A SIMPLE METHOD FOR IMPROVING SOME ESTIMATORS

By Leo A. Goopman!
University of Chicago

1. Introduction and Summary. In the past, the principles which have been
applied most often in the selection of an estimate are the principles of maximum
likelihood and of minimum variance unbiased estimation. Recent statistical
literature (e.g., [1]) has pointed out the fact that, while these principles are
intuitively appealing, neither of them can be justified very well in a systematic
development of statistics. Abraham Wald [2] has indicated a more systematic
approach to the problem. One of Wald’s ideas may be paraphrased as follows.
Consider a random variable X whose distribution depends on an unknown real
parameter 8. If the value x of X is observed one makes an estimate, say f(z),
and thereby incurs a loss of W16, f(x)]. The risk associated with the estimate f is
defined to be the expected loss R;(8) = E{W][6, f(X)]| 6}. In choosing between
two estimators f; and f., it seems clear that one would prefer f, to f; if R,,(6)
=< R,,(6) for all values of 6, and R;,(6) < R,(6) for at least one value of 4.

We shall consider only the case where the loss as a function of 8 and the esti-
mate f(z) is of the special form

(1) W6, f(x)] = NO)(f — 6)*; M(6) > 0.

Reasons for considering this form of W[4, f(x)] have been given in [3]. Suppose
that we know of an unbiased estimate f whose variance is K6°, where K is known.
Then, as we shall see, the risk of f is greater than the risk of f/(K + 1). Hence
1/(K + 1) is to be preferred to f as an estimator of 8. This result holds for any
function A(6) > 0. Although f/(K + 1) is generally not unbiased in the usual
sense, it is unbiased in a certain sense (cf. [4]).

It is seen that a special case of this result is related to the problem of the
estimation of the scale parameter of a population whose form is not given but
for which the ratio of the first and second moments is known (cf. [5]).

Some special cases and applications are discussed in detail.

2. Results. Let Y be any real-valued random variable whose distribution de-
pends on an unknown real parameter § > 0.

THEOREM 1. Suppose 6E (Y | 8}/E{Y*| 8} = A identically in 6, where A is
known. Then among all statistics of the form aY, where a is a constant, the risk

Rar(6) = E{N0)(aY — 6)°| 6)
ts minimized for each value of 6 when a = A.
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Proor. We have that
Ra.y(8) = E(N0)[’Y? + 6° — 2aY0] | 6}
= NO)[’E{Y*| 6} + 6* — 2aAE{Y?] 6}].
The risk is a quadratic function of ¢ which is minimized when

dR.y(6)
ada

that is, whena = 4. Q.E.D.
In this case,

= 2\(0)[a — A]E{Y?| 6} = O;

R.x(6) = N6)[6° — A’E{Y”] 6})].
For the function which uniformly minimizes the expected loss, we have that
E{AY |6} = 0[E{Y | 0}]"/E(Y"| 6} < 6.

Hence, this function will be unbiased only when E{Y?| 6} = [E{Y | 6}]%; that
is, when the variance of Y is zero.

Following Lehmann [4], we say that an estimate Y is unbiased with respect
to the loss function W[, Y] = M(B)(Y — 8)* if for each 8, E{W[d, Y] | 6} is mini-
mized when 8 = 6.

TuEOREM 2. Suppose 0E{Y | 0}/E{Y?| 0} = A identically in 68, where A is
known. Then among all statistics of the form aY, where a is a constant, the only one
which is unbiased with respect to the loss function W8, Y], when \(§) = 67, is AY
(which uniformly minimaizes the risk).

Proor. The expected loss function is a quadratic function of 1/8 and the
minimum of this quadratic function may be computed as in the proof of Theorem
1. We see that this function is minimized when § = 6 if and only if a = A.
Q.E.D.

If Y is an unbiased estimate (in the usual sense) of 6, then, A = 6°/E{Y?| 6}.
The relative improvement in risk obtained by using AY is

1 — Rsv(6)/Ry(6) = 1+ [1 — A)/[1 — 1/A] =1 — A.

Since the variance of Y is [(1/4) — 1]6° = K6° we may write AY as Y/[K + 1]
and the relative improvement in risk is AK. We have found that Y/[K + 1] is
unbiased with respect to the loss function (1) when A() = 67°.

Let us now consider the special case where Y is a real-valued random variable
whose distribution has the invariance property under a change of scale; that is,
the probability function of Y is 67 f(y/6), 8 > 0, where the function f(y) is
known, but the parameter § which determines the scale of the distribution of ¥
is unknown. Then E{Y | 8} = M6 and E{Y*| 6} = N6 where M = E{Y |1}
and N = E{Y?|1}. Since the conditions of Theorems 1 and 2 hold, we see that
among all invariant functions g(Y’) (i.e., functions having the invariance property
g(cY) = ¢cg(Y) for all ¢ > 0) there is one which uniformly minimizes the expected
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loss. This function is YE{Y | 1}/E{Y*| 1} = D. This fact may also be proved
using a result due to Pitman ([5], p. 406) which deals with the case where one has
a sample from the distribution §7'f(y | §). Pitman showed that the invariant
estimator with the smallest mean square error is

o= i) [ oo(E)a

By a change of variables we see that C = D. Hence the estimate C may be com-
puted even if the function f(y) is not given but the ratio of the first and second
moments is known. In fact, even if the probability distribution of ¥/8 is a func-
tion of 6, we see that C is the invariant estimate of 8 with the smallest mean-
squared error when the ratio of the mean and second moment of Y /0 is known.
We also l;ave that C is unbiased with respect to the loss function (1) when
NG = 672

3. Applications. Suppose 1, 2, - - - , &, is a sample of n from a normal dis-
tribution where both the mean g and variance ¢’ are unknown. Writing
=2 kizi/nands’ = X5, (z; — £)*/(n — 1), we find that s’(n — 1)/(n + 1)
is the invariant estimate of ¢° which minimizes the risk. Also,

sl2/(n — 1]’ T(n/2)/T((n — 1)/2)

is the invariant estimate of ¢ which minimizes the risk. When u is known, writing
£ = 2 %1 (#: — u)*/n, we find that ¢n/(n + 2) is the invariant estimate of ¢°
which minimizes the risk. Hodges and Lehmann ([1], p. 17) have shown that
'n/(n + 2) is the unique admissible minimax estimate of ¢ when A(8) = 1/6°
They point out the fact that ¢’ is neither minimax nor admissible. We also find
that t[2/n])'*T((n + 1)/2)/T(n/2) is the invariant estimate of ¢ which minimizes
the risk.

Suppose x;, 3, - - -, Zais a sample of n from a uniform distribution on (0, p),
where p is unknown. Writing y = max (z,, 72, - - - , 2,), we see that y(n + 2)/
(n + 1) is the invariant estimate of p which minimizes the risk (cf. [4], p. 589).

The preceding examples deal with random variables whose distribution have
the invariance property under a change of scale. The conditions E{Y | 8} = Mo
and E{Y’| 8} = N¢" are weaker than the condition of invariance under change
of scale. Hence, Theorems 1 and 2 are stronger than the corresponding invariance
theorems. The following example satisfies the conditions of our theorems (“second
order invariance”), but the distribution of the random variable does not have
the invariance property (in the usual sense) under change of scale.

The distribution of the random variable Y depends on an unknown real
parameter 8 which may be included in one of two disjoint sets @, or Q; . If 9 is
in @, then Y /6 has a Poisson distribution with a mean of 1 (variance also is 1).
If 6is in 2, then Y /6 has an exponential distribution with a mean of 1 (vari-
ance also is 1). Whether 6 is included in @; or in Q, is unknown, so that the
distribution of Y/ is a function of  and does not have the invariance property
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under change of scale. We see that Y /2 is the invariant estimate of 6 which
minimizes the risk and that the risk associated with the unbiased estimator is
twice the risk associated with Y/2.

Using Theorem 2, we find that all the invariant estimates described in this
section which minimize the risk are also unbiased with respect to the loss func-
tion (1) when \(6) = 67°. We also see that these invariant estimates C have the
optimum properties of minimizing the risk and being unbiased with respect to
the loss function (1) with A(d) = 6 even when the underlying distribution
of the variates is not the one specified (normal, uniform, etc.) as long as
E{C/8| 6} = E{C*/6"| 6}.
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