ON CERTAIN CLASSES OF STATISTICAL DECISION PROCEDURES

By H. S. KoNnunN
University of California, Berkeley

Summary. The paper considers classes of decision procedures which in certain
ways put a bound on the associated losses of incorrect terminal decision or cost
of experimentation. Conditions are given under which these classes fulfill the
conditions that Wald imposes on classes of decision procedures in his general
theory.

1. Introduction. We investigate a problem arising.in Wald’s general theory
of statistical decision functions (all references to Wald are to [1]), and freely
use his notations.

Wald considers the general case, in which sampling may be done by stages,
by means of a decision procedure § fixed in advance. This procedure determines
at each state & = O of experimentation whether to continue experimentation
or not, on the basis of the observations obtained thus far (and perhaps also with
the aid of an additional randomization experiment). In case the procedure indi-
cates that a (k + 1)st stage is to take place, it also determines, on the same
basis, which subset d;.; of the possible collection D° of variables is to be observed
next. In case the procedure leads to termination of experimentation, it will also
designate a particular final decision d' contained in the set D of preadmitted,
possible terminal decisions. Thus, for any given procedure 8, the experimental
and terminal decisions to be taken are random variables, which depend on the
sample point X = {X;, X;, -+ } to be observed, and, in case of a randomized
procedure, on the randomization experiments to be performed; we may denote
them by 8°(X) = {8i(X), 85(X), --- } and 8'(X), respectively.

Let W(F, d'y denote the loss due to taking the terminal decision d‘ when F
is the true distribution, and ¢(di, - - -, dx, ) the cost of observing stagewise
the k sets of variables di, ---, di when the observed sample point equals
z={x;,2, - }. Let

P{F’yla} = Pr{W(F,st(X)) > ylF,s}
and
Q{F,ZI5} = Pr{c(s‘(X), X) >z I F, 5},

where F and § after the verical bar indicate that the probabilities are to be com-
puted under the assumption that F is the true distribution and & the adopted

decision procedure.
We adopt Wald’s assumptions 3.1 to 3.5 which are as follows.
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STATISTICAL DECISION PROCEDURES 441

(a) The class of stochastic processes F consists either of dlscrete processes
only, or of absolutely continuous processes only.

(b) The loss W is a bounded function, uniformly continuous in its second
argument, with the modulus of continuity independent of the first argument.

(c) The cost ¢ cannot decrease When a stage of observation is added, is a non-
negative unbounded function of the number of observations (uniformly in the
other variables), and for any %k, dy , - - , di , is either a bounded function of the
values of the observations or identically equals .

(d) The space D* of possible terminal decisions is compa,ct (in the uniform
topology with respect to W).

It may be noted that in the greater part of Wald’s book it is assumed that
W is nonnegative, but that in a few places this assumption is violated ; however,
the assumption that W is bounded is not violated, and this allows one to make
adjustments in all proofs which make use of the nonnegativeness of W. The
expected loss from incorrect terminal decisions and the expected cost of experi-
mentation equal

n@®,9 = [ PIFylo) ay

and
n®,9 = [ QP20 ds,

respectively.

Speaking generally, Wald’s theory is concerned with the search for procedures
among a given class O, which in some sense minimize the “risk” r(F, §) =
r1(F, 8) + ro(F, 8). It may in various cases be desirable not to admit to the com-
petition those procedures of an otherwise naturally arising class for which (1)
71, OF 17, is larger than a given number, (2) the chance that W, or ¢, exceeds a
given amount is larger than some small number, (3) 7 is not a bounded function
of F, or, (4) the number of stages of experimentation has a positive probability
of being unbounded. If so, it may be convenient to know whether the assumptions
on D under which Wald derives his general results still hold for the restricted
class if they hold for ©. The present paper is addressed to that question.

2. Statement of results. For given numbers o, 8, ¥y = y(a), 2 = 2(8), ¥, and
2o , we define the following subclasses of any given class D of decision procedures

Dia, y(a); —} = {6 & D: P{F, y(e) | 8} £ aforall F},
Df{—;B8,2(8)} = {6 D: Q{F, 2(8) | 8} = Bforall F},
Dy = {0 & D: 1 (F, 8) £ yofor all FY,
D = {6 & D:1ry(F, 8) < zforall F}.
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The principles of notation adopted here are these: preceding the semicolon
are conditions in terms of P{F, y | 8}, following the semicolon are conditions in
terms of Q{F, z|é}; the subscripts denote restrictions on r,, and the super-
scripts restrictions on the cost of experimentation not stated directly in terms
of Q{F, z | s}.

We inquire whether, if Wald’s general assumptions 3.6 on the class of decision
procedures hold for D, they also hold for these subclasses. Using the notation
given below, these assumptions can be stated as follows.

(i) D is convex.

(ii) D is closed (in the regular sense of convergence defined by Wald).

(iii) For any k, there exists ¢, such that p(di | Zx-1) , 8) vanishes whenever
d{x) is not contained in (1, -- - , ).

(iv) p(d%) , | Zu-1 , 8) vanishes whenever ¢(d%) , Zu—y , °) = © identically
in 2°.

(v) Givenk = 0and 5 in D, there exists 8* in D such that 8*{D*|dy,, 2z} =
1, whatever be d{y or zy;, while

&(D|dwy , zm} = 8{D|dn, zm},

whatever be D < D°uD’, h < k, dis,, or zp; . (Wald’s formulation of this
assumption, which permits truncation of the decision procedure at any stage
k = 0, is unnecessarily strong.)

We also examine from this point of view

D® = {5 ¢ D: r(F, 5) is a bounded function of F},
(called D, in Wald, p. 100), and

D = {6 ¢ D:for any given F the number of stages of
experimentation is bounded almost certainly}.

We find that if D satisfies Wald’s assumptions 3.6, then for every set of
numbers ¥y, 20, a, 8, 2 = 2(8), and all except an at most denumerable collection
of choices of y = y(a), this assumption holds also for

Dy, D, D[ —; B, 2(8)}, Dla, Y(a); 0, 2(0)}, P, D,
2%{a, y(a); —}, D{a, y(a); —}, D*(a, y(@); =},
and thus also for
D {a, y(a); B, 2(8)}, D{a, y(a); B, 2(8)}, D{a, y(a); B, 2(B)}, ete.

Let D® denote the class of all possible decision procedures subject to (iii)
only, and ®® the subclass of D® which satisfies (iv). Wald remarks that D
satisfies all of his assumptions 3.6, so that all classes mentioned in the preceding
paragraph satisfy them if ® = ©. Moreover, it is easy to see that all these
classes except D, , D, and D“{a, y(a); —} already satisfy them if D = D.
Note also that property (v) is not needed for any of Wald’s proofs when D is
contained in D®, DO or %,
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3. Notation. We occasionally make Wald’s notation a little more explicit or
condensed, and also introduce some new notation. Represent D° by (1,2, - --)
and let

d?k) = (d;y tta ’d;)}d:k] =d;U"'Ude.

Write ) = {2:(6 € dpi;)}, My for the set of all posmble values of xm , M
for a bounded measurable subsej: of My, ; write ¥ = {z:(i edp)}, M* for the
- set of all possible values of z*.

When F is the true distribution, let

F@@*|zp) = PriX: € z:(Gedi) | X; = z;(j e df—n)) },
F(zgy) = Pr{X; = z;(j edin)}.

We recall, in a somewhat more specific form, the following definitions of
Wald’s Sections 1.2 and 3.1.4.

p(l—)t I 07 8) = 6(D¢ ' 0):
P@w | Tw-11, 8) = 8(d1] 0)8(dz | di, zm) - - - 8(dk | Aoy , Tue-m1),
Py , D' |z, 8) = p(dh) | 2y, 83D | dy , 21),

oo, D' F, ) = [ pin, D'l ow, 8) dF(aw).
M k)

Let
Mz | dy , Tu-n) = {2 e M*: c(@l , Tu-n1, 2°) S 2| diy , Tu—nr},
D'F,y} = {d'eD": W(F,d") > y|F}.
Then
P{F’yia} = kz(:) Z Zq(dzkhbl{F’y} IF,8),
=0 a df :

1 - Q{F,Z I 6}

-ZIo X [ wwmlzemo [, dF (2 | open} dF (@),

k=1"ge Mr—1) Mk (21d 2 1k-1))

4. Convexity.

TurEoREM 1. Let D be convex. Then Die, y(a); —} and D{—; B, 2(8)} are con-
vex for every a, B, y = y(a), z = 2(B); Dy, and D™ are convex for every yo , 2;
DY and D are convez.

. Proor. Let ¢, and 3, be elements of D{a, y(a); —}and 0 < 0 < 1,p =1~ 6.

To show that there exists § ¢ Dia, y(a); —} such that 3.14a, b (Wald) are satis-
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fied, note that there exists such a é £ D since D is convex, and that this § actually
is an element of D{a, y(a); —} as

P{F, y(a) [ 8} E Z Zf sl P(d(k), F ’.ll(a)} [ e , 081 + pd2) dF ()

k=0 dd

= OP{F, y(a) | 81} + pP{F,y() | &} < o

Quite similarly we show Q{F, 2(8) | 8} < 8.
Then

nF® =0 [ PIFylajdy+o [ P(Fyla)dy

= or(F, 8,) + ory(F, 52),

so that if & and &, are elements of D,, with § satisfying 3. 14a, b (Wald), § € D, ;
and similarly we obtain the convexity of D, and thus of D®
The convexity of D = {§ £ D: for each F there exists &’ Wlth

ZZ Zq(d(k)’D‘lF’8)= 1}

kw0 de
is immediate.

6. Closure.

THEOREM 2. Let D be closed, and a subset of D®. Then D,, and D are closed
for every yo , 2 ; and D® is closed.

Proor. By Wald’s Theorem 3.2, which holds for any subset of D®, we have,
for ¢ = 1, 2, that 8; — & (in Wald’s regular sense) implies that there exists a
subsequence {4;;} such that

lim inf rt(Fy 61‘,‘) 2 Tg(F, 80);
J==c0
thus, if fori = 1,2, -+-, 7(F, 8;) < ri(= yofort = 1, = 2 for ¢ = 2), then
rF, &) < rifort = 1,2.

That D is closed follows similarly: (¥, 8:;) = M;; (say) < oo; therefore,
for given € > 0 there is a j such that r(F; &) < r(F, 8;;) + ¢ £ My, + ¢ < ».

TrEOREM 3. Let {5:} be a sequence of decision procedures converging to a decision
procedure 8 in the regular sense as defined by Wald. Then for all z and F,
limioQ{F, 2| &} = QF, z| &}.

Proor. By Wald’s assumption 3.5, since

/ dF (| )
‘lk(lld(k) Z(k~1])

vanishes when di; contains a sufficiently large number of elements, there exists
for any F and z an integer k' such that the terms in the expression for
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1 — Q{F, 2|8} with k¥ > &’ do not make any contribution. We shall therefore
discuss a finite sum of terms, write

o
1= QFzle} = 2,00, 2L T\di, -+, dis Fyz | 8),
k 1
and show that if 8; — 8o, im0 T {d(sy ; F, 2| 8} = T{d@ ; F, z| 6}. Let f be
the elementary law corresponding to F, and fix F, 2, k, di , -+ - , dz , setting for
simplicity in notation di—y; = (1, -+, 7).
I) Case where F is discrete. The case where F has a finite number of jumps is
immediate, so suppose it has an infinite number of jumps. Let T{dy, ; F,z |6} =
lim—,$,(8) with

ny(n) n1(n) .
Sn(a) = zz; » " tz:l {p(d:k) ’ Tityy **° y Xrty s 6)
r= 1=

Ul.z(xltl y Zn,)f(xu, y xrt,-)}-

Here
07:(Taey 5 000y Tpy,) = f - @ zpe) &2 S 1,
"k('ldzk)-zlk—l])

and forany j = 1, -+ -, r, nj(n) is a nondecreasing integer-valued function of n.
Since p(d) | T1ey 5 *** 5 Tre, , 0;) S 1 and

ny(n) ni(n)

lim Z e tz:lf(xltx7°”,xﬂr)= 1,
=

n=00 {yp=l

limyey $.(8;) exists and is finite for each 7. Now from the definition of regular
convergence, lim;— p(d%) | T16y, *** 5 Trey ,0) = DA%y | T1ey, +** 5 Trt, 5 00) , SO
by Weierstrass’ rule

T{din; Fyz | &) = lim s,(80) = lim lim 8a(8;) = lim T'{ W Pz |8l

n=00 =200 N==00 =00

II) Case where F is absolutely continuous.

e:(Zp-n | din) = f@i-n) fu f&* | zp_y) dz*,

k(lldzk)-‘[k-l] )
which is not greater than f(zx—1;), satisfies the conditions of Wald’s Lemma, 3.1,

s0 (using the notation of Wald’s sections 3.9 and following)

T{dw; F,z| 8} = f

. (A% | Ziem11, 0)0:(@r-11 | dry) dZpi—y
(k~1]

" = f es(Zp—yy | dly) APy | Mp—yy , 85)-
Mk-1] ,
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But by the definition of regular convergence and Lemma 3.1 of Wald, the limit
as ¢ — « of the last expression is

f e:(Ty | ds) AP(d% | My , 80),
Mp_1] *

which equals T{d{ ; F, z | 8}.

CoroLLARY. If D is closed, Df{—; B, 2(8)} is closed for every B and z = 2(8). .

THEOREM 4. Let {3:} be a sequence of deciston procedures converging to a decision
procedure 8 & D in the regqular sense as defined by Wald. Then, for any F, the
chance variables W (F, 8{(X)) converge to W(F, 84(X)) in distribution as i — o, o
that limiw, P{F, y|8;} = P{F, y|&} for all y except an at most denumerable
collection (depending on &).

Proor. Fix F, k,d;, - - -, di , and show that .

li‘m q(d:k) » ﬁt{Fi y} ‘ F) 81’) = Q(dzk) ’ ]jt{F’ y} l F) 50)

for all y except an at most denumerable collection.

I) Case where F is discrete. Since W(F, d') is continuous in d*, D*{F, y} is
open for every y. If D'{F, y} = D'{F, y'} and y’ < y, D'{F, y} has an empty
boundary. Now consider the ordered collection {D‘{F, y}} of shrinking sets for
increasing y. Only at an at most denumerable collection of y can the boundary
B{F, y} of D'{F, y} be nonempty with q(d%, , B{F, y} | F, &) positive; on the
other y, limi—, P{F, y |8} = P{F, y| &}, by the definition of regular con-
vergence.

II) Case where F is absolutely continuous. For each integer m, consider
the finite sequence {Dy,..4,,} (k; =1, --- ,r;;5 =1, ---,m) of Wald’s Section
3.14. As
Sup Z P(d‘(’k) 5 D’:l"‘km I M[k] ’ 5,)

D; ...x CDYFy)
1 m

= P(dzk) 7Dt{F7 y} ‘ M(kl ’85)
< Inf > P(d%y , Doy | My, 89,
'5,‘,1,,,,, Y0
we have by the definition of convergence in the regular sense

Sup Z P(dzk) ’ D’:r"km l MUG] ;50)

3,: Cok CB‘U’M}
1 m

é luninf P(d‘(’k) ’ D‘{F’ y} ’M[k] ’ 80) é lilf['-lsuP P(d?k) 3 D‘{F) y} ’ M(kl y 8:)

1m0
SInf_ X Plw,Diisn| M, &)
31‘,1. . .km:’B‘{’:ﬂ)
,For all except an at most denumerable set of y-intervals (which may degenerate
to points) the left- and right-hand sides can be made to differ by less than any
preassigned positive number, by making m large eneugh. But if, for ' < y,
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D'{F, y} = D'{F, y'}, the left- and right-hand sides have the same value pro-
vided we take m so large that the diameter of each set in {Dk,...t,,} is less than
y — ¥, so that for all M ; we have

lim P(d , D'{F, y} IM[k]a’ 8:) = P(d%, , DAF, y} IM[H » 80)

for all except an at most denumerable set of y.

We now note that Wald’s Lemma 3.1 remains valid if we write T% for
Tz = 0,1, ---), insert “except for an at most denumerable set Ds of y”’ after
(3.50) and “‘except for an at most denumerable set D of 3’ after (3.51); this is
seen by letting e and 1/¢ approach 0 through a denumerable set of values and
considering in (3.58) the complement of D? = U,(D§,), with D = UU.(D?).
Consequently, as, forz =0, 1, ---,

q(du , D'(F,y} | F,5:) = L ]f(x[kl)dp(d‘(,k) , D'{F, y} | My, , 82),
113

where f is the density corresponding to F, we have for all except an at most
denumerable set of y
l.im Q(d?k) ’ D‘{F: y} lF: 61’) = q(d?k) ’ D'{Fr y} 'F’ 80)-
COROLLARY. If D is closed, D is closed, and
S)(é){ay y(a); - }: :D{a’ y(a); O) Z(O)}r and :D“{a: y(a); _}

are closed for every choice of z = z(0), z,, and a, and all choices of y = y(a) ex-
cept an at most denumerable collection.
Proor. As above we prove that

lim ¢(d% , D' | F, 8:) = ¢(dw , D'| F, &)

and obtain the closure of ® from the remark at the end of the proof of
Theorem 1.

For any z = 2(0), if & ¢ D{—; 0, 2(0)}, then the number of stages of experi-
mentation is bounded almost certainly under the procedure & ; it follows from
Theorem 4 that for all « and all choices of y = y(a) except an at most denumer-
able collection D {a, y(a); —} as well as D{a, y(a); 0 2(0)} are closed.

Let P(F, y,-k’ | ) be the probability (under F; ) that W(F, §) > y and the
number k of stages of experimentation <k’; P(F, y | k¥, 8) the probability that
W(F, 8") > y, given that k < k’; Pi.(F, y | 5) the probability that W(F, &) > y
and k > ¥'; and R(F, k’ | 5) the probability that k > k'. For< = 0,1, --- |

P{Fyylai} =P(Fayykllal')'l'Pk'(F’ylai) = P(Fyyrk,la‘)'i'R(Fyklla')’

and for all y except an at most denumerable set P(F, y | ¥/, ;) and

kl
I‘R(F,kllai) = ZZ ZQ(dik):D‘lF9ai)

= g
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converge to P(F, y | k', &) and 1 — R(F, k' | &) respectively when &; — &,
so that lim;, P(F, y, k' | 8;) = P(F,y, k' | &) for this set of y. Therefore we have

for this set of y
P(F,y, k| &) < liminf P{F,y |5}

$==00

é hmsuPP{F:ylan} .S_ P(F,?/,k’lﬁo)'FR(F,k’l@o)

with limy—, R(F, k' | %) = 0, for, since 5 ¢ D, (3.40) of Wald’s holds. Con-
sequently, for all ¥ except at an most denumerable set, lim;.., P{F, y |68} =
P{F, y | &} for 8 ¢ D. Since D™ is a subset of D, and D** and D are closed,
this gives the closure of both D {a, y(e); —} and D*{a, y(a); —} for all 2, a,
and all y = y(a) except perhaps a denumerable set.
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