, 6). Let — ¢ =c¢,n —n=dandlet Ui = U; + ¢, V; =V, +d.
Then U’ = U’/T, V' = V'/T have the joint distribution corresponding to
(01, 65). Also U' = U+¢/T > Uand V! =V+¢/T > V.

Exactly analogously we can treat the hypothesis H':£{/o < v, n/0 < §, and
the corresponding problems in which the two variances are not assumed to be
equal.

6. A multidecision problem. As was pointed out in the introduction, some of
the problems considered here really involve the choice between more than two
decisions. We shall now indicate, by discussing an example, one method of treat-
ing such multidecision problems through successive reduction to problems of the
simpler type.

Let us once more consider the hypothesis H : 6, , 6: < 0 and let us assume
that in case of rejection we wish to decide whether 6, > 0 > 6, ,6, > 0 > 6,
or whether 6, and 6, are both > 02 Let us denote these three regions of the para-
meter space by w;, w2, and w; and the associated decisions by d; , d; , ds . The
set 01, 62 < 0 will be denoted by w, and the associated decision of accepting H
by d().

We shall assume that each of the four pairs of random variables (X, 4Y)
is monotone with respect to the corresponding pair of parameters (4=6;, =3=62)
and that p, ¢ (z, y) is symmetric in z and y so that the region of acceptance is
given by

(6.1) max(z, y) < a.

We must now consider how to divide up the complementary region between
dy, dy, and d; . Here we again impose the natural monotonicity restrictions. We
ask that the region for d; be monotone non-increasing in « and non-decreasing
in y, and that the analogous conditions be satisfied by the regions for d, and ds .
Suppose the problem concerns a standard treatment and two new ones, where
6: and 6, measure in some way the differences between the new treatments and
the standard. The circumstances are such that the most serious error consists
in incorrectly rejecting the standard treatment in favor of one of the others. By
proper choice of a this probability is controlled so that it is not greater than «
for all (01 ) 02) E wo .

.Next in importance seems to come the possibility of reaching decision d; in

2 A similar multidecision problem has recently been treated by Paulson [6] from a some-
what different point of view.
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wp or dy in w, , but we shall set these aside for the moment. The next important
error presumably consists in deciding on d; when the parameter point lies either
in w; or w, . This error can be controlled in the usual manner by making the ds-
region sufficiently small. Thus we may select a number 0 < 8 < 1 and impose
bounds '

(6.2) P(ds | 1) <8, P(ds | we) = 8.

Subject to these conditions we wish to maximize P(d;) in w;s . Let us now restrict
attention to ds-regions of the type y = g(x) or x = h(y) with ¢ and % non-increas-
ing. Then it is seen by the argument used to prove Theorem 4.2 that among all
monotone ds-regions satisfying (6.2) there exists one that uniformly maximizes
P(ds) over w; . If P(X > a | 6, = 0) < B it consists of the points satisfying either
zZa,y=borz = b,y = awhere g, b are determined by

P(Xéa,Yéa[01=02=0)=l-—a,
P(X>b|6 =0) =6

If on the other hand P(X > a | 6, = 0) = $ the optimum ds-region is given by
zzby=hb

Let the remainder of the sample space be divided up symmetrically in the ob-
vious manner between d; and d; . It then follows from monotonicity that P(d; | wz)
and P(d; | 1) both take on their maximum value at 6, = 6, = 0. Hence
P(dy | ws) £ 3, P(d: | 1) £ %a, so that these errors also are controlled in a
satisfactory manner.

7. Convex regions.? If we try to apply the results of Section 4 to specific ex-
amples, we occasionally find an obstacle in the condition that X and ¥ should
tend in probability to z and y as 6, — 6 and 6, — 6., respectively. We shall
now show that by restricting the acceptance region to be convex as well as mono-
tone we can prove a result analogous to Theorem 4.1 without assuming de-
generacy of the distribution at 6, and 6, .

Let us consider again the joint density ps,.s, (z, y) satisfying (4.2), the hy-
pothesis H:6, < 67 , 6, < 65 and the set of alternatives 6; = 6F* or 6, = 65*.
Putting

e} o3(, ¥)
3
mPoy03° (2, ¥) + (1 — m)pos* 0,(2, ¥)

7',,(.’12, y) =

we shall assume:
(i) For any 0 < = < 1 and any C the region
(7.1) re(z,y) = C

is convex and non-decreasing in z and .

'3 I am indebted to the referee for several valuable suggestions with regard to this sec-
tion.
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(ii) Given any two points (2, ¥’) and (27, ¥”) with ' < 2”, ¥’ > y” there
exists 0 < 7w < 1 and C such that both points lie on the boundary of the set of
points (z, y) satisfying (7.1).

(iii) pe, .0, (=, ¥) > 0 for all 6;, 6, , z, y under consideration. '

Consider now the set of alternatives ’:0; = 61, 6 = 65  or 6, = 6, 6, =
07* where 6; and 6, may now be any numbers less than 67 and 63 , respectively.
Let a and b be determined by

PX <a,Y=b|6F,60) =1—aq,
PX<a,Y=b|6,6")=PX=aVY b6, ).

Then the acceptance region S: z < a, y = b maximizes inf,. 8(6, , 6:) among all
monotone and convex level « tests. :

For let S’ be any other acceptance region satisfying the conditions that have
been imposed. The boundary curves of S and S’ have in common either one or

— <

S : 5}

Fia. 1.

two points or an interval. Let us consider the case of two points, say (', y") and
(2", y""). We may then assume 2’ < z”/, ¥’ > y'’ so that there exist = and C such
that the boundary of (7.1) passes through these two points. From (i) it follows
thatr(z, y) = Cforall pointsin SAS’ and £ C'in S A S'. Since we have P(S’) <
P(8) = a when the density of X, Y is pe} e} (2, y) it follows from the funda-
mental lemma of Neyman and Pearson that P(S’) > P(S) when the density is
given by wps}.e}* (&, y) + (1 — 7) pei*.e, (%, ). It is therefore impossible that
P(8’) = P(8) for both (¢ , 65 ™) and (65, 82) as was to be proved.

The same argument applies also in the case that the boundaries of S and S’
have an interval in common. Consider finally the case of one common pomt,
say (a, o). For each n let (mn , C,,) satisfy (ii) for (—n, b) and (a, %). Then

0<(C, < max { ot.o5(a, Yo)  Do}.e3(ay yo)}
—3 n = ol ) )
20,.03°(a, Yo) * o* 2,(a, Yo)

so that thereisa subsequence of {(r, , C»)} which converges, say, m, — 7*, C, —
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C*. It is easily seen from the monotonicity and convexity of the regions 7., (z, y) =
C. that the boundary of r« (z, y) = C* is the line y = y, . The remainder of the
argument is completely analogous to the two point case.

As an example let

(72) Do,,62 (xr y) = 0(01 ) 02) eﬂlz+92y h(x) y);

and assume that (4.2) holds. Suppose that a priori lower bounds ¢, , §: are given
for 6 , 6, such that ps, e, (z, y) is again a density. If we let 67* = 6F, 6** = o5,
the region (7.1) becomes

* *
a 6(01—01)1 +b 8(92-02)1/ <k

and conditions (i), (ii), and (iii) are easily checked.

8. Two-sided problems. We shall discuss only one rather trivial two-sided
problem, which is enough however to indicate that the type of result one obtains
here is entirely different from what we found in the one-sided case.

Let X and Y be independently, normally distributed with unit variance and
means § and 7, respectively, and consider the hypothesis H:¢ = #» = 0. We shall
determine the test ¢ that maximizes inf,. 8(¢, n) where o’ is the set of points for
which either | £| or | # | is = v, (¥ > 0). Any reasonable test for this problem
would presumably attain its minimum power over «’ at the four points (0, v),
0, — ), (v, 0), (—v, 0). We therefore expect ¢ to be the most powerful test of
H against the simple alternative that assigns probability 14 to each of these 4
points. The region of acceptance for this problem is given by S:

e‘Y—’t + e—'YZ + e‘YII + e—‘ﬂl é k.

It is easily checked that this has the following properties:

(i) S is convex.

@) IH0=2 =20=1y =< yand (z, 9) ¢ S, the point («/, y’) also lies in S.

(iii) For any fixed 5, the probability of S decreases with | £ | and for fixed &
decreases in | 9 |.

From (iii) it follows that ¢ is the test we are looking for, and it seems to be
entirely satisfactory. In fact, if we utilize the symmetry of the situation to re-
duce the variables to | X |, | Y | and the parameters to | £ |, | # | we are faced es-
sentially with a one-sided situation and it is seen from (i) and (ii) that the ac-
ceptance region, when interpreted in this way, is both monotone and convex.

9. A general concept of monotonicity. In Sections 4-6 we made use of the
notion of monotonicity, and we shall conclude this paper by indicating how this
concept may be extended to the general decision problem.

Suppose that there is defined a partial ordering < in the sample space and a
partial ordering < in the parameter-space. In analogy to condition (4.2) we shall
assume that if W is any monotone non-decreasing region in the sample space
we have for any two parameter-points § < 8':Py(W) < Py.(W).
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Suppose that there is also defined a partial ordering in the decision space,
to be denoted by =. We shall assume that the loss function W satisfies the con-
ditions:

(i) di £ ds = dsand W (6, di) < W (8, dz) implies W (6, d2) = W(6, ds),

(11) 01 § 02 s 03 and W(01, d) < W(oz, d) implies W(02, d) é W(Gg, d) Under
these assumptions it seems natural to restrict consideration to monotone de-
cision functions, where we shall call § monotone if x < 2’ implies 6(x) = 8(z').
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