SOME NOTES ON THE APPLICATION OF SEQUENTIAL
METHODS IN THE ANALYSIS OF VARIANCE!

By N. L. Jounson
Unaversity of North Carolina and University College, London

Summary. Sequential tests of linear hypotheses in the systematic linear model
are studied. Methods of overcoming difficulties in the construction of tests when
there is a random model are considered.

1. Introduction. The original methods [1] of constructing sequential tests re-
quired problems to be formulated as discrimination between two simple hy-
potheses. In cases where composite hypotheses were involved, a more or less
arbitrary weighting function was introduced so that the problem could in effect
be reduced to discrimination between simple hypotheses. Recent work by
Barnard [2] and Cox [3] has made it possible to extend the sphere of application
of sequential tests to a number of cases where composite hypotheses are to be
compared. Barnard refers to unpublished work by C. M. Stein on this problem
and there is a remark in [4] which implies that both Stein and M. A. Girshick
approach the problem from the same angle as Cox.

It is the purpose of these notes to discuss some points of detail arising in the
application of sequential methods to the particular type of composite hypotheses
associated with the analysis of variance. Tests of the general linear hypothesis
in systematic (parametric) models will be discussed first, followed by a discus-
sion of component of variance models for simple special cases.

2. The general linear hypothesis. It will be helpful to start with a brief resumé
of the general linear hypothesis and its likelihood ratio test in the case of samples
of fixed size [5], [6].

It is assumed that

i) x = (x1, -+, xy) are N independent normal variables,
(ii) &(x) = 6C/,

where
0 = (01, 708) = (017 :os—qios-—q+la e :08) = (0(1) ’0(2))

Ci1 . Cis
C=| - - | = (Cw, Ca) (s <N,

Cy1t *** Cns
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SEQUENTIAL ANALYSIS OF VARIANCE 615

where C is partitioned between the (s — ¢)th and (s — ¢ + 1)st columns, as
is

(iii) varz; = o G = 1, -+ , N),

(iv) The 6’s and ¢° are unknown parameters; the ¢’s are known constants,
defined by the design of the experiments.

The hypothesis to be tested is Ho:03 = (0,0, --- ,0) = 0. A likelihood ratio
criterion for this problem is provided by any monotonic function of @ = S;/8S, ,
where

S, is the minimum of (x — 0C’)(x — 0C’)’ with respect to 0

Ss + S is the minimum of (x — 04)C’ ;) (x — 041)C’(1y)” with respect to 0, .
It can be shown [4], [7] that the probability density function of G satisfies

1) p@]0ae™) = ePp(@ | OMGW — s+ @), 3¢; PG + @7
where

Ao® = 0C'»(I — Cy(C'Cay)'C’w)C by
and

L R_RTOIX 4j) W
WY = 2 FOr ) T

is a confluent hypergeometric function.

3. Sequential analysis for the systematic model. Now. consider a sequential
form of experiment in which successive 2’s, or sets of 2’s, are measured until a
decision is reached. As the experiment is continued, so will C grow by the addi-
tion of further rows. The way in which it is decided to obtain each successive
observation (or set of observations) will determine the numerical values of the
¢’s in the successive rows of C. In these notes only those cases where the design
is predetermined (i.e., where the ¢’s are not random variables depending on the
results of earlier measurements) will be considered, although it would appear,
intuitively, that determination of the ¢’s on the basis of results already observed
would lead to improved procedures.

At each stage in the experiment a value G’ may be calculated. (The super-
script [N] means “pertaining to sample size N,” and will be omitted when con-
fusion is not likely to be incurred by such omission.) The distributions of the
corresponding random variables will depend on 80" through the parameters
A¥) Tt might be hoped to use the sequence @™ in a test to discriminate between
the hypotheses

Hjle(z)o'—l = A,(] =1, 2).
(Evidently by taking A; = 0 and choosing A, suitably a sequential test dis-

criminating between H, and H, could be compared with the likelihood ratio
test of H,.)
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Such a sequential test could certainly be obtained if
@) p(G7, -, @) = p@™ | 8@e TG, -+, G™)

where f(G*, - -, @™ does not depend on 8o . Cox [3] gives conditions under
which (2) is true.

If it is possible to pick out a subsequence G such that each of the terms in
the corresponding subsequence \'**' depend only on the same scalar function of
08¢0 ' then it can be shown that Cox’s conditions apply, and so

p@™Y, o G 00T = PG [ 8o HFGWY, -, G,

Since p(G™™ | 8o ™") depends only on A which is itself required to depend
only on some scalar function ¢(8¢ o) of 80 " we may write

P, -, U [ g) = p(@" | G, -, G,

It follows that

(a) all hypotheses (about 6¢0") which specify the same value for ¢ will be,
for present purposes, equivalent,

(b) a sequential test for discriminating between the hypotheses

H:p =¢ and H":¢p = ¢"
will be specified by instructions of the form
[Nn] U4
p(G[ nl l d)l) 1 —
PG ¢ S 1-8
p(G[Nn] [ ¢/) = a
Otherwise take a further set of N,.1 — N, observations in
accordance with the prescribed pattern”
provided this sequence of operations terminates with probability one when either

H’ or H” is true.
The prescribed pattern will, of course, be such that A'¥*' depends only on

¢ (0x07).

4. Limiting form of the test. Decision to take a further set of observations will
be made if

(1) “Accept H'

v

Accept H”

B pGl¢") 1 -8
T~ p@ ) " a
where we have, for convenience, dropped the superscript [N]. From (1) this is
equivalent to

A+ 30N = N) <log MGE(N. — s + q), £g; ]\"Y°)
—log MGIN. — s + ), 3 1Y) < B+ 30" — )

@)
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where

B=loel=f ,_cu+e

1 —a’ «

A = log

The application of tests of this type (for ¢ > 1) requires tables of M (X, Y; u)
rather more extensive than are known to the author at present. We can, however,
make certain deductions about inequalities (2), incidentally showing that in
certain important cases, the sequence does, indeed, terminate with probability
one when either H' or H” is true.

It will be assumed from now on that ¢” > ¢’ and \” > ). As u increases from
0tol,

[log M(X, Y; 3\"u) — log M(X, Y; $\'u)]

increases from 0 to
llog M(X, Y; 3\") — log M(X, Y; 3\)]

(if X > 0and Y > 0). Hence (2) is equivalent to
(3) Q(Nn , @, B, >\/’ )‘”) <G < G’(Nﬂ , @, B, )‘I’ )\”)
@ and G being fixed numbers defined by the quantities in brackets. (N.B. If A +
3(\" —X) > 0 then G = 0, while if B + $(\" — \') = log M(X, Y;3\") —
log M(X, Y;1)\) then G = «).

Now consider the special case where successive sets of k observations are taken,
so that N, = kn, and each set is arranged in the same pattern, so that identical
sets of rows are added to C at each stage. In this case it is possible to take ¢ =
A¥/k and then N = \*" = nké is a function of ¢ only. (¢ may be thought
of as “noncentrality per unit observation”). (2) now becomes

A + ink(p” — ¢') <log MG(nk — s+ q), 3¢; 3nke"y")
) — log M(3(nk — s + q), 3q; 3nke'y")
< B + jnk(¢” — ¢).
Now Perron [8] has shown that
Yy
MX,Y;u) = zi/Z M (Xu) FevTu(1 + 0(X7H).

™

Hence from (4) if n is large and ¢/ = 0, we have
A+ dnk@” — ¢) + 0 < g — 1) log (¢//8”) + ink(s” — &)y’
+ alk{k—(s — o (VS — V§)y < B + nk(g” — ¢') + O(n™).
Remembering that ¢” > ¢’, (5) may be rearranged to give
(g — 1) log(¢”/¢') + 44 -3 2 4
O T — ==
ey I vl

(+ _s—aq) (¢ — 1) log(¢"/¢) + 4B 3
( 7W9y<2+ e —gy T om)

2 +

(6)
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This implies

2 4 -1
ARRvERvA

As n tends to infinity, y tends to ¢*(1 + ¢)~* and 3 tends to o(1 + ¢)" al-
most certainly. Unless
@) 4t Ve _,
, L+¢ Vo' + Ve V(I +9)
for either ¢ = ¢’ or ¢ = ¢” it is clear that the sequence (I) must terminate with

probability one in either case. It is of interest to note that large samples are not
likely to be reached unless (7) is satisfied, at any rate approximately. From (7)

®) ¢’ + )7 = 20{l + (Ve +V&)'P — NNV + V)

We may note that if both ¢” and ¢’ are small (8) gives V¢ = 2(V¢” +V¢')
which is not unexpected on intuitive grounds.

The argument above applies to the case ¢’ = 0. If ¢’ = 0 then instead of (5)
we obtain

A + Ink¢” +0(n?) < (g — 1) log k¢” + inke”y*
+ nk{l — (s — @)/nk}*/¢"y< B + ink¢” + 0(n™*)
leading finally to (7) with ¢’ = 0.

6. One-way classification. The special case of one-way classification into &
groups will now be considered. At each stage we decide whether or not to take
a further set of k& observations, one from each group. The usual systematic model

(9) T = a + b + 2 (t=1,--ki=1,---,m; 2, b =0)
i

is included in the general linear model described in Section 2. Then, in the nota-
tion of Section 3, N, = nk, s = k and the hypothesisb, = 0 (¢t =1, --- , k)
implies ¢ = k — 1. Further

G™ =n 3 (@ — 8/ 2 (@ — &),

A = Db 6 = D bkt
t t

Hence the sequence G*™, G ... | may‘be used in a sequential test based on

discrimination between H': Z:bti/lm2 = ¢’ and H”:D b3/ke® = ¢” and con-

structed as in (I).

6. Random model in the one-way classification. It is well known that some-
times a model different from (9) may be used. This is '

(10) T = a + w + 2
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where the u’s are normal variables, each with expected value zero and standard
deviation ¢ , mutually independent and also independent of the z’s. This model
is often called the “random” or ‘“‘component of variance’’ model. In this case

3k (n—1) [nk]3(k—3)
(11) p(G[nk] |5) — . (1 -+ na)l G _
BGG = D), bt — 1) (L 5 F GoanenD
where 8 = ¢%/c". This depends only on 8, which plays the part played by ¢ in
the systematic model. Cox’s result shows that the sequence G*™, G*™, ...  may
be used in a sequential test based on discrimination between Hy:6 = & and

H7:6 = §” provided the procedure specified terminates with probability one.
The procedure will be

(IT) “Accept Hp if f(G, 8, 8") < B/(1 — a).
Accept Hy if f(G, 8, 8") Z (1 — B)/a.

Otherwise measure one further item in each of the k groups”
where

' sy 1 + ne” 3k (n—1) (1 + nal + G)Nkn_l)
6o -()  (HErre)

Under this procedure sampling will be continued whenever Gr < G < Gg
where

(12) Ge=n0"¢ — )1 — &' = 1;Gr = n(®"e — &)1 — &' — 1,

,8 2/(kn—1) 1 +n6, k(n—1) [(kn—1)
§=<1—a) <1 +n§”> ’

1 _ 6 2/(kn—1) 1 + nsl k(n—1) /(kn—1)
‘T ( o > <1 F m) .

It can easily be shown that, if 7 > & > 0
lim Gr = [24 + (k — 1) log (6”/8))/k( ™ — &7,

n—0

lim Gr = 2B + (k — 1) log (6”/8))/k(3 ™" — &™)

n—

so that lim,. Gz # lim,. Gxr.

On the other hand if & = 0 (the case considered by Cox) lim,. Gz =
lim,.,Gz = 0. 4

The random model can be regarded as a mixture of systematic models in which
the quantity Y bi/ke® = ¢ is distributed as &-(xz—1/k). For any systematic
model such that lim,. Gz < ¢ < lim,._Gx there is a nonzero probability that
Gr < G < Gy for all n. If 6 # 0 there will be a nonzero proportion of syste-
matic models, in the mixture constituting the random model, for which this is
the case. Hence, the sequential procedure outlined above for 8” > & > 0 will
not conclude with probability one unless 6 = 0.
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Now consider the test based on 6” > § = 0. This will terminate with prob-
ability one both when § = §” and when § = 0, and so can be used as a sequential
test. Some values of Gr and Gy for this case are given in Tables Ia and Ib. As
might be expected the procedure is not very practicable for small values of k.
For example, in neither of the cases covered by the tables is it possible to obtain

TABLE Ia
=1 =0 a=8=005
(1) Values of Gr

12 15 20 30 60 o

]/

- - —_ - — | .086 | .204 | .308 | .398 | .478 .146 | 1.414 ’1 732
—| = — — | .086 | .180 | .256 | .319 | .372 | .417
- - — | .037 | .126 | .194 | .249 | .292 | .328 | .359 | .385 | .444 | .505 | .569 .636 .707

2 .549 | .720 | .918
3
4
5 | — | — — | .066 | .137 | .190 | .232 | .265 | .292 | .315 | .334 | .378 | .423 | .469 .517 .566
6
7
8

455 | .545 | .640 | 744 .855 974

—

- - — | .080 | .138 | .181 | .215 | .242 | .264 | .282 | .297 | .331 | .366 ; .403 .439 477
— | — | .015 .086 | .135 | .172 | .200 | .222 | .240 | .256 | .268 | .297 | .325 | .355 .385 .416
—|.,— | .026 | .088 | .131 | .162 | .187 | .206 | .221 | .234 | .245 | .269 | .294 | .319 .344 .370

9 |—| — |.033 | .088 | .126 | .154 | .175 | .192 | .206 | .217 | .226 | .247 | .269 | .290 .312 .335
10 |— | — |.038|.087 | .121 | .146 | .165 | .180 | .192 | .202 | .211 | .229 | .248 | .267 .287 . 306
11 | — | — | .041 | .086 | .117 | .139 | .156 | .170 | .181 | .190 ; .197 | .214 | .231 | .248 265 283
12 | — | — | .043 | .084 | .112 | .133 | .148 | .161 | .171 | .179 | .186 i .201 | .216 | .232 .248 .263
15 |— | — | .045 | .078 | .101 | .117 | .129 | .139 | .147 | .153 l 159 | .171 | .183 | .195 .207 .220
20 | — | .004 | .044 | .069 | .086 | .098 | .107 | .115 | .121 | .125 { .130 | .138 | .147 | .156 .165 174
30 | — | .011 | .039 | .056 | .067 | .076 | .082 | .087 | .090 | .094 | .096 | .102 | .108 | .114 .120 .126
60 | — | .013 | .028 | .037 | .042 | .047 | .050 | .052 | .054 | .056 | .057 ' .060 .063 | .066 .069 .072

(ii) Values of Gr

\< 2 3 4 5 6 7 8 9 10 1 12 15 20 30 60 L3

2 - - —_ — | 29.314 | 12.456 |8.377 |6.542 |5.500 14.828 (4.359 |3.537 (2.918 (2.435 (2.049 (1.732
3 — |7.457 13.962 |2.909 | 2.403 .106 |1.911 (1.773 [1.671 |1.591 [1.528 (1.398 (1.279 |1.169 [1.068 | .974
4 |4.610 (2.376 {1.764 [1.479 | 1.315 .208 11.133 |1.078 1,035 1.001 | .974 | .915 | .859 | .806 | .755 | .707
5 |2.214 |1.440 |1.158 [1.014 .926 .867 | .825 | .793 | .768 | .748 | .731 | .696 | .662 | .629 | .597 | .566
6
7
8

—N

1.465 |1.042 | .873 | .783 .724 .685 | .657 | .635 | .618 | .604 | .593 | .569 | .545 | .522 | .499 | .477
1.100 | .823 | .705 | .640 .599 .571 | .550 | .534 | .522 | .511 | .503 | .485 | .468 | .450 | .433 | .416

.883 | .682 | .595 | .545 .514 492 | .476 | .463 | .454 | .446 | .439 | .425 | .411 | .397 | .384 | .370

9 | .739 | .585 | .516 | .477 . 451 .434 | .421 | .411 | .403 | .396 | .391 | .380 | .368 | .357 | .346 | .335
10 | .636 | .513 | .457 | .424 .404 .389 | .378 | .370 | .363 | .358 | .354 | .344 | .334 | .325 | .316 | .306
11 | .559 | .457 | .411 | .383 .366 .354 | 344 | .337 | .332 | .327 | .323 | .315 | .307 | .299 | .291 | .283
12 | .500 | .414 | .373 | .350 .335 .324 | .317 | .311 | .306 | .302 | .298 | .291 | .284 | .277 | .270 | .263
15 | .380 | .323 | .296 | .280 .270 .262 | .257 | .252 | .249 | .246 | .244 | .239 | .234 | .229 | .224 | .220
20 | .274 | .239 | .222 | .212 .206 .201 | .198 | 195 | .193 | .191 | .190 | .187 | .183 | .180 | .177 | .174
30 | .178 | .160 | .151 | .146 .143 .140 | .138 | .137 | .136 | .135 | .134 | .133 | .131 | .129 | .127 | .126
60 | .089 | .084 | .081 | .079 .078 .077 | .076 | .076 | .076 | .075 | .075 | .074 | .074 | .073 | .073 | .072

‘

a decision in favor of H'(8 = 0) with n < 60 if £ = 2. In such cases it will prob-
ably be a good scheme to curtail testing at some convenient value of n.

7. Alternative procedures. An alternative method of procedure is to keep n
constant and to decide, at each stage, whether to choose another group at random
and take a sample of n from it. This method, which may sometimes be practicable,
has the advantage that it has in general a probability of one of concluding even



SEQUENTIAL ANALYSIS OF VARIANCE 621

when based on a nonzero value for &'. Since the ratio p(G | §”)/p(G | &) will
have the same mathematical expression as in (II) it follows that the appropriate
values of Gz , Gg are those given by (12). Further, in the case when &' = 0 tables
such as Table I may be used in carrying out the test, proceeding along the rows
of the table (i.e., increasing k) instead of down the columns (i.e., increasing n).
By analogy with the case of samples of fixed size it would be expected that this

TABLE Ib
# =1 & =0 a=48=001
(i) Values of Gr

2 —| = - | - | =1 = | — | — |.057|.168 | .216 | .405 | .635 | .909 | 1.273 | 1.732
3 |—=|—=| — | —=1| =] — |.030|.104 | .167 | .221 | .269 | .382 | .507 | .646 | .800 | .974
4 |—|—1| — | — | — |.022|.088|.143 | .189 | .228 | .261 | .339 | .421 | .510 | .605 | .707
5 |—|—| — | — | — |.057).110 | .153 | .188 | .218 | .243 | .302 | .363 | .427 | .495 | .566
6 —| =] — | — |.018|.074 | .117 | .152 | .181 | .206 | .226 | .273 | .321 | .371 | .423 | .477
7 | —i{—| — | — |.034|.082|.119 | .149 | .173 | .193 | .210 | .249 | .289 | .330 | .372 | .416
8 — =1 — | — | .04 .086 | .118 | .143 | .164 | .182 | .196 | .229 | .263 | .208 | .334 | .370

9 —|—1{ — |.001).050 | .087 | .115 | .138 | .156 | .171 | .184 | .213 | .242 | .272 | .303 .335
10 —|—| — |.009 | .054 | .087 | .112 | .132 | .149 | .162 | .174 | ,199 | .225 | .252 279 306
11 —|—| — | .015 .056 | .086 | .109 | .127 | .142 | .154 | .164 | .187 | .210 | .234 | .258 .283
12 —|—1] — |.020 | .057 | .085 | .106 | .122 | .136 | .147 | .156 | .177 | .198 | .219 | .241 .263
15 — = = 028 | .058 | .080 | .096 | .109 | .120 | .129 | .136 | .152 | .169 | .185 | .202 .220
2) —|—| — |.032.055 | .071 | .084 | .093 | .101 | .108 | .113 | .125 | .137 | .149 | .162 174
30 — | —.010 | .032 ; .047 | .058 | .066 | .073 | .078 | .082 | .086 | .094 | .102 | .110 | .118 .126
60 — | — ] .013 | .025 | .033 | .038 | .042 | .046 | .048 | .050 | .052 | .056 | .060 | .064 | .068 .072

(ii) Values of Gr

”\\k 2 3 4 5 6 | 7 8 9 10 1|12 | 15| 20 | 30 | 60 | «
2
3
4
5
6
7
8
9
10
1
12
15

— - - — — - — |47.044 |19.175 |12.533 |9.549 |5.999 [4.157 [3.032 |2.275 |1.732
— — |14.911 |6.572 (4.459 |3.499 [2.952 | 2.599 | 2.352 | 2.171 |2.031 |1.757 |1.520 |1.314 1.134 | .974
57.058 5.470 | 3.150 |2.342 |1.934 |1.689 |1.524 | 1.407 | 1.319 | 1.251 |1.196 |1.083 | .978 | .881 | .791 | .707
7.645 |2.548 | 1.792 |1.457 |1.263 [1.139 [1.052 | .988 | .939 | .900 | .868 | .801 | .738 | .678 | .620 | .566
2.887 (1.675 | 1.271 {1.070 | .950 ; .870 | .814 | .766 | .738 | .711 | .690 | .644 | .600 | .558 | .517 | .477
1.964 |1.255 | .990 | .852 | .767 | .710 | .669 | .638 | .613 | .594 | .578 | .543 | .510 | .478 | .446 | .416
1.490 [1.007 | .814 | .711 | .647 | .603 | .571 | .546 | .527 | .512 | .500 | .472 | .446 | .420 | .395 | .370
1.203 | .843 | .694 | .612 | .561 | .525 | .500 | .480 | .464 | .452 | .442 | .419 | .398 | .376 | .355 | .335
1.009 | .727 | .606 | .539 | .496 | .467 | .446 | .429 | .416 | .406 | .397 | .378 | .360 | .342 ; .324 | .306
.870 | .640 | .539 | .482 | .446 | .421 | .403 | .389 | .378 | .369 | .361 | .345 | .329 | .314 ; .298 | .283
.765 | .572 | .486 | .437 | .406 | .384 | .368 | .356 | .347 | .339 | .332 | .318 | .304 | .290 | .277 | .263
.564 | .436 | .377 | .344 | .322 | .306 | .295 | .286 | .279 | .274 | .269 | .259 | .249 | .239 | .229 | .220
20 .394 | .315 | .278 | .256 | .242 | .232 | .224 | .219 | .214 | .210 | .207 | .201 | .194 | .187 | .181 | .174
30 .249 | .208 | .185 | .173 | .165 | .159 | .155 | .152 | .149 | .147 | .145 | .141 | .137 | .133 | .130 | .126
60 | .120 | .104 | .096 | .091 | .088 | .086 | .084 | .083 | .082 | .081 | .080 | .078 | .077 | .075 | .074 | .072

latter procedure should give, in general, a lower average sample number (of indi-
viduals) than the method based on increasing .

It is interesting to note [9] that, while it is impossible to construct a fixed
size sample test using @ as criterion if ' # 0 unless k exceeds a certain minimum
value depending on «, 8 and 8”/&, for a sufficiently large k a fixed sample size
test 7s available. This suggests that there should be sequential tests, having the
required properties, available for a somewhat wider range of values of k.
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8. Further alternative procedures. Owing to the method of construction of our
tests it is not possible to use Wald’s approximate formula for average sampling
number, which applies to a sequence of identically distributed and independent
random variables. It, therefore, seems worthwhile to note that the hypotheses
discussed in earlier sections can be subjected to sequential tests of standard
type based on sequences of independent random variables. This was pointed
out to me by A. G. Baker, but the idea has also been used by O. J. Car-
penter [10].

In the systematic case such a test can be constructed as follows. Successive
samples of size m(=2) are taken from each of the k groups. A value, g, of @ is
calculated separately for each such sample of size km and the sequence of inde-
pendent g¢’s so obtained used in a sequential procedure constructed in the usual
manner. Such a procedure will not, however, lead to independent ¢’s in the ran-
dom model. If a new set of k groups is chosen at random each time, and an ob-
servation taken from each, then the successive ¢’s will be independent. If we
denote the 7th value obtained by g: the procedure will be

(III) “After the nth set of km observations;

Accept H':6 = ¢ if

= 14 mé + g: 24 nkim — 1)
2, log ; ¥ ¥ dm—1 "
Accept H”:6 = 8" if

= 1+ md + gi 2B nk(m — 1) 1 + mé
LB g =1 T m =T T
Otherwise take a further sample of » from each group.”

In this case, using Wald’s approximate formula for average sample number,
the approximate expected number of individuals to be observed is
mk{A(1 — a) + Ba}/Eni(8')if H' is true, mk{B(1 — B) + AB}/Enx(8") if H”
is true where

_ plg | 8")
Bnsl0) = & [log plg [ o)

1 4+ md’
=1 BT

1 + mo”
1 4+ ms’

3:' = ik(m — 1) log

14+md4g 5]
1 + mall + g *

The leading terms of a useful approximate expression for E. x(5), (obtained
by the method of statistical differentials) are

1 6” / /4

L 3 — 1) | 1og (R/R)

m*m — Dk(k — 1) [(6—98")" (6 — a’)z}
fm + 1 I R?

_ 8m*(m — D)k(k — 1)(km — 2k + 1) {(a I a’)“}J
3(km + 1)(km + 3) R" R’

+ 3(km — 1)8 l:log

En:(8) = 3k(m — 1) log

_I_
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whereR' =km — 1 +m(k — 1)6 + m(m — Dk, R"= km — 1 +m(k — 1) 6
+ m(m — 1)ké”.

Some calculations in the case 8 = 0, §” = 1 indicate that, when § = & = 0,
the average sampling number will be minimized by taking m = 4.

1] A.
[2] G.

3] D.
[4] K.
(5] S.

[6] F.

[7]1 P.

[8] O.

[9] N.

[10] O.
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