A NONPARAMETRIC TEST FOR THE SEVERAL SAMPLE PROBLEM!

By WiLniam H. KruskaL
Unaversity of Chicago

1. Summary. Suppose that C independent random samples of sizes ny, - - - , n¢
are to be drawn from C univariate populations with unknown cumulative dis-
tribution functions Fy , - - -, F¢ . This paper discusses a test of the null hypothesis
F, = F; = ... = F; against alternatives of the form

Fix) = F(x—06,) (allz, i =1, ---,C)

with the 6.’s not all equal, or against alternatives of a much more general sort
to be specified in Section 5. The test to be discussed has as its critical region large
values of the ordinary F-ratio for one-way analysis of variance, computed after
the observations have been replaced by their ranks in the ) nfold over-all
sample. This use of ranks simplifies the distribution theory, and permits appli-
cation of the test to cases where the ranks are available but the numerical values
of the observations are difficult to obtain. Briefly, then, we shall consider a non-
parametric analogue, based on ranks, of one-way analysis of variance.

It is shown in Section 4 that, under quite general conditions, the proposed
test statistic, H, is asymptotically chi-square with C' — 1 degrees of freedom when
the null hypothesis holds. Section 5 derives a necessary and sufficient condition
that the natural family of sequences of tests based on large values of H all be
consistent against a given alternative. Section 6 derives the variance of H under
the null hypothesis, Section 7 derives the maximum value of H, and Section 8
gives a difference equation which may be used to obtain exact small-sample
distributions under the null hypothesis. These derivations are made on the as-
sumption of continuity for the cumulative distribution functions; Section 9 con-
siders extensions to the possibly discontinuous case.

2. Introduction. Until Section 9 all cumulative distribution functions will be
supposed continuous. The over-all sample consists of the Y m; = N (say) in-
dependent random variables£? (i = 1, ---, C;5 = 1, - -, n;), where the super-
seript refers to the (sub)sample and the subscript indexes observations within
a (sub)sample. Under the null hypothesis all the £s have the same continuous
but unknown cdf (cumulative distribution function): F(z). Each £ is immedi-
ately replaced by X!”, its rank in the over-all sample. Then, under the null hy-

pothesis, the N-tuple (X{”, -+, X&), X{¥, .-, X&) ...... , X$9 o x89)
takes as values with equal probability the N'! permutations of (1, 2, ---, N).
Next let R; = Y% X$” be the sum of ranks of sample from the ith popula-

tion and let B, = R;/n;. Of course Y_R; = 1N(N+1). The standard one-way
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analysis of variance test based on the X’s has for its critical region large values

of

=1 =1 j=1

But this is a monotone increasing function of

v En(n-YE/[EE (-]

and because of the use of ranks the denominator of the above expression is a
constant. Hence a critical region consisting of large values of the numerator of
(2.1) is suggested. The corresponding test is the one to be discussed in this paper.
Actually this test will be discussed in terms of the random variable

12 . ~ N+ 1) R}
H= 5D };ln (R, —5— N(N + ) ; - 3(N + D).
Since the variance of the uniform distribution on the integers 1, 2, -+, N is

(N*—1)/12, it is natural to expect that the numerator of the F-ratio in terms of
ranks divided by this variance is asymptotically chi-square with C—1 degrees of
freedom. But this normalized numerator is just H N/(N—1). The minor ad-
vantage of H over this and other asymptotically equivalent random variables
upon which the test might be based is that under the null hypothesis EH = C — 1
= E(chi-square with C — 1 degrees of freedom).

3. Relationship to other tests. When C' = 2 the test discussed in this paper is
the same as the symmetrical two-tail version of a test considered by Wilcoxon
[11] and by Mann and Whitney [2]; for when C' = 2

_ 12 _ . N+1Y
H‘(N+1)nl<N—n1><R1 ™3 )

For C = 2, a test against any alternative (subject to existence of and weak con-
ditions on a density function) is provided by the work of Wald and Wolfowitz
[9] who propose and discuss a test based on runs in the over-all sample. A gen-
eralization of the Wald-Wolfowitz test for any C' is available (e.g., Wallis [12]).
For any C a test based on the median of the over-all sample and reducing to a
conventional chi-square test has been proposed by Brown and Mood in Chapter
16 of [4]. A generalization of this test using several previously determined order
statistics of the over-all sample is described by Massey [3]. Other tests are dis-
cussed in [1] and [13]. For C = 2 a recent addition to the list of tests has been
made by Marshall [14]. ‘

Whitney [10] in the case of C = 3 considers two tests designed to have par-
ticular power against the following two types of alternatives, respectively:

(1) Fy(z) > Fy(z) and Fi(z) > Fi(z) (all z),
(2) Fi(z) > Fa(z) > Fi(x) (all z).
His tests appear to be generalizable for any C.
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The test discussed in this paper, that is, that based on large values of H, is
closely akin to tests considered by Pitman, Friedman and others for two-way
analysis of variance problems (see the expository paper by Scheffé [7] for a gen-
eral discussion and references). Hqwever, this particular application of the ran-
domization method has not to my knowledge been discussed in the statistical
literature. Further discussion of related tests will be found in [15].

4. Asymptotic distributions. The term “asymptotic distribution’ will be taken
in the sense of convergence in distribution as N — . We shall assume at present
that, for all ¢, limyn:/N = »; exists and is positive. We proceed to show that
under the null hypothesis the R,’s, properly normed, have asymptotically a singu-
lar multivariate normal distribution, and that from this the asymptotic chi-
square distribution of H readily follows. The proof will be a direct application of
a powerful general theorem of Wald and Wolfowitz [8], and I shall suppose that
the reader is familiar with this reference. A consequence of the Wald-Wolfowitz
theorem, in a form appropriate for our purpose, may be stated as follows:

TaeorEM 4W (Wald-Wolfowitz). Let {Ax} be a sequence of ordered N-tuples,
Ay = (a1, Qnz, =+, ann), (N = 1, 2,3, - -+) satisfying condition W of [8]. Let
(Zy1y * -+, Zun) for each N be a random ordered N-tuple taking as values with equal
probability the permutations of Ay . Let {n{™} =1, ---,C;N =1,2,3, --+)
be C sequences of non-negative integers such that

(4

2 n® =N, lim n{"/N = »;

i=1 N—oo
exists. Let LY =3 Zya for ¢ = 1, ---, C where the summation is from & =
Ry 2+ 1toa = D ey n$™. Let vy be the common variance of any Zxa .
Then, asymptotically, the random variables L’ — ELY”1/A/Nvy have the singular
C-variate normal distribution with mean zero and covariance matriz whose %, ¢’
term 1s

(4.1) 8ii0 vi — vy Vite

The proof of Theorem 4W follows from Corollary 1 of [8] via the technique used
in Section 7 of [8], that is, via the consideration of arbitrary linear combinations
of the random variables [L{’ — EL{’]/A/Nuvy. In order to save space the
details are omitted. Note that for Theorem 4W itself it is not necessary to as-
sume that the »;’s are positive.

To apply Theorem 4W to our case, set av. = « and observe that the resulting
{Ax} satisfies condition W of [8] (see, e.g., Section 3 of [8]). Ly is called R;, and
it may be readily computed that ER; = 1 n{™ (N + 1) and vy = (N* — 1)/12.
Hence the variables

R NE1
1 1 2
V2 ——p——

(dropping the superscript “N”’ for convenience) have asymptotically the singu-
lar multivariate normal distribution with zero mean and covariance matrix
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given by (4.1). We next use the assumption that all the »;’s are positive, from
which it follows immediately that the variables
— R; — ER;
Ti = 12 —=m———
;\/ N 3/2‘\/ n;/ N
have a joint asymptotic normal distribution with zero mean vector and with the
covariance matrix whose 7, ¢’ term is d;» —\/v;v». We now make the standard
analysis of variance transformation

[+ C
SO=E'\/V—1"T'L") Si=zeiilTir (i=1’27...’0_1)
=1 ir=1
with the e’s chosen to make the transformation orthogonal. It follows that
> ¢4 T% is asymptotically chi-square with C'—1 degrees of freedom. But

3 1241 N+1V N+1
2 _ 14 A . =
;T1 B N2 = ’m(Rl e 2 > N H.

Hence H is asymptotically chi-square with C—1 degrees of freedom.

It seems desirable to make a few comments regarding possible weakening of
the conditions for an asymptotic chi-square distribution. In the first place, no
great difficulty arises if some »;’s should be zero—for example, suppose that
»n = 0 and the other »/s are positive. Then (R, — ER,;)/N** approaches zero
stochastically and [N/(N+1)] > i, T%, that is, H computed from the sample
without including R; , is asymptotically chi-square with C—2 degrees of freedom.
It is not however true in general that »_ ¢ T3 is asymptotically chi-square; for
example, consider the case of n; = 1 for all N. Analogous remarks apply if more
than one »; = 0.

If we use chi-square with C'—1 degrees of freedom to approximate the critical
region, then it may be wise to drop from the total sample any (sub)samples with
ny’s very small. We would do this in order to obtain a better approximation to
the critical region, at the expense of losing power against certain alternatives
involving the populations from which the omitted observationsarose. On the other
hand, because of the smallness of the n,’s in question, even the exact critical re-
gion would probably have had little power against these alternatives.

Whitney in [10] uses a kind of limit requirement which might be thought ap-
plicable here and weaker than the existence of the »;’s; that is to suppose the
existence, for ¢ 5 j, of

lim RLLL

N (N — n)(N — )

(Assume all n; < N, so that the 7’s are defined.) That this requirement is little
weaker than ours except effectively for the case C = 2 is shown by the follow-
ing lemma.

LemMa 4.1. If the vy's exist and no v; = 1, then the 7:/'s exist; and if v; = 0,
then every i; = 0 (j = 1,2, -+, C,j ¥ 7). When C = 3 if the r:;s exist and at

Ti; =
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least two different 7;;’s are #% 0, then the v;’s exist; and if v.; = 0, then either v; or
v; = 0.

Proor. The first part is obvious. To prove the second choose an 7, say 7 = 1
for convenience. Suppose that we can then find a j and k& (j # k; j, k % 1) such
that 7 = 0. Then

2
T1; T/ Tie = lim i
J ik = .
N—e0 N — N1

Hence », exists, and if 7;; = 0 then », = 0. Next suppose that no such 7 exists,
that is, that the only possible nonzero 7’s are 712, 713, * -+, 71c - By hypothesis
at least two of these must be nonzero, say 71 and 713 . Since 753 = 0, it follows
as above that », and »; exist and are zero. The same comment holds for any other
v; for which 71; # 0. Finally suppose a 7;; = 0 (j # 2, 3). Since 712 % 0 we have

. n,/(N - nj) _
113—% ’nz/ (N - 'ﬂz) B

But the denominator here approaches zero itself. Hence the limit of n;/(N —n;)
is zero, v; exists, and it is zero. Of course »; = 1.

If only one 7, say 712, is # 0, then v;, »4, - - -, v¢ must all be 0. It can be shown
that 72 = 1, as well, so that we are effectively in the C = 2 case. It is impossi-
ble for all the s to be zero.

The material of this section is summarized in the following theorem:

TuroreMm 4. If for all <, lim n;/N = v; exists and s positive, then under the null
hypothesis H is asymptotically distributed as chi-square with C — 1 degrees of freedom.
If p vi’s arezero (p = 1,2, ---,C — 1), then H computed with only the R;’s corre-
sponding to nonzero v.’s ts asymplotically distributed under the null hypothesis as
chi-square with C — p — 1 degrees of freedom.

0.

6. Consistency of the test based on large values of H. Suppose that the
n;’s are functions of N, and consider the family of sequences of critical regions
H = t,(N), where the level of significance « ¢ (0, 1) indexes the sequences of the
family, NV indexes the members of a sequence, and ¢,(N) is the least number with
the property Pr{H = {,(N)} = « under the null hypothesis. Let us say that
this family of sequences is consistent against a given alternative if every mem-
ber sequence is consistent in the usual sense against the given alternative, that is,
if for all @ € (0, 1)

lim Pr{H = t.(N)} =1,
N-o

where the probabilities are taken under the alternative. For brevity we may
simply say that the test based on large values of H is consistent. (Note that
failure of consistency for the family of sequences against an alternative implies
only that there is some qp such that for all @ < «p the sequence of tests H = {.(N)
fails to be consistent in the usual sense.) This use of the word “consistent’ will
permit more compact statements and will not, I think, cause any confusion.
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Under what circumstances is the test based on large values of H consistent? We
consider alternatives of the following form: all the £'s are independent, and £”
has a continuous cdf F;. Assume that as N—w, ny/N = »; + o(N 1) with
v; > 0; and note that this assumption subsumes the most natural case: n; =
[viN] or [»;:N] + 1. Since ¢,(N) for given « has as its limit the upper 100a-per-
cent point of the chi-square distribution with C-1 degrees of freedom, it is equiva-
lent to ask under what circumstances limy-.,, Pr{H = ¢t} = 1 for all positive ¢.
We may also replace H by > T? since the two differ by a factor of N/(N+1).

First, we ask under what circumstances, for all positive ¢, limy_ Pr{| T | =
t} = 1. Following the useful procedure of Mann and Whitney, set V = the num-
ber of couples (X, X$?) where s = 2or 3 or -+ C and for which X > X7,
Then

R], = %nl(nl + 1) + V.

This relationship holds for the special case X < ny,j = 1,2, - -, ny; for then
¥ = 0. It holds in general, since an interchange of the superscripts of two adja-
cent X’s, one from sample 1 and the other from sample ¢ 1, increases or de-
creases R; and V together by unity. Then

_ —ﬁ—— nl(m + 1) _ N —l— 1
e ST

=V%%ﬂV—%mW~mﬁ

Next define the following n;(N—n,) counter-variables

i 0 = i
Y = {1} when X" {>} X9

so that

ni ng

C .
V=222 Y

1=2 j=1 j’=1

From now on we deal with a specific alternative F, which will be described in

slightly different terms further on.
LemMA 5.1. The set of values of Var T1, as N runs through the positive integers, 18

bounded. )
Proor. Set Var Y{%}, = v, and

civ for j1 = j3, and either ¢ 5 ¢’ or j2 # js,
Cov (Y, , YE) ={difori = 4', 5, = js, and ji % js,

0 otherwise (since £’s independent,).
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Clearly the v’s, ¢’s, and d’s are all less than 1 absolutely. So

Var T, = Var V

N2
< {number of »; terms + number of ¢;;» terms 4+ number of d; terms}

= A}—fn (N — ny) +m (N — n)* + ni(N —ny)} = 12(N — r;Z(N + 1)

which is finite and has the limit 12(1—») < «. We next introduce the numbers
g = Pr{X$® > X‘~f"}
(under the alternative) for 7 # 7', and g;,.» = Hence fori > 1g,,; = EY?

and
ET, = /‘/ lNz[nlzn,glz - —nl(N— nl)]
Hence the limit of ETi/A/n, is

9 C
V12 [Zz vigri — (1 — Vl)}.= V12 I:Z vifii — %:',
whence the limit of ET; is

=1
o0
as Z Vifhi 4
— 0
and we have

LEMMA 5.2. If D oy vi gr,c # 3, then limy_., Pr{| T1| = ¢} = 1. This follows
immediately from Tchebycheff’s inequality. Consequently we may state

LemMa 5.3. If for some i, D 5rm1 vir gi,ir # %, then the test based on large values
of H is consistent. We now turn to implications in the other direction.

LeMMA 5.4. If X i=1 vi g1.i = %, then there exists a ty , a function No(t), and a
decreasing function G(t) such that

(1) limge G@) = 0,

(2) Fort > thand N > No(®), Pr{| T1| =t} S G@) < 1.

Proor. Let K be an upper bound for Var 7. Then by Tchebycheff’s inequal-
ity, for ¢ > 0

Pr{|Ti|2t)=Pr{Tizt]+Pr{lis—¢

ATV

K K
b
Ry o R T A
which has the limit 2K /¢, since ET; — 0. Putting e(f) = [max (1, )] /4 and
= 24/K, it follows that for any ¢ > %, there is an No(¢) such that for N >
No(8)

{lTllzt}§?§+e(t)<%+i<1.
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G(t) is the function in the middle of the above double inequality. Next this is
generalized as follows:

LeMMA 5.5. If for all 4, D_¢m1 vir gi, &+ = %, then the test based on large values of
H s not consistent. *

Proor. By the previous lemma there are (for each ¢) numbers, ¢, and func-
tions N§% (£) and G (¢) such that G*°(£) — 0 from above monotonically as ¢ — o,
and such that for ¢t > ¢§? and N > N§(@), Pr{|T: | = ¢t} < G“@) < 1. Let
t¥ = max; t§°, N§({) = max; N$”(t), and G*(f) = max; G“’(t) Then G*(t) is a
monotone decreasing function with hmlt 0, and for all ¢, ¢ > tg, and N > NG (@),

Pr{|T:| = ¢t} = G*(t) < 1.Fort> {3 and N > N (¢), Prisome | T;| = ¢} <
C- G*(t) But Z T? = s > 0 implies that some | T; | = +/s/C. Hence for s >
C-t3:,and N > N§ (\/s/C) we have

Pr{>. Ti = s} < C-G*(\/s/C )

To complete the proof take s large enough so that C-G* (/s/C) < 1.

It is natural to ask for a simple probabilistic interpretation of the necessary
and sufficient condition for consistency which has been proven. This may be
done as follows. Recall that we are still discussing a fixed alternative {F } and
that all probabilities are taken with respect to this alternative. Now let 2P, -,

7“ be C independent random variables independent of all the £’s and Wlth cdf’s
F,- . Then

(7)

giir = Prin® > £},

Next choose a £ at random from among the N possibilities (i.e., take an ob-
servation in the space of N ordered couples (I, J) where each has the same prob-
ability 1/N.) Then

C ng’ C
Pr {y @ > fm =~ Z Z Giir = Z Ei—'gi.u

N == i=1 N
so that the test based on large values of H is snconsistent if and only if for all ¢,
limy—e Pr{n® > £&”} = % Roughly speaking this means that the test is con-
sistent if and only if the variables from at least one population tend in the limit
to be either larger or smaller than the other variables.

In particular we have consistency under the following circumstances which

generalize to the C-population case the sufficient conditions for C = 2 given in
[2] by Mann and Whitney®

Fi(x) < Fy(z), F1(z) < Fi(2) G=34--,0)

for all z. (Of course the choice of subscripts 1 and 2 here is just for convenience.)
To show that the consistency condition is satisfied, note that for ¢ = 3,4, - -+, C

2 The unnecessary specialization of the Mann and Whitney consistency condition when
C = 2 was noted (separately) by Lehmann and van Dantzig; see p. 166 of [1] and [16]. In
the latter both sufficiency and necessity are considered by a method similar to that of this
paper, and further results are obtained. In 1948 E. J. G. Pitman gave the same necessary
and sufficient condition for C = 2 during lectures at Columbia University.
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= /jo Fi(x) dFy(z) = fw Fi(x) dFy(x) =

because of symmetry. However g1, > %; for let m run through the positive in-
tegers and set B, equal to the set*of all z satisfying Fi(z) + 1/m = Fa(x) >
Fi(x) + 1/(m—+1). Then

0

po= [ i) dFi@) = i;_l [ P ar@
Z_:l{ A Fy(x) dF,

(x)}
= —+E " 1[ dF(z),

and clearly at least one B,, must have positive measure Wlth respect to F; . Hence
Z,_l vig1.: > %, and we have consistency. The circumstances just discussed in-
clude the translational sort of alternative described in the introductory para-
graph of this paper.

A simple class of cases for which consistency fails and yet the null hypothesis
need not hold is given by the following characteristic: that all the C' distributions
be symmetrical about the same point f in the following sense:
for all 7 and z. For, setting f = 0 without loss of generality, this means that the
distribution of every £ is the same as that of its negative. Hence for all ¢, 7',
gi.v = g, = % and consistency fails.

The material of this section may be summarized as follows.

THEOREM 5. Suppose that the ny’s are functions of N and that for all i, n,/N =
vi + o(N ) and v; > 0. For each level of significance a(0 < a < 1) consider the
sequence of tests: reject the null hypothesis if H Z to(N) where to(N) is the least num-
ber giving rise to level of significance « at the Nth step. Then these sequences of tests
are all consistent against a given continuous alternative {F;} if and only if for some

1, with probabilities taken under the alternative
[

2 welPrin® >0} + F Pr{n® =2} # 4,

=1
where the 7*”’s are C independent random variables having respectively the cdf’s F; .
The sufficiency of the above condition holds regardless of the order of (ni/N) —
»; . When €' = 2 the denial of the above condition implies g2 = ga = 3.

%

6. The variance of H under the null hypothesis. As an aid in approximating
the distribution of H when the null hypothesis is true, we seek the variance of
H under the null hypothesis. This seems to be a tedious computation by any
method; we shall outline a direct method, omitting most of the routine algebra.
Directly from the definition of H we have

(6.1) VarH = L{Z = ER' + Z-— E(R'R) — [Z 717 ER%T}.

N2(N + 1)2 i N i i Ny
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E R! is readily found from formula (8) of [2], which when translated into our
notation says

N Lo — 1
R
[5Nn:(N — n:) — 2n% — 2(N — n)* + 3n;(N — n;) — 2N].
From this
1 4 N + 1 2 3 2 3 2
;EER; = ——540—{n,-[15N + 15N* — 10N — 8] + n; [30N® 4 50N° + 16N]

+ [BN® + ON® + 2N] — i— [2Ns + 2N2]},

and, summing over ¢

Zjl@ ER: = NZZE) 1 [15N° + 15N° — 10N — 8] >_ n}

2
62 +N VD one | son 416+ SN DN 5xe 4 gy g

240 240

_N+1

3 1
~5i0 2N +2N2]Z .

Next we find E(R; R3) as follows:
E(Rl R2) Z Z Z Z E[Xu) X(l) X(Z) X(z)],

Where 1:: 2" = 1 2 ce e 'n/l and],] = 1 2 oo, Ny . ThlS quantlty iS
nyna(ny — 1)(n2 - l)E[X(l) (1) f” X(z)] + nynalng — l)E[X(l) (1) X{g)z]
+ mymans — 1) B (X XD XP) + mn XD X

mna(ng — 1) (ng — 1) nan(nl + n; — 2) 2
= NN — DV — 2(N — Z PP’ g TNV D = Z g

N
al e DL

where the p’s and ¢’s run from 1 to N and within any term of a summation no
two are equal This simplifies after some algebraic labor; we divide by nin, and
make the obvious generalization from (1, 2) to (¢, j) to find

E(RIR) = (i — Dy — 1) L1 21;)1 [15N° + 15N — 10N — 8]

1 145

+ (n +n — 2 Nsé; 1 [B0N® 4 35N® — 11N — 12]

N+1

3 2 _
80— [20N® + 24N° — 5N — 6].

+
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Sum this over ¢ # j to obtain

vy 2101 [(V = ©) + 2N — € — T lllI5N* + 158" — 10N — 8]
63+ ELlpe - Do - OIBoN + 358 — 11N - 12]
+ Nl;;) Lo - D0V + 24N — 5N — 6],
Next, we note that
~pri= Y ,-)+n,.(NII)2 YA LN +2) + )

which, summed over ¢ and squared, gives

2 2
(6.4) ﬂ%ﬂ_) [ON* + 6N(C + 2) + (C + 2L
Finally, substituting (6.2), (6.3), and (6.4) in (6.1), and simplifying, we obtain
Var H
(6.5) 2 2 2 61
=2C = 1 — gy B0 — 6 + N@C* — 6C + 1) 52

Note that as all the n’s — «, Var H — 2(C — 1) = Var (chi-square with C—1
degrees of freedom).

7. The maximum value of H. It is an aid in approximating the distribution of
H to know its maximum value. This may be obtained from the well-known
analysis of variance algebraic identity

C ng 2
N(N+1)H+ZE(X(0 Ri)2=ZE<X(0 N+1>
12 =1 j=1 =1 j=1 2
(7.1) .
R 2 —
=1 N(N .

A sample point maximizing H is a sample point minimizing the second term on
the left side of the above identity, that is the within sum of squares. Clearly this
sum of squares is minimized when the ranks within each (sub) sample form con-
secutive integers, that is X{? — R; = j — l(n,-—l), so that

it X - R = 55 ; n:(n? —

=1 j=1
= —é (Z n —
Substituting back in (7.1) it follows that the maximum value of H is

N — Z'n.__N3 Zn.
W=D+ 575D -~ ¥ ED -

(7.2)
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8. On the distribution of the R;’s and H. If we set

I‘(rlyri”"' yTe; My, N2y = - ’nC)

a

C
= ——’-_"l——’ Pr{R, =1 (i=12, ---,C) with stated n.’s},
c!l

nl o m
then, under the null hypothesis, the following difference equation holds for T

(81) T(ry, -+ ,Tc;Ni, -+ ,Nc)

C C
= ; P<r1) sty T, Te — ;ni’ri+la sy Te Ny, oty W1, My — lyni+l7 e )n0>
with the following boundary conditions:

1. If any argument fails to be a non-negative integer, I' = 0.

2. If rm; = 0, but 7, + n; £ 0, then T = 0.

3. Whenn; = ny = --+ = ne = 0, T' = 1 when all r/’s are 0, and otherwise
r=0.

The above equation and conditions follow readily from the partition of the
chance event {R; = 71, - -+, Rc = r¢} into the C chance events {Ry = r1, - - -,
Rc = r¢, and maxy ; X7 isan X{°} fori = 1,2, ---, C.

I have been unable to find a closed solution for this equation. For C = 2 and
small n/s, values of [n;!n,!/(ni+mns)!] T'(r1,re; n1, ne) are given in [2]. (Comment
on notation: m, n, and U of [2] correspond to our 7, , n;, and Ry — § ni(ni+1)
respectively. The tables of [2] actually give the cumulative probabilities.) For
C = 3 and for small values of the n’s, recursive computations based on (8.1)
are being carried out in order to obtain exact distributions of H. It is hoped
that from these exact distributions some idea of the accuracy of various approxi-
mations may be obtained.

In Section 6 formula (6.5) for the variance of H under the null hypothesis was
obtained as a function of N, C, and Y 1/n; . It seems reasonable to attempt to
better the chi-square approximation by fitting a Type III distribution with
density function

v
a v—1 —at

r(»)
for ¢t = 0, and 0 for ¢ < 0. Equating first and second moments
a=(C-1)/VarH, v = (C—1)*/VarH.

Equivalently, one may approximate Pr{H =< z} under the null hypothesis by
the use of K. Pearson’s incomplete I' function tables [5], setting u and p of those
tables equal respectively to

z/N/Var H, (C—1)*/Var H — 1.
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Again equivalently, one can make the same approximation by interpolation in
a chi-square table using 2(C'—1)’/Var H degrees of freedom and argument
2¢(C—1)/Var H.

In Section 7 formula (7.2) for the maximum value of H, say Hy , was obtained
in terms of N and D_ n? . It seems reasonable to attempt to better the chi-square
and Type III approximations by fitting an incomplete B distribution and using
6] to obtain approximate probabilities. Thus, equating moments again, we may
approximate Pr{H =< z} under the null hypothesis by I/x,(p, ), in the nota-
tion of [6], where

_C—1 C—DHx—C+1) —VarH _Hy—C+1
Ha Var H ’ 1=—@¢—1 P

The above formulas are given for convenient reference. The relative merits of
these approximations will be discussed in [15].

9. The possibly discontinuous case. Much of the preceding material carries
almost directly over to the general case in which the cdf’s need not be continuous,
providing that the following randomization convention is followed: when two
or more £’s are equal, define the corresponding X’s at random. More precisely,
suppose that Eﬁf’) = 5;'2’ = .. = E;;f“’) for a given sample point, and that all
other £’s are unequal to the common value of the above w §’s with (say) \ &’s
less than the common value. Then assign ranks A+1,A+2, - - -, A4 to the tied
&’s by performing a random experiment in which each of the w! possible assign-
ments is an equally likely outcome. With this convention the joint distribution
of the X’s under the null hypothesis is the same as that stated in Section 2, so
that the asymptotic chi-square distribution (Section 4) holds.

The following minor changes would be made in Section 5:

(1) In the discussion of the intuitive interpretation for the consistency con-
dition, replace the given expression for g; . by gi.+» = Pr{ 29 > ) +
1Pr{n® = £}, and replace the necessary and sufficient condition for incon-
sistency by

lim [Pr{g® > &P} + 3 Pr{n® = £°}] = 1, for all 4.
N-w

(2) In the discussion of consistency when F; < F,, and F; £ F;
(f =3,4, -+, (), insert the remark that the result continues to hold if we con-
sider the cdf’s not in one of the usual senses (i.e., continuous to the left or to the
right), but rather in the sense of Lévy: 3F(x7) 4+ 3F(z™). The same interpreta-
tion of the cdf notation should be made in the discussion of a class of cases for
which consistency fails.

(3) Delete the word ““continuous” in the statement of Theorem 5.

Another way to treat ties, much discussed in connection with the rank correla-
tion coefficient, is to give tied ¢’s equal fractional ranks so as to keep the sum of
ranks at its usual value; i.e., in the notation of the first paragraph of this section,
assign the fractional rank X + #(w + 1) to all the w tied £’s. We proceed to show
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that if we do this, and also change the norming constants appropriately, the
altered H still is asymptotically chi-square with C — 1 degrees of freedom.

Suppose that there are K groups of ties with, respectively, w;, ws, +++ , wg
members. We agree to use mean ranks in the tied groups and to work in the
conditional distribution wherein just K tied groups exist of sizes w;, -+, wk

and covering fixed rank intervals, but permitting the numbers of observations
from the C subsamples falling in any tied group to vary. In other words, instead
of the finite population (1, 2, -+, N), we deal with

1,2, -0 50,
)\1+%(w1+1)7"',}\1—’_%(‘01—’_1)) }\1+w1+17"',}\27
(91) A2 + %(wg + 1), s ,>\2+ %(w2+ 1), >\2‘+ w2 + 1) Tty >\37

)\x“l"%(wx'i'1),"',>\x+%(wx+1), M+ owx+1,--+,N,

where M\ + 3(wx + 1) occurs w; times. Under the null hypothesis the ordered
N-tuple of X$”’s takes as its values the permutations of the above finite popula-
tion, all with equal probability. We compute that ER; = 3n;(N 4 1), as before,
and that

n(N — n)(N + 1) MN-ME 5 nlon — Dlen + 1),

Var B: — 12 T TN =D £
nn (N +1) _ mng = 1
Cov (R:, R:\) + 5 = NV =T 2 75 @rlor = Dl + 1),
so that, setting
K

y = ;lwk(wk — D + 1),

we have

1 GN'—N—y
E[(R‘ —_ ER@) (R‘i' — ER;')] = E [niNaui' ’n: n’b'] N(N — 1)

or the corresponding second moment in the untied case times
| V' — N = 2)/IV° — N,
Now let the A\i’s, the w’s and the n,’s all be functions of N, and assume that
limy,o /N = v; > 0 exists, limy v/N° = v* exists and v* = 1. To say that
v* # 11is to say that Max; wr/N does not approach 1, and one can readily show

then that the sequence of finite populations (9.1) satisfies condition W of The-
orem 4W. It follows from Theorem 4W that the variables

N+1
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are asymptotically multivariate normal with zero mean and covariance matrix
given by (4.1). Hence, just as in Section 4

12 c 2
1 N+1

I P> —,(R.- _ ) = g
NV + 1)[1 N = 1)] =ty 2

(say) is asymptotically chi-square with C — 1 degrees of freedom and has ex-
pected value C — 1. Note that no limit condition on the N;’s is needed.

10. Further work. It would be interesting to investigate further the power
function of the test described in this paper, perhaps along the lines of [1], or by
considering its asymptotic relative efficiency to ordinary one-way analysis of
variance in the normal case. Again in the spirit of [1], it would seem desirable
to propose and investigate related tests specifically designed to be powerful
against more restricted classes of alternatives, e.g., F1 = Fo = -+ = F¢, with
at least one inequality strong.? Another extension is to consider the use of H-like
tests in two-way analyses of variance or more general linear hypothesis situa-
tions, in a manner analogous to that of [4].
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variant form by W. A. Wallis. I wish to acknowledge with gratitude Professor
Wallis’ encouragement and helpful suggestions in carrying through the work
reported here. In particular Professor Wallis suggested the applicability of the
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