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In Theorem 2 change D to D (in the proof the subseript of M should be F).
In the last Corollary add ' {a, y(a); —}, delete “D is closed,” and change
e, y(a); —} to D'{a, y(a); —} with D’ any closed subset of D*® or D*© ,
D* denoting the set of all possible decision procedures (In the proof the first
paragraph should be deleted, and ®® changed to ©.)

In the penultimate paragraph of Section 2 change ®® to D and D to
D', where ©’ is a closed convex subset of D®® or D satisfying (v). The
enumeration of exceptions in the next paragraph should read

“Dy, , D{—; B, 2(8)}, and D’ and its subclasses for D' < D.”?
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ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Washingto;z meeting of the
Institute, December 27-30, 1953)

1. Confidence Intervals of Fixed Length for the Poisson Mean and the Dif-
ference Between Two Poisson Means. ALLAN BirNBaum, Columbia Uni-
versity.

1. To construct an estimate A’ of the unknown parameter N of a Poisson process X (t)
such that with probability at least 1 — «, | A’ — A | £ ¢, where « and e are given positive
constants, let n be a positive integer. Observe T’ , the waiting time required for the oc-
currence of n events. Let ¢ = «ae?/2n. Perform additional observation of the process for
1/2¢T,, units of time;let X be the number of events observed in this period. Set \’ = 2¢7T,X.
2. To construct an estimate A’ of A = A, — A;, where A; , \; are the unknown parameters
of two Poisson processes, such that with probability at least 1 — 8, | A’ — A | < 5, where
8 and y are given positive constants, we may set A’ = Ag — A; , where A and \; are obtained
as above, taking e = /2 and (1 — «)? = 1 — B. In case the two processes can be observed
simultaneously, a more efficient estimate can be given. At least for A exceeding some lower
bound, ¢ can be replaced by c¢* = ¢%/k, where Pr {z = k} = « if z is the product of inde-
pendent chi-square variates with 1 and 2» d.f.

2. Convexity Properties of the alpha-beta-set Under Composite Hypotheses.
HerMaN RUBIN AND OscArR WESLER, Stanford University.

Suppose one is presented with a statistical decision problem of the following kind. A

random variable X is observed and it is desired to test whether the (not necessarily finite-
dimensional) parameter of the distribution of X is in ©; or in Q, . Define, as usual, a(p)
to be the supremum of the probability of an error of the first kind and B(¢) to be the
supremum of the probability of an error of the second kind when the random decision pro-
cedure ¢ is used. If ©; and Q. consist of one point each, it is known that the set S of all
points (a(gp), B()) is convex and symmetric about (3, 3). It is shown that the subset T of
S lying on or below the line & + 8 = 1is convex, and that if the set of distributions under
consideration is dominated by a o-finite measure, the lower boundary of T belongs to T'.
It is also shown that the symmetric image of 7', and possibly more, belongs to S. An ex-
ample is given to show that this “more’’ can destroy convexity.

3. Critical Regions in Terms of Lower Dimensional Critical Regions. L. M.
Courrt, Diamond Ordnance Fuze Laboratory.

Let pi(z|6) = pr(1, -+, Zns |61, -+, Omi) and pa(y [8) = P21, -, Ym [ S1, =+, Sma)
be two independent density distributions and p(z, y | ¢) = pi1(x | 6)p2(y | ) the joint dis-
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tribution formed by their multiplication. Let R; , R, , R be critical regions of size «, 8, v
for pi(x | 6), p2(y | 0), p(z, y | ¢) respectively. Expressions are derived for R in terms of
R; and R; in the cases in which the critical regions are determined by 1) the method of
maximum likelihood, 2) the likelihood ratio and 8) the Neyman-Pearson theory.

4. A Stochastic Model of Traffic Congestion. C. B. WinsTEN, Cowles Com-
mission, University of Chicago.

A simplified model is presented to represent the behavior of traffic at an intersection
controlled by a stop sign or repeated cycle traffic lights. An important property of such
traffic is that it is spaced out, both on arriving at the intersection and on leaving it. To
take account of this properly the model is set up with discrete time points at each of which
at most one car can arrive or leave. For the stop sign case, cars in the minor road wait till
there is at least a safe interval of w time units till the next car in the major road is due.
The arrivals in the minor and major roads are taken as binomial, with probabilities «, 8,
respectively. From a discussion of the queueing process in the minor road, the condition
for the system to settle down to equilibrium is @ < (1 — B8)%, and in this case the mean
waiting time per car is shown to be [l — (1 + w8)(1 — 8)*]1/8[(1 — B)* — a]. A method for
calculating mean waiting time for the equal cycle traffic light problem is also given.

5. On a Property of Certain Linear Functions of Order Statistics from some
Normal Populations. K. C. SeaL, University of North Carolina.

Suppose there are n normal populations N(u; ,0%),¢ = 1,2, - -+ , n, and that one random
observation from each of these n populations is given. It is not known which population
any particular observation came from. Let zq) , (), *** , ) denote the n observations
written in an increasing order of magnitude. It is shown that the expectation of any linear
function eixqy + -+ + cany of the i) (Z = 1, --- , n) with nonnegative coefficients at
least one of which is positive, is a monotonically increasing function of each of the popula-
tion means pu;(z. =1, --+ , n).

6. A Historical Note on the Relation Between Extreme Values and Tensile
Strength. Jurius LieBLEIN, National Bureau of Standards.

It appears to be commonly believed that the statistical treatment of the ‘“weakest-
link’” hypothesis and the use of extreme-value methods in connection with strength of test
specimens originated with F. T. Peirce in an article published in 1926. The discovery by
the writer of a pair of long-forgotten articles in two engineering journals of the 1880’s
shows that we must push the date of first application of extreme values to breaking strength
back nearly 50 years, at least. These articles show a statistical viewpoint ahead of their
time, and might well be read by anyone interested in the development of statistical thought.
The articles, both by W. S. Chaplin, are ‘“The Relation Between the Tensile Strengths of
Long and Short Bars,” Van Nostrand’s Engineering Magazine, December 1880, and “On
the Relative Tensile Strengths of Long and Short Bars,” Proceedings of the Engineers’
Club, 1882.

7. A Note onAStatistics and sigma-subfields. R. R. Banapur, Columbia Uni-
versity. ‘

Let there be given a Borel set X of m-dimensional Euclidean space (1 < m < ), and
let S be the class of Borel measurable subsets of X. If f is a function on X into a set Y,
let 8y = {f71(4):A C Y, f(4) £ S}. Then, for each f, S; is a o-subfield of S. It is shown
in this note that corresponding to any o-subfield S* and any probability measure p on S
there exists an f (depending in general on p) such that S* = S; in the sense that corre-
spénding to each set in one o-subfield there exists a set in the other such that the symmetric
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difference of the two sets is of p-measure zero. This result is obtained by means of the
theory of sufficiency, and has in turn certain applications in that theory; for example, if
f is a necessary and sufficient statistic for a dominated set P of measures on S then S; is
a necessary and sufficient o-subfield for P. It is shown by an example that the converse of

the last stated result is false. .

8. Completeness, Similar Regions, and Unbiased Estimation, Part II. (Pre-
liminary Report.) E. L. LeamMaNNy AnD HeNrY ScuErrs, University of
California, Berkeley.

Continuation of Part I (Sankhyad, Vol. 10 (1950), pp. 305-340) to obtain theorems about
the generation of complete families of measures from other complete families, application
of these results (i) to the Pitman-Koopmans-Darmois family to prove certain tests con-
cerning this family uniformly most powerful unbiased, and (ii) to some nonparametric
problems.

9. On Linear Regression Analysis when the Dependent Variable is Rectangular.
E. G. Orps, Carnegie Institute of Technology.

Assume chance variables y; , rectangular on « + B(z; — &) &= ¢, with ¢ known but with
« and B unknown. Values of y; are observed for a fixed set of z-values and an estimator
a + b(x; — %) is to be determined. In general, the maximum likelihood estimator is not
unique. Furthermore, the method of least squares sometimes yields an estimator which
might be called inadmissible since, for one or more values of x the value of the estimator
differs from the observed value of ¥ by more than ¢. The present paper gives a convenient
method of obtaining a modified least squares’ estimator which is admissible in the sense
implied above. The proposed estimator belongs to the convex set of maximum likelihood
estimators and is unbiased. Also included in the paper is a method for finding the largest
and smallest admissible estimates corresponding to any specified value of z.

10. Some Further Results in Simultaneous Confidence Interval Estimation.
S. N. Roy, University of North Carolina.

In continuation of previous work in this line (S. N. Roy and R. C. Bose, ‘“‘Simultaneous
Confidence Interval Estimation,” Ann. Math. Stat., Vol. 24 (1953), pp. 513-536) simul-
taneous confidence bounds have been obtained for each of the following sets: (1) (a) ele-
mentary symmetric functions of the characteristic roots of the covariance matrix Z for
one multi-variate normal population, (b) the same for the matrix 2, 27 for two multi-
variate normal populations and (2) certain simple functions of the canonical regressions
between two subsets of a multivariate normal set. It has been possible to obtain the bounds
for 1(a) in terms of similar functions of the charactenstlc roots of the sample matrix S,
for 1 (b) in terms of similar functions based on 81851, and for (2) in terms of sample ca-
nonical regressions.

11. A Method for Generating Random Variates on Electronic Computers.
D. TEICI—IROEW, National Bureau of Standards.

Some of the methods by which values of random variates are obtained for use in high-
speed automatically-sequenced computers are: (i) using previously computed values, such
as tables of normal deviates, (ii) determining the value for which the probability integral
has a given (random) value, and (iii) accepting or rejecting random values on the basis of
other random values, for example, a random value, z, may be accepted if another random
value is less than the value of the density function at the point z. In many cases the most
serious objection to these methods is that they take too much computing time. A method
is proposed which appears useful for very fast computers with a relatively small amount
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of storage. The method consists of two computations. The machine first computes a random
variate y and then transforms y into z, a variate with the desired distribution. Computa-
tion time is minimized by selecting a y which can be computed quickly and which also
permits the transformation to have a simple form.

12. Theory of Successive Multiphgse Sampling. (Preliminary Report.) B. D.
TixkiwaL, Columbia University.

Suppose there are k characters of an infinite population under consideration and the
tth (Z = 2, .-+ | k) character is always studied on the part of the sample taken for the
(7 — 1)st character on each of the occasions observed up to a certain period. A best estimate
and its variance for each of the k characters on each occasion were obtained under a certain
pattern of correlation between the various characters occurring on the various occasions,
[paper read by the author before the annual meeting of the Indian Society of Agricultural
Statistics, 1951]. Now it has been further noted that if the infinite population studied on
each of the successive occasions is replaced by a finite population of size N, the best esti-
mates for the various k characters remain the same. However, the variance of the best
estimate is decreased in each case by a quantity ¢2/N where o2 is the population variance
on the kth occasion of the character under consideration. Thus in particular it can be
noted that the best estimate given by Patterson [J. Roy. Stat. Soc. Suppl., Vol. 12 (1950),
pp. 241-255] for the study of one character remains unaffected, when the infinite population
is replaced by a finite population of size N, but its variance is decreased by ¢%/N.

13. Estimation of the Size of a Stratiﬁed’ Population. Dougras G. CHAPMAN
AnND C. O. JuNGE, JRr., University of Washington and Washington State
Department of Fisheries.

The estimation, by marking methods, of the size of a population which has a variable
stratification, is studied. It is noted that no unbiased estimate of this parameter exists.
Conditions are found under which the standard estimate (which is constructed without
reference to the stratification) and an estimate given by Schaeffer are consistent. A new
estimate is obtained, which is consistent not only under wider conditions, which are more
likely to be fulfilled in actual marking experiments, but also under different sets of as-
sumptions. The asymptotic variance of this estimate is derived. Tests are suggested for
determining which of these estimates should be used. The results may also be adapted to
evaluating the stratification changes that occur within a population.

14. Sequential Life Tests in the Exponential Case. BENJAMIN EPSTEIN AND
MivrToN SoBEL, Wayne University and Cornell University.

In this paper a sequential life test procedure is worked out in detail. As in previous work
devoted to nonsequential methods, it is assumed that the underlying p.d.f. is exponential.
An interesting feature of the test is that decisions are made continuously in time. Various
useful formulae and tables are given. (Sponsored in part by the Office of Naval Research
and the Office of Ordnance Research of the U. S. Army.)

15. Distributions of Some Integrals of Certain Gaussian Stochastic Processes
and the Limiting Distributions of Some “Goodness of Fit”’ Criteria. T. W.
ANDERSON, Columbia University.

To test the hypothesis that a sample of N observations has been drawn from a popula-

tion with a specified continuous cumulative distribution function F(z) one can compare
the empirical cumulative distribution Fy(z) with F(x) by means of

-

Wy = f [Fy(z) — F@)IF ()] dF ()
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and Vy = ff [Fy(x) — F(2)1[Fy(y) — FWIU[F(z), F(y)] dx dy. The limiting distribution
of Vx under the null hypothesis is the distribution of ¥V = ff X (w)X )l(u, v) du dv, where
X(u)(0 £ v £ 1) is a certain Gaussian stochastic process with mean zero, and the charac-
teristic function of V is shown to be Il (1 — 24t | u;)~%, where u; are the eigenvalues of
f k(u, w)l(w, u) dw and EX (u)X (w) = k(u, w). The characteristic functions of 7' =
J X @) + k@)% (u) duand 8 = [[ [X(w) + k@)][X @) + k@))i(u, v) du dv are shown to
be the products of the characteristic functions of W = f X2(u)y (u) du and V, respectively,
and certain exponentials, the exponents being integrals of &£ (u). If the sample of N is drawn
from Hy(z) and if Hy(z) approaches F(z) in a certain way, then the limiting distribution
of Vy is the distribution of T'.

16. Some Sampling Results on the Power of Nonparametric Tests Against
Normal Alternatives. W. J. Dixon anp D. Tercuroew, National Bureau
of Standards.

This report contains some of the results of sampling investigations of the distribution
of several nonparametric two-sample tests under the null hypothesis and under alternative
normal hypotheses. The sampling was carried out at the University of Oregon in 1949-50
and at the National Bureau of Standards, Los Angeles, in 1952. In both cases the number
of samples was not large. The sampling performed, however, is sufficiently extensive to
give a general indication of the relative power of the different tests and to indicate the
range of alternatives to be sampled further to gain more precise determination of power.
The tests, listed in order of their power to reject the alternative hypotheses, are: (i) rank
sum test, (ii) maximum deviation test, (iii) median test, and (iv) run tests. The results
for the rank sum test indicate that one does not lose much power if the rank sum test is
used instead of the ¢ test in cases where the distributions are actually normal.

17. On the Large Sample Power of Rank Order Tests in the Two-Sample
Problem. MEYER Dwass, Northwestern University.

Let the random variables X1, --- , Xy be independent, and let R, , --- , Ry be their
ranks. Let Sy = Zayif(R:/N), where ay1 = -+ = Gym , ONm41 = - = ayy, 2oay; = 0,
Zayi = 1. Let Ho be the hypotheses that the X; are identically distributed. Let H 1(8) be
the alternative that the X; are independent, but that the first m have one density function
gi(z, 6), and the remaining N — m have another density function g;(x, 8), where 6 is a
one-dimensional parameter and where g:(z, 0) = g.(z, 0). The following is shown subject
to certain regularity conditions. 1) If f is a polynomial, Sy is asymptotically normal when
H, is true and when H;(8) is true. 2) Consider the test which rejects Hy when Sy is too
large. For f a polynomial, we approximate the large sample power against H;(8) for such
tests whose significance levels approach @ as N — «, in the following sense: ¢ is determined
such that the power differs from 1 — ®(\ — 64/Nc¢) by less than any preassigned ¢ > 0 for
N sufficiently large, where ® is the normal (0, 1) ¢.d.f. and 1 — ®(\) = . 3) It is shown
how to choose that polynomial of a given order which maximizes the large sample power.
A polynomial, f can be chosen of sufficiently high order so that the large sample power of
the test based upon Sy is arbitrarily close to the large sample power of the classical likeli-
hood ratio test.

18. Multiple Tests and Intersection Region Procedures. Davip L. WALLACE,
Massachusetts Institute of Technology.

A statistical hypothesis is often expressed as the logical intersection of several compo-
nent hypotheses. If tests of the component hypotheses are available, a natural test for the
full hypothesis is defined to reject whenever one or more of the component hypotheses are
rejected. If an indexed family of such hypotheses is tested, confidence regions for the index
are obtained from each of the families of component tests. The region defined by the family
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of multiple tests is the intersection of the component regions. Properties of the multiple
test and intersection region are discussed. Of special interest is the pth order general
linear hypothesis with its p single linear component hypotheses. Intersection region pro-
cedures are useful in obtaining ‘‘usable’ confidence regions for the location of the vertex
in quadratic regression.

19. Some Significance Test Prockdures for Multiple Comparisons. H. O.
HarTLEY, Iowa State College.

In the comparison of k experimental means arising from an ‘Analysis of Variance’ of
data one of the procedures for deciding on the significance of all the 3k(k — 1) differences
is the so-called ‘Newman-Keuls’ procedure. Some properties concerning the error of the
first kind and of the power involved in this procedure are proved. A similar sequential
procedure for testing the significance of ¥ mean squares is then suggested. This is based
on the distribution of the largest of k¥ F-ratios obtained from % treatment mean squares
s% , respectively based on »; degrees of freedom and all divided by the same error mean
square based on » degrees of freedom. This procedure is first developed for the case of
equal »; , then generalised to differing »; and shown to have properties similar to the
Newman-Keuls procedure.

20. A Sequential Test of Randomness Against Linear Trend. Gorrrriep E.
NoerHER, Boston University.

Given observations X; , X, , -+ ,let Z,; = 0 or 1 depending on whether X3,;.4is smaller
or greater than Xooynjmj=1,9=0,1,2, -« ,h = 1,2, --- , j. Under the alternative
hypothesis of the linear trend F(z, %2, -+ , %) = Il F(z: + %), PZp = 1) =

P(X; > X;4u1) = p1, say, while under the hypothesis of randomness, P(Z,, = 1) = }. The
hypothesis of randomness can then be tested by means of the usual sequential procedure
for testing the hypothesis that for a binomial distribution p = } against the alternative
p = p1 . There exists an optimum value of j in the sense that the expected number of
observations required by the test corresponding to this j is not larger than that for any
other j. This sequential test is compared with tests of randomness based on runs up and
down and also with Mann’s T-test. It turns out that on the average the sequential test
requires fewer observations than these other tests, at least for sufficiently small values of
0. (Research sponsored by Air Research and Development Command.)

21. Further Results in the Theory of Quality Control Charts. LEo A. ARoIAN,
Hughes Research and Development Laboratories.

The type of decision for a quality control chart, the case of erratic production for two
or more charts, and a special case of a control chart by attributes versus control charts by
variables, are investigated. Examples illustrate the theory for the control of the mean and
the standard deviation for one chart used alone or two charts used together. The theory
extends results given in a previous paper, “The Effectiveness of Quality Control Charts,”
by L. A. Aroian and H. Levene, J. Amer. Stat. Assn., Vol. 45 (1950), pp. 520-529.

22. Minimum Life in Fatigue. E. J. GuMBEL AND A. M. FREUDENTHAL, Colum-
bia University.

The probability of survival at N cycles for constant stress levels S was analysed with
the help of the asymptotic theory of smallest values of a nonnegative variate. In this case
two parameters exist, the characteristic number of cycles to failure Vg and a scale parameter
1/as . The available fatigue test results for copper, nickel and aluminum specimens at
high stress levels show that this approach is justified in first approximation assuming that
the ‘“minimum life,”” that is the number of cycles No,s below which no specimen breaks at
the ‘stress level 8, is practically zero. However, test results on the same metals at low
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stress levels and for steel show a significant positive minimum life. Therefore the theory
is generalized by the introduction of this value as a third parameter. The exponential
function and four pseudo-symmetrical cases where two averages coincide or the skewness
is zero, are special cases of this survivorship function. The three parameters are estimated
by the method of moments which requires the calculation of the sample mean, the standard
deviation and skewness. The estimate of the scale parameter depends only on the sample
skewness which has a high degree of variation. The estimates of the characteristic number
of cycles to failure and the minimum life depend upon all three statistics and are obtained
without any successive approximations. The theory leads also to an upper bound, a large
number of cycles at which the probability of survival becomes infinitesimally small.
Observations on copper, nickel and aluminum at high stress levels and on steel traced on
the logarithmic extremal probability paper lead to curved survivorship functions which
are very well reproduced by this theory. (Work sponsored in part by the Office of Ordnance
Research.)

23. Bounds for the Distribution Function of a Sum of Independent, Identically
Distributed Random Variables. WassiLy HoerFpING AND S. S. SHRIK-
HANDE, University of North Carolina and University of Nagpur.

The problem is considered of obtaining bounds for the cumulative distribution function
of the sum of n independent, identically distributed random variables with & preseribed
moments and given range. For n = 2 it is shown that the best bounds are attained or
arbitrarily closely approached with discrete random variables which take on at most
2k + 2 values. Explicit bounds are obtained for the case of nonnegative random variables
with given mean when n = 2; for arbitrary values of n bounds are given which are
asymptotically best in the “tail’’ of the distribution. Some of the results contribute to the
more general problem of obtaining bounds for the expected value of a given function of
independent, identically distributed random variables when the expected values of certain
functions of the individual variables are given.

24. Sequential Rank Sum Tests. (Preliminary Report.) Cuia Kuer Tsao,
Wayne University.

Let f(z) be a continuous p.d.f. defined over a space S. To test a simple hypothesis Hy:
f(z) = fo(xz) against an alternative hypothesis H, : f(z) = fi(x), we divide S into three
mutually exclusive sets Sy , S; and S; . For 7z = 0, 1, the set S; is subdivided into k; subsets
Si, Siz, -+, Siz; . Random observations are drawn successively. At each stage, count
the number of observations falling in each of the k, + k; + 1 sets. Foreachm(m =1, 2, ---)
denote by m;; the number of observations falling in the set S;;,j =1,2,--- , k; ;2 = 0, 1.
Let s; = Z%,jm:j(@ = 0, 1). Let ao and a; be two positive integers. Continue to draw
observations as long as s; < a:(¢ = 0, 1). The experiment is discontinued as soon as s, =
ao or 8; = a1 . The hypothesis H; is accepted if s; = a; (¢ = 0 or 1). The ko + k1 + 1 sets
are determined so that the following four conditions are satisfied: (1) So; :co; = f1(2) /fo(z) =
Coj-1, J = 1\: 2, -+0 ko H (2) Sli Pej = fl(x)/f\?(x) =0, =12 .-, ki (3)
Pr(XeS;j|Ho)= Pr XeS;|Ho))/ki,j=1,2,--- , ki, =0,1; (4) the pair (co , c10),
where ¢y < ¢, is 80 determined that the test satisfies certain requirements. In this paper,
the distribution and the m.g.f. of the sample size, the power function of the test and the
ASN function are obtained. Other properties are also studied. Applications to the para-
metric and nonparametric problems are discussed.

25. A Remark on the Geometrical Method of Construction of an Orthogonal
Array. EsTHER SEIDEN, University of Chicago.

* R. C. Bose and K. A. Bush showed [Ann. Math. Stat., Vol. 23 (1952), pp. 508-524] how
one can make use of the maximum number of points, no three collinear, in finite projective
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spaces in order to construct orthogonal arrays. In particular, this method enabled them to
construct an orthogonal array (81, 10, 3, 3). They proved, on the other hand, that in the
case considered the maximum number of constraints cannot exceed 12 (Theorem 2C).
Hence they state: “We do not know whether we can get 11 or 12 constraints in any other
way.” It is shown that no such way exist‘s.

26. Some Contributions to the Theory of Markov Chains. (Preliminary Re-
port.) Cyrus DErMAN, Columbia University.

Suppose that a collection of particles are moving about independently according to
probabilities given by a Markov chain with transition matrix P = {p;;} 7,7, = 0,1, --- .
Let A,(¢) denote the number of particles in state ¢ at time n (, n = 0, 1, ---). Some suf-
ficient conditions on P and on the distributions of the 44(7)’s were found such that for
any set 4, , +-- , %, , the joint distribution of A,(¢,), -+ , 4.(¢,) tends as n — « to that
of r independent Poisson distributions. Consider a recurrent Markov chain {X,}. Let
Nn(3) = {the number of r’s such that X, = ifor1 = r < n}¢ =0, 1, --- . The following
theorem was proved. If H(n) is any nondecreasing unbounded function and if ¢ and j are
any two states belonging to the same class, then with probability one the inequality
| (Na() = @iiNa(@®)/(Na@) 4+ Na@PHNLG) + Na(G)) | > bij, where a:; and b;; are
certain constants, will be satisfied for infinitely many or at most finitely many » according
as Zoa Hn) exp (—H?(n)/2)/n diverges or converges. Sufficient conditions were given
such that for any ¢, , --- , i, the distribution of N,(31), --- , N.(i,) properly normalized
approaches a multivariate normal distribution. The asymptotic covariance matrix was
computed. '

27. Minimax Invariant Procedures for Estimating Cumulative Distribution
Functions. Om P. AcgarwaAL, University of Washington.

Letzy <2< --- <z, be the ordered observations on a chance variable with cumulative
distribution function F. Let F denote an estimate of F based only upon the sample. The
minimax invariant procedures of estimating F are obtained for two classes of loss functions
L(F, i‘). For L(F, F) = f_: | F(z) — F(z) | dz, with integer r = 1, the minimax invariant
procedure is to estimate F by a step function i‘(x) =ciforz; =2 <%jn;7=0,1,---m,
where %, and .41 denote —« and 4+« and c; is obtained as the root of an equation of
degree (n 4 r) when r is odd and of degree (r — 1) when r is even. For the special case
r = 1 the value of ¢; is the median of a Beta distribution. For r = 2, one obtain§ c; =
G + 1)/(n 4+ 2). For the class of loss functions L(F, F) = f:; [F(x) — F(x)I*/
F(z)[1 — F(x)] dz, onte again obtains for minimax invariant procedure step functions with
¢; determined as root of an equation of degree (2k — 1). In particular for ¥ = 1 this optimum
procedure turns out to be the usual sample cumulative function with ¢; = j/n. (Work
supported by the Office of Naval Research.)
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