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Summary. This paper is concerned with a single-sample multiple decision
procedure for ranking means of normal populations with known variances.
Problems which conventionally are handled by the analysis of variance (Model
I) which tests the hypothesis that k means are equal are reformulated as multiple
decision procedures involving rankings. It is shown how to design experiments so
that useful statements can be made concerning these rankings on the basis of a
predetermined number of independent observations taken from each population.
The number of observations required is determined by the desired probability
of a correct ranking when certain differences between population means are

specified.

1. Introduction. In many of the experimental situations to which tests of
homogeneity conventionally are applied, such as the F-test that k population
means are equal, or Bartlett’s test that & population variances are equal, the
tests (whether or not they yield statistically significant results) do not supply
the information that the experimenter seeks. Thus in an agricultural problem the
hypothesis that several essentially different varieties of grain have the same
(population) mean yield is an unrealistic one since it is obvious that if the varie-
ties actually are different, the (population) mean yields also will be different,
and a sufficiently large sample will establish this fact at any preassigned level
of significance. Moreover, should a significant result be obtained, the experi-
menter’s problems usually have just begun. For having established that the
varieties are different he may now desire to select the one which is “best.” Here
the best variety might be defined as the one having the largest (population) mean
yield. Whenever the experimenter ultimately is faced by the prospect of having
to choose a best variety, it seems reasonable that the experiment should have been
designed with this outcome in mind. What is needed then is a decision procedure
which will tell the experimenter which population or populations to choose, and
an operating characteristic which will tell him the probability of his making a
correct choice if he follows the given decision procedure. The experiment then
should be so designed as to control (in some sense) this probability at some pre-
assigned level.

Although the formulation of the problem as outlined above appears to be a
reasonable one, little work along these lines has appeared in the literature. In
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this connection three papers by Paulson [12], [13], [14], all involving multiple
decision procedures, deserve special mention. In the first he considers the 2*—1
decision problem of dividing a set of k population means into a ‘“‘superior”
and an “inferior” group; in the second he considers the % decision problem of
determining the “best”” of k populations when comparing £ — 1 experimental
populations with a control population; in the third he finds an optimum solu-
tion to a k -+ 1 decision “slippage” problem of Mosteller [10]. Duncan [5],
[6] has considered multiple decision procedures involving means. (It is not clear
what kind of over-all confidence statement (with stated confidence coefficient)
the experimenter can make if he uses Duncan’s procedure.) Tukey [19] and
Scheffé [16] have proposed very interesting alternate formulations of the analysis
of variance problem; they are concerned with making multiple comparisons
among the means.

The principal results of the present paper deal with a single-sample method
of designing experiments to determine the ranking of & normal populations
where the true ranking, concerning which information is sought, is based on the
population means; in a later paper the writer intends to treat the similar situa-
tion where the true ranking, concerning which information is sought, is based
on the population variances.

2. The test of homogeneity (analysis of variance) approach. The classical test
procedure known as the analysis of variance was introduced by Fisher [8], [9]
as a method of analyzing certain types of complex experiments and since has
become one of the basic tools of the practicing statistician. At the time of its
introduction the procedure represented a considerable contribution to the then
available body of statistical techniques. Perhaps its greatest accomplishment
lay in the fact that it stressed to the experimenter the principle of orthogonality—
a principle which if carefully adhered to would permit him to extract from com-
plex experiments considerable information concerning the effects of each of the
factors that entered into the experiment; this same principle of orthogonality
made it possible for him to test, without difficulty, hypotheses concerning the
existence of these effects.

It has been recognized by many statisticians that the analysis of variance
has certain deficiencies. However, these deficiencies do not lie in the design
aspects of the procedure, but rather in the types of decisions which are made
on the basis of the data. The substantial contribution of experimental design
(in the Fisherian sense) to the planning of a meaningful experiment cannot be
overemphasized. However, there seems to be considerable doubt as to the
utility of the tests of hypotheses which usually are the end products of any
analysis of variance. Cochran and Cox in their excellent book Exzperimental
Designs point out that “On the whole . . . tests of significance are less frequently
useful in experimental work than confidence limits. In many experiments it
seems obvious that the different treatments must have produced some differ-
ence, however small in effect. Thus the hypothesis that there is no difference is
unrealistic: The real problem is to obtain estimates of the sizes of the differences.”
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However, in many instances the purpose of the experiment is not to estimate
the sizes of differences, but rather to find the “best’’ treatment or treatments.
The method of estimating the sizes of differences often is used as a way of at-
tempting, indirectly, to achieve this goal. The method described in the next
sections is a direct approach to a solutlon of the ranking problem.

In these sections we shall assume the same underlying mathematical model
as is assumed for the analysis of variance (Model I). However, we shall reformu-
late the purpose of our observation-taking. Instead of being interested in testing
hypotheses that population means are equal, we shall be interested in making
certain inferences concerning the ranking of these population means. It is im-
portant to emphasize, however, that in this ranking approach, experimental
designs such as randomized blocks, Latin squares, etc., will play the same role
as they do in the analysis of variance.

3. The ranking (multiple decision) approach: the one-way classification.

A. Statement of the problem. Let X;; be normally and independently distributed
chance variables N(X;; | s, 0%, G = 1,2, -+ ,k;j=1,2, --+ , Ni). We assume
that the u; are unknown; the o% are known and may be equal or unequal. Let
p = p = - -+ Spp be the ranked u; ; we assume that it is not known which
population is associated with urg 2 = 1,2, ---, k.

We further assume that a population is characterized by its population mean,
the “best” population being the one having the largest mean, the “second
best” being the one having the second largest mean, etc. (Alternatively, we
might have defined the “best” population as being the one having the smallest
mean, ete.; however, the mathematical theory is the same for both cases.) Thus,
the k populations might be k different varieties of grain, and u; might be the
(population) mean yield per acre of the 7th variety. We would like on the basis
of a sample of N = D%, N; independent observations to make some inference
about the “bestness” of the populations. (This statement will be made precise
later.)

Our inferences will be based on the sample means. The sample mean from the
sth population will be denoted by X;. (For the sake of simplicity, no attempt
will be made in this paper to distinguish notationally between chance variables
and their observed values.) The sample mean, population variance, and sample
size assoclated with the population having populatlon mean up; will be denoted
by X, a(,) , and N, , respectively, (¢ = 1, 2, ---, k); that is, the expected
value of X is ury and the variance of X, is a(,)/N @ - The ranked X; will be
denoted by

1) X[n < X[g] - < X[k] .

The event X; = X;(i # j) is an event of probability zero and can be ignored
in probability calculations. However, in experimental situations this event can
occur frequently because of the limitations of the measuring instrument. If it
does oceur, the tied means should be “ranked’ using a randomized procedure
which assigns equal probability to each ordering.
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In order to apply our procedures, the experimenter must decide what his goal
is before he takes his sample. For example, his goal may be to find any one of
the following (or others unlisted):

2) The “best” populdtion.

3) The “best two’’ populations without regard to order.
4) The “best two’’ populations with regard to order.

(5) The “best three” populations without regard to order.

The choice of a goal will depend on economic and other considerations outside
the control of the statistician. . "

Having chosen a goal the statistical procedure is elementary. We take N
observations from the sth population (z = 1, 2, -.-, k). We compute the %
sample means X7, X;, --- , Xi . We make the ranking (1). We then take action
as follows. If our goal is to find (2), we make the statement, “The population
associated with Xy, is the ‘best’ population.” If our goal is to find (4), we make
the statement, “The populations associated with Xy; and Xy are the ‘best’
and ‘second best’ populations, respectively.” If our goal is to find (3), (5), etec.,
we make similar statements.

For fixed values of the u; and o ( = 1, 2, - -+, k) the proportion of correct
statements that we make will depend only on the N, but the proportion will
differ, of course, for each kind of statement. We propose to design the experiment
in such a way (that is, choose the N; in such a way) that under specified condi-
tions the proportion of correct statements associated with our decision pro-
cedure will be equal to or greater than some preassigned value.

B. Ezxpressions for the probabilities. The required probabilities of a correct
ranking can be expressed in two basically different forms, as volumes under
multivariate normal surfaces, or as iterated integrals. We shall consider both
forms. In order to do so we first must state our goal.

A general goal for the one-way classification of means can be expressed as
follows. (See also (24)). To find

The k, “best” populations, the k,—; ‘‘second best” populations,
6) the k,_ “third best” populations, etc., and finally the k; “worst”
populations.

Here ky, ky, -+, ks £ k) are positive integers such that Y i k: = k.
The probability of a correct ranking associated with (6) can be written as:

Primax {Xq, -+, Xap} < min {Xon, ooy Xagrin ),
(7) max {X(k1+l) y " X(k1+kz)} < min {X(k1+kz+1) y " X(k1+k2+ka)},

max { Xk, 140, =+ » Kook} < min {X—ty4n -+, X}l
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If we assign particular values to s and the k; we obtain several special cases
of interest, two of which we shall consider in some detail to illustrate the method.
For example, for s = 2;k; = k — ¢; ks = t, we have

® Primax {Xo), Xoy, *+ , Xa—n} < min {Xp—ern, -+, X}l
andfors =k; k= ks = .-+ = ki = 1, we have
9 PriXog < Xg < -+ < Xg-py < Xwl

Stated in words, (8) is the probability that the “best ¢’ populations will yield
the largest sample means; thus (8) for¢ = 1, 2, 3 is the probability of a correct
ranking associated with (2), (3), (5), respectively.

If we consider (8) for ¢ = 1 we have

(10) Primax {Xa), Xey, -+, Xa-n} < Xa)

=Prl0< ¥;,,0< Y, --,0 < Yi]
where Y; = X(k) - X({) (’L =1, 2, cev, k- 1) Then E(Y.) = U] T MG = Ok,i
(say)

2 2
y) = I® 4 TG for 6 =1,2,--- ,k—1
(¥ N(k)+N(0 or (¢ )

2
o(Y;Y,)=]g\f(k-) for i # j(3,j, = 1,2, --- ,k — 1),
[0)
and the Y; have a (¢ — 1) — variate normal distribution.
If we denote the covariance matrix of the Y; by ¥, and denote the row vectors
1, ¥z, , Yr—) and (Bx1, Or2, - - , Oki—1) by ¥ and &, respectively, then
(10) is given by

_i _
(1 (2l ?‘kl—n/zf f .f e IECD Gy dyy - dyas
If all of the means have the same variance, that is, if
(12) az(i)/N(i) = 0'23 (Sa‘Y)’ (i = 1’ 2) ttt k))
then (10) is equal to
3 o0 40 o0 I

1 f f f i TR dndx, - - - dag—
(18) To=m x®-D2 (=8kik=1) /208 J(~bp,k—2)[\/20% (_sb,,)\/avxe 1552 k-1

where P; = {p;;} is the k¥ — 1 by k — 1 correlation matrix with

lfore =j .
(14) pii={l . . (’L,]=1,2,"’,k—-1)
tfori = j

and z’ denotes the row vector (1, 22, --, Zx—1). Similarly, under condition
(12), (9) is equal to
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( ot 4o 4o -
15)———f f / € T tdndey -+ dzg
7 &V o) 1VEo2 J(—tpmypo0) Vo (=891 IV/Zo%

where P, = {p;;} isthe k — 1 by k — 1 correlation matrix with

1 for £=3j
(16) pij=<—% for |i—j|=1
0 for |2 —j|>1 (4,7ij=1,2,---k—1)

and 2’ denotes the row vector (21, 22, **+ , 2k-1).

The probability (7) always is expressible as a sum of integrals of the form
(11), and if (12) is true, each of these is reducible to integrals of the form (13)
and (15). These integrals cannot be evaluated in finite terms, and the precise
determination of probabilities would in general require special tables. However,
for k = 2 the probabilities (13) and (15) are identical, simply being areas under
univariate normal curves; Eisenhart [7] has tabulated unity minus these proba-
bilities as a function of 3,1/¢ and N for the special case ¢ = o3 = o and N; =
N, = N. For k = 3 the probabilities (13) and (15) are volumes under bivariate
normal surfaces with correlation coefficients p = 4% and p = —1%, respectively,
and can be determined using [3] or [15]. For 4 < k < 10 the probabilities (13)
can be determined using [11]; for k¥ = 4 the probability (15) would require
special tables which have not yet been prepared. (For related tables see [11]
and Section 3D, and the tables at the end of this paper.)

In the first part of this section the probabilities (8) and (9) were expressed as
volumes under multivariate normal surfaces. These probabilities also can be
expressed as iterated integrals and for certain purposes the latter form is more
convenient. We shall illustrate the method for the probability (8) but shall do
so only for the special case

a17) oi=d,Ni=N G=1,2 -,k
which guarantees (12), and
B — Hpe—t4y = 0
(18) Rli~t41] — HBp—g = & (say)
Bp—g — pm = 0.

(In Section 3C we shall refer to condition (18) as “the least favorable configura-

tion of the population means.”)
When (17) and (18) hold we can write (8) as

# Primax {Xq), -+, Xo-n} < X—esy < min {Xgoi9), -+, Xy}

o ] (R k=t 1)=B[k=21)] (6] \/N) R k—t
= { [ [——:-_ [ e—‘ 2 dz
0 '\/27!' L

19) [ 1 ./‘"'” 0 dz]‘—l
V21 J( R et t1y=n 1kt +11)] @] /F)

N —~N(X - 2/942 -
Vv ¥ F kot =Mkt 41])2 20 dX -

t+1)
o or
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which, after making the transformation y = /N (X¢—-141) — Bre—t411)/0, yields®
+00
(20) t [ PG + 1 - FQI ) dy
where )
(21) F(y) — __]_'._. v 6—32/2 dx Fl(y) = f( ) = __.l_e—1/312
V21 Jow ’ y vV 2r
and
d = @ = M(say)

g

(22)

where A is the standardized difference between the population means. If d = 0,
the probability (20) is equal to

ik — 8! 1
(23) ‘T— - Cko

t

The integral (20) is easier to evaluate numerically than the integral (13) even
though the former is a more general case of (8) than the latter.

A more general goal than (6) also can be formulated. As an example of a
special case of this we shall find

(24) to of the ¢ “best” populations A=h=s0).
For (24) the probability of a correct ranking is given by

t! +e k—t t—tg to—1
(5 i L. P+ DI - FOIT) dy

under the assumptions (17) and (18). We note that (25) reduces to (20) for £
= . In certain situations the experimenter may be willing to relax his require-
ments and specify (24) as his goal’ rather than the corresponding case of (6).

C. Determination of the sample sizes. The ‘“distances” of the k& populations
from each other can be expressed in terms of the & — 1 parameters

(26) Oiv1,i = Biv1] — M) =12 ---,k—1).
To simplify notation let

(27) Diak; = k; (say).

Then we note that of the k¥ — 1 parameters (26), s — 1 of them, namely,

(28) i Ok ;41 Z=12,---,8—1)

exercise a general over-all control on the probability (7), since if the parameters
(28) are “small” the probability (7) is relatively low and if they are ‘large”
the probability (7) is high. (For example, for (8) the parameter 8;—¢i1,—: is the

3 Paulson obtained this integral for the special case ¢ = 1; see equations (2.2) in [12] and
(2) in [13].
4 The formulation of the problem as given in this paragraph was suggested to the writer
by Dr. Milton Sobel who also derived the expression (25).
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controlling one. If this parameter is made arbitrarily small, the probability (8)
lies.between (23) and one-half; by increasing this parameter, the probability (8)
can be made arbitrarily close to unity.) It is obvious that for fixed nonzero
values of the parameters (28), and, for fized population variances ¢%, the proba-
bility (7) can be made arbitrarily close to unity by making the N; (z = 1, 2,
-+, k) sufficiently large. But if one or more of the s — 1 parameters (28) is
very small, the N = Y %., N; required to realize any probability close to unity
will be extremely large.

Now in most experimental situations there seems to be little if any reason
for attempting to differentiate between any pair of populations characterized
by wi; and ui,4 if the corresponding parameter (28) is very small since the
expense involved in guaranteeing a high probability of a correct ranking may
be prohibitive and/or the economic loss involved in making an incorrect ranking
may be negligible. In fact, in most situations it should be possible to specify
s — 1 constants

(29) o i G=1,2--,s—1)

which are the smallest values of the parameters (28) which are “worth detect-
ing.” We shall assume that these are given in what follows.

It is our purpose to find the smallest N = Z'ﬁ_; N; which will guarantee a
specified probability vy < 1 of a correct ranking whenever &i,41.4;, = 0f:rui
z=1,2,---,8 — 1). As a device for doing this we consider the least favorable
configuration of the population means. This configuration is defined as being the
one which, for fixed N; and o3 (s = 1,2, - -+ , k), yields the greatest lower bound
of the probability of a correct ranking. Since the probability (7) is a strictly
increasing function of each of the parameters 8;1,:;(¢ = 1,2, --,k — 1), it is
easy to see that the greatest lower bound is achieved when each of the s — 1
parameters given by (28) has the corresponding parameter values given by
(29), and each of the ¥ — s parameters given by (26) but not given by (28)
has the value zero. The desired N = E'ﬁ_l N is then the smallest one which will
guarantee the probability v for the least favorable configuration. Of course,
the efficient choice of the N; will depend on the o3 (: = 1,2, - - - , k). For fixed
N:and ¢i(i = 1,2, - -+, k) the probability (7) considered as a function of the
Siv1:(2=1,2, .-+, k — 1) gives an analogue of power and might be termed the
operating characteristic curve with respect to a correct ranking for the procedure.

(i) Variances known and equal. If 65 = o’ (1 = 1, 2,---, k) where o’ is a
known constant then it would appear to be most efficient to choose equal sample
sizes from each population. (In this and the next two subsections, the most
efficient allocation of the sample sizes will be defined as the one which, for
fixed total sample size, maximizes the minimum probability of a correct ranking.
The writer does not claim at this time that all of the procedures described in
this paper are most efficient.) We choose the common sample size N’ in such

-a way that N = D5y N: = kN’ is the smallest integer which will guarantee
v for the least favorable configuration. The probability (7) then will prove to
be a function of only the k; (z = 1, 2, --- , s) and the s — 1 constants
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7 o -
(30) 4/?"*‘3""‘ G =1,2-8— 1.

For example, for (8) we have s = 2 and

N’ 31T1+1‘,k‘ _ /‘/ZV&:_H.M—z
B1) 1/; e AN T

(ii) Variances known and unequal. If ¢% = a;0’(i = 1,2, --- , k), where o® isa
known constant, and the a; are known constants not all of which are equal to
unity, then it may be desirable to choose the sample sizes so that the variances
of the sample means are equal. This choice is not most efficient. (If we restrict
our attention to procedures for which the sample sizes are taken to make the
population variances of the sample means equal, then it can be shown the
minimax procedure for (2) is: “select as the ‘best’ population the one having
the largest sample mean.”) However, it has a very important practical advantage;
namely, that the tables which give the probability of a correct ranking for the

special case o3 = o3 = --- = o2 and N, = N; = --- = N, then become ap-
plicable. In order to apply these tables whenthe N; (7 = 1,2, - - - , k) are subject
to the restriction

o os ' o
32 — T = == ¢t D e
(82) Ni. N N3

we proceed as follows. We act as if the & populations had the common variance
o® which is the known constant referred to above. Using the method of the
previous section, we find N = kN’ where N’ is the number of observations taken
from each population. We then set

2 2
i _ G 2 O ;=
(33) zv; = N 4 o ('L 1, 2, ’ ]C)
from which it follows that we choose the individual N; so that
(34) N; = a; N’ =12 ---,k).

If any N; so chosen is not an integer, we replace it by the next largest integer.
Because of (33), it is clear that these N; guarantee v.

As was indicated above, for fixed total sample size (34) does not define the
most efficient choice of the N; for arbitrary a;. For example, for ¥ = 2 it can
be shown that the most efficient method of choosing N; and N is to select that
pair (N1, N,) which satisfies the equations N;o1 = Nice and Ny + N, = N
where o; and o5 are known and N is specified. For k& > 2, the rule by which a
most efficient choice of the N; ( = 1, 2, --- , k) ismade appears to be too com-
plicated for practical application; also, the number of tables needed would be
prohibitively large.

(iii) Variances unknown. If the values of the o3( = 1,2, - - - , k) are completely
uttknown (or even if it is known that ¢; = o3 = --- = ¢} where the common
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value of the variances is unknown), it is not possible using a one-sample pro-
cedure to make any useful statement concerning the magnitude of the confidence
coefficient. (Actually the experimenter faces the same type of dilemma here as
he does when he desires to make a statement about the power of an analysis of
variance test when the variance is unknown.) For this problem an analogue of
Stein’s two-sample procedure [17] has been developed to provide a solution of
the ranking problem. This new procedure will be described in a forthcoming
paper. (See [1].) _

D. Discussion of tables. Tables have been prepared to assist the experimenter
in designing and interpreting experiments for ranking means.

Table I is to be used for designing experiments involving k¥ normal populations
to decide which ¢ have the largest (or smallest) population means. The table is
based on probability (20), and gives the value of d = /N\ associated with the
probabilities 0.05 (0.05) 0.80 (0.02) 0.90 (0.01) 0.99, 0.995, 0.999, and 0.9995
fork = 2(1) 10 and ¢ = 1(1) [k/2] (as well as k = 11(1) 15 and selected values
of t) where [k/2] k = 1,2, - - -, 15 is the largest integer less than or equal to k/2.
The table is based on the least favorable configuration of the population means
which, for picking the ¢ largest, is given by pp — pp—t41 = 0, Bp—t41) — Bp—g =
Ao, wp—g — pp = 0, and for picking the ¢ smallest is given by the same expressions
with ¢ replaced by k& — ¢. The values of d were obtained by inverse linear inter-
polation in [11].°

Table II is a special table to be used for designing experiments involving 3
normal populations to decide which one has the largest, which the second largest,
and which the smallest population mean. The table is based on probability.
(15) for k = 3, and gives the value of d = /N\ associated with the probabilities
16, 0.20 (0.05) 0.80 (0.02) 0.90 (0.01) 0.99. The least favorable configuration
K@ — Ml = M — sm = Ao is assumed throughout. The values of d were
obtained by inverse interpolation in [3] and [15]. For convenience of tabulation
the standardized differences between the population means were taken as equal.
A table for unequal differences could be prepared using [15].

Examples of the use of the tables are given in Section 8.

4. The ranking (multiple decision) approach : the two-way classification with-
out interaction.

A. Statement of the problem. Let X,;;» be normally and independently dis-
tributed chance variables N(Xijm |1 + o + 85, 035, ( = 1,2, .-+, ;5 =
1,2, --,e;m=1,2 -+, Nij), with D tmi i = _5=18; = 0. We assume that
u, the a;, and the 8; are unknown; the o%; are known and may be equal or un-
equal. Let a1 = Q2] =---= Ay a,ndﬂm = 13[2] == B[c] be the ranked

a; and B;, respectively; we assume that it is not known which populations are
associated with either ag; or By .

& These tables were computed for this project by the National Bureau of Standards, at
the'Institute for Numerical Analysis, Los Angeles; the computations were supported by
the Office of Naval Research.
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As in Section 3A we assume that a population is characterized by its popula-
tion mean which for the two-way classification (no interaction) consists of two
components of interest each one of which measures a classification ‘“‘effect.”
The “best” set of populations with respect to the first classification is the one
consisting of those populations having population means p + a + B8;
(G=1,2,---, ¢); the “best” set of populations with respect to the second
classification is the one consisting in those populations having population means
uw+ a4+ B Z=1,2, ---, r); the “second best,” etc. sets of populations with
respect to either the first or the second classifications are defined in the obvious
way. Thus the r¢ populations might be the r¢ combinations of » different varieties
of grain and ¢ different types of fertilizer, and u + o; + 8; might be the (popula-
tion) mean yield per acre of the ith variety treated with the jth fertilizer. (Here
we are assuming no variety-fertilizer interaction.) We would like on the basis
of a sample of N = D.iwi D=1 Ni; independent observations to make infer-
ences about the “bestness’ of the populations for each of the two classifications.

Our inferences will be based on the sample means which will be denoted by

Nij
X'ijm .

V4 _ m=1 (7' = 1) 2, ’ 7',
(35) Xij N Nu j = 1, 21 )c)’

_ Z X
(36) X = J-lc (7' = 1) 2’ R 1’),
and

2.
37) X, == (G=12--0).

r

The sample mean, population variance, and sample size associated with the
population having population mean u + agg + Bg;; will be denoted by X ,
ot , and Ny , respectively, ¢ = 1,2, -+-,7;7 = 1,2, -++, ¢); that is,
the expected value of X is » + aig + Bij) and the variance of Xeyj
is cto/Nwa) -

We also define

[

‘ ) 2. X
(38) ‘ Xaw. = ’;Lc—- t=1,2---,71
and
) El X _
(39) X == — (j=1,2-0¢).

r
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The ranked X;. and X.; will be denoted by

(40) Xy, < X < -+ < X,
and

@41) Xy <X < <X,
respectively.

Goals for the two-way classification are of the same type as for the one-way
classification except that they consist of two parts. For example, the experi-
menter’s goal may be to find any one of the following (or others unlisted):

The “best” set of populations according to the first classifi-
(42) cation and the “best” set of populations accordmg to the second
classification.

The “best” set of populations according to the first classifica-
43) tion and the “best two”’ sets of populations without regard to
order according to the second classification.

Having chosen our goal, we take N;; observations from the 7, jth population
and compute the r 4+ ¢ sample means (36) and (37). We make the rankings
(40) and (41). If our goal is to find (42), we make the statement, “The set of
populations associated with Xy, is the ‘best’ set of populations accordmg to
the first classification and the set of populations associated with X [ is the
‘best’ set of populations according to the second classification.” If our goal is
to find (43), etc., we would make similar statements. For fixed values of the
ai,Bi,and ot (i = 1,2,-+-,7;5 = 1,2, -+ , c) the proportion of correct state-
ments that we make will depend only on the N;; .

B. Expression for the probabilities. A general goal for the two-way classifica-
tion is similar to (6) except that it consists of two parts. We shall not write it
explicitly nor shall we write the associated probability of a correct ranking.
However, to illustrate the method of evaluating such a probability we shall
consider the following special case in some detail:

44) PriXp. < X <+ <Xp.and Xy < Xy < -+ < X0
=Prf0<Y;,,0<Y,,:+,0<Y,43and0< Z,0< 2Z;,--,0 < Zc]

where

Y: = Xun). — X, ¢E=1,2--,r—1)

Z;=Xymw— X (G=1,2,¢c— 1)

We note that the Y; and Z; have a joint (r 4+ ¢ — 2)-variate normal distribution.
If the means in each cell have the same variance, that is, if

(46) afj/NiJB""zf (say) @G=1,2 00,15 = 1,2,“',6),

(45)
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then the joint covariance matrix of the Y; and Z; simplifies considerably and
we have

aZ(Y,-)=§a§ G=1,2-,r—1)
z) =254 (=1
o \4j —,,','UX J = ’2)"';0—1)
_1, li—jl=1
o(Y.Y)) = ¢t : (G,j=1,2---,r—1)
0 li—j|>1
_ 1. le—jl=1
oZZ) = r° (G,j=1,2--,¢c—1)
0 : [t —g7]>1

O'(YiZj)=O (1,'=1,2,---,7'—1;j=1,2,---,c——-1)°

The fact that ¢(Y:Z;) = 0 (all 7, 7) implies that the Y,’s are independent of
the Z;’s (a sufficient condition for the Y¥;’s to be independent of the Z/s is that
within every row or every column the variances of the means are equal), and
we have that (44) is equal to ’

(48) Pri0 < Yy, ,0< Y, 4]Pr[0 < Zy, -+ ,0 < Z.].

Thus, if (46) holds, the probability for the two-way classification reduces to
the product of the probabilities for two one-way classifications.

It is important to note that if it is desired to increase the first of the proba-
bilities in the product (48), this is accomplished (for fixed ¢) by decreasing
o% defined by (46), that is, by increasing the N.;. But increasing the N;; also
has the effect of increasing the second of the probabilities in the product (48).
Thus the factorial design of the experiment makes the data “work twice” and
is in this sense more efficient than two separate experiments.

6. The ranking (multiple decision) approach: the r-way classification without
interaction. For this problem the X, ,...;, are normally and independently dis-
tributed chance variables

N(Xiyig..oom | 10 + D ay; , 6%”'2...1',) with E:f—l ag; =0,
(ii = 1y2, e ,"'j;j = 172, e, rym = 1727 e )Niu'g‘..i,)~
We would like on the basis of a sample of D j-1 D i Niy,...;, independent
observations to make inferences about the “bestness” of the populations for

each of the r classifications. This problem is a straightforward generalization
of the case r = 2 treated in the previous section.

. 6. The ranking (multiple decision) approach: experimental designs. Designs
such as randomized blocks, Latin squares, etc. are used in experimentation to
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eliminate the effects of heterogeneity in one or two directions. Their use results
in a reduction in the underlying variance of the experiment, and it therefore is
possible to make more precise comparisons among the “treatment effects.”
These designs serve the same function in the ranking approach as they do in the
analysis of variance. We shall illustrate this point with randomized blocks. and
the carry-over to other more complex designs will be immediate.

We assume the same mathematical model for the randomized blocks design
as for the two-way classification without interaction. However, in this case we
are not concerned with the (block) effects 3; since the blocks are introduced
only to reduce the ;. We define our sample means as we did for the two-way
classification. Since the expected value of the differences between the treatment
(row) means involves only the a;, our problem is thrown into the form of the
one-way classification which we have considered already.

7. Large sample applications of the ranking theory. The results obtained in
the previous section can be used to rank parameters other than the population
means of normal distributions, provided that sufficiently large samples are avail-
able, and the statistics that are used to estimate these parameters are normally
distributed in the limit. Since reasonably large sample sizes usually are required
to achieve the desired probabilities in ranking problems, and since the central
limit theorem applies under very general conditions, many ranking problems can
be solved using the already-developed normal theory.

In many problems the approach of the statistic to normality will be accelerated,
and the dependence of the mean on the variance will be minimized, if the statistic
is appropriately transformed. Thus, for example, the population probabilities
of “success” in binomial distributions, or the population means of Poisson
distributions can be ranked using the transformations arc sin v/Z and /7
respectively. Similarly, the population correlation coefficients of bivariate
normal distributions can be ranked if the transformation z = % log,

[(1 4+ r)/Q — 7)] is used.

8. Examples. Several numerical examples will be given here to illustrate the
use of the tables. It will be assumed that the mathematical models of Section
3 and Section 4 hold for Examples 1 and 2 and Example 3, respectively. No
attempt will be made to relate these examples to any particular subject matter
field.

Example 1. Given a one-way classification of three populations. Suppose
that it is desired to find which population has the largest mean, and to guarantee
that the probability of correctly choosing that population will be at least 0.75
when pg; — wig = 4. How many observations must be taken from each popula-
tion?

Refer to Table I, column headed & = 3, ¢ = 1.

a) Suppose that it is known that ¢} = ¢3 = ¢f = ¢’ = 100. Then we follow
the method of Section 3C(i). Entering the table we find that the value of VN
“associated with a probability of 0.75 is 1.4338. We have A = 4{,. Thus, 0.4 VN
= 1.4338, and hence select 13 observations from each population.



TABLE I

Table of \/N\ corresponding to various probabilities, to be used for designing
experiments involving k normal populations to decide which ¢
have the largest (or smallest) population means

Prob. of

Gorreet | 427 it P21 io1 it
0.9995 4.6535 4.9163 5.0639 5.1699 5.1661
0.9990 4.3703 4.6450 4.7987 4.9098 4.9049
0.9950 3.6428 3.9517 4.1224 4.2490 4.239%4
0.99 3.2900 3.6173 3.7970 3.9323 3.9196
0.98 2.9045 3.2533 3.4432 3.5893 3.5722
0.97 2.6598 3.0232 3.2198 3.3734 3.3529
0.96 2.4759 2.8504 3.0522 .3.2117 3.1885
0.95 2.3262 2.7101 2.9162 3.0808 3.0552
0.94 2.1988 2.5909 2.8007 2.9698 2.9419
0.93 2.0871 2.4865 2.6996 2.8728 2.8428
0.92 1.9871 2.3931 2.6092 2.7861 2.7542
0.91 1.8961 2.3082 2.5271 2.7075 2.6737
0.90 1.8124 2.2302 2.4516 2.6353 2.5997
0.88 1.6617 2.0899 2.3159 2.5057 2.4668
0.86 1.5278 1.9655 2.1956 2.3910 2.3489
0.84 1.4064 1.8527 2.0867 2.2873 2.2423
0.82 1.2945 1.7490 1.9865 2.1921 2.1441
0.80 1.1902 1.6524 1.8932 2.1035 2.0528
0.75 0.9539 1.4338 1.6822 1.9038 1.8463
0.70 0.7416 1.2380 1.4933 1.7253 1.6614
0.65 0.5449 1.0568 1.3186 1.5609 1.4905
0.60 0.3583 0.8852 1.1532 1.4055 1.3287
0.55 0.1777 0.7194 0.9936 1.2559 1.1726
0.50 0.0000 0.5565 0.8368 1.1093 1.0193
0.45 0.3939 0.6803 0.9633 0.8662
0.40 0.2289 0.5215 0.8156 0.7111
0.35 0.0585 0.3578 0.6635 0.5510
0.30 0.1855 0.5039 0.3827
0.25 0.0000 0.3325 0.2014
0.20 0.1424 0.0000
0.15

0.10

0.05

30
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TABLE I—Continued

31

Prob. of

0.9995 5.3127 5.2439‘ 5.4116 5.4529 5.3066
0.9990 5.0584 4.9856 5.1611 5.2043 5.0505
0.9950 4.4138 4.3280 4.5270 4.5756 4.3989
0.99 4.1058 4.0121 4.2244 4.2760 4.0861
0.98 3.7728 3.6692 3.8977 3.9530 3.7466
0.97 3.5635 3.4528 3.6925 3.7504 3.5324
0.96 3.4071 3.2906 3.5393 3.5992 3.3719
0.95 3.2805 3.1591 3.4154 - 3.4769 3.2417
0.94 3.1732 3.0474 3.3104 3.3735 3.1311
0.93 3.0795 2.9496 3.2187 3.2831 3.0344
0.92 2.9959 2.8623 3.1370 3.2026 2.9479
0.91 2.9201 2.7829 3.0628 3.1296 2.8694
0.90 2.8505 2.7100 2.9948 3.0627 2.7972
0.88 2.7257 2.5789 2.8729 2.9427 2.6676
0.86 2.6153 2.4627 2.7651 2.8368 2.5527
0.84 2.5156 2.3576 2.6677 2.7411 2.4486
0.82 2.4241 2.2609 2.5784 2.6535 2.3530
0.80 2.3391 2.1709 2.4955 2.5720 2.2639
0.75 2.1474 1.9674 2.3086 2.3887 2.0626
0.70 1.9765 1.7852 2.1421 2.2256 1.8824
0.65 1.8191 1.6168 1.9888 2.0756 1.7159
0.60 1.6706 1.4575 1.8443 1.9342 1.5583
0.55 1.5277 1.3037 1.7054 1.7985 1.4062
0.50 1.3879 1.1526 1.5694 1.6657 1.2568
0.45 1.2488 1.0019 1.4343 1.5339 1.1078
0.40 1.1081 0.8491 1.2977 1.4007 0.9567
0.35 : 0.9635 0.6915 1.1573 1.2640 0.8008
0.30 0.8119 0.5257 1.0103 1.1209 0.6369
0.25 0.6492 0.3472 0.8525 0.9675 0.4604
0.20 0.4691 0.1489 0.6780 0.7979 0.2643
0.15 0.2605 0.4760 0.6019 0.0364
0.10 0.0000 0.2239 0.3576

0.05 0.0000
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TABLE I—Continued

Prob. of

Gorreet | 25 ! P21 g 23
0.9995 5.4871 5.5501, 5.3590 5.5480 5.6244
0.9990 5.2393 5.3052 5.1047 5.3023 5.3821
0.9950 4.6127 4.6867 4.4579 4.6815 4.7710
0.99 4.3140 4.3926 4.1475 4.3858 4.4807
0.98 3.9917 4.0758 3.8107 4.0669 4.1683
0.97 3.7895 3.8773 3.5982 3.8668 3.9728
0.96 3.6385 3.7293 3.4390 3.7175 3.8270
0.95 3.5164 3.6097 3.3099 3.5968 3.7093
0.94 3.4130 3.5086 3.2002 3.4946 3.6097
0.93 3.3228 3.4203 3.1043 3.4054 3.5229
0.92 3.2423 3.3417 3.0186 3.3258 3.4456
0.91 3.1693 3.2704 2.9407 3.2537 3.3755
0.90 3.1024 3.2051 2.8691 3.1876 3.3113
0.88 2.9824 3.0880 2.7406 3.0691 3.1963
0.86 2.8764 2.9847 2.6266 2.9644 3.0948
0.84 2.7806 2.8915 2.5235 2.8698 3.0032
0.82 2.6929 2.8061 2.4286 2.7832 2.9194
0.80 2.6113 2.7269 2.3403 2.7027 2.8416
0.75 2.4277 2.5485 2.1407 2.5215 2.6666
0.70 2.2641 2.3899 1.9621 2.3601 2.5111
0.65 2.1137 2.2442 1.7970 2.2116 2.3683
0.60 1.9719 2.1071 1.6407 2.0718 2.2340
0.55 1.8355 1.9754 1.4899 1.9374 2.1051
0.50 1.7022 1.8468 1.3418 1.8059 1.9792
0.45 1.5697 1.7191 1.1941 1.6753 1.8543
0.40 1.4358 1.5903 1.0443 1.5434 1.7284
0.35 1.2982 1.4581 0.8897 1.4079 1.5992
0.30 :1.1542 1.3198 0.7272 1.2660 1.4641
0.25 0.9997 1.1717 0.5523 1.1139 1.3195
0.20 0.8288 1.0081 0.3579 0.9457 1.1599
0.15 0.6312 0.8192 0.1319 0.7511 0.9757
0.10 0.3846 0.5840 0.5085 0.7465
0.05 0.0232 0.2403 0.1530 0.4118
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TABLE I—Continued
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Prob. of

Gorrest | 2% et it P23 el
0.9995 5.6463 5.4039 5.5988 5.6842 5.7196
0.9990 5.4049 5.1511 5.3550 5.4440 5.4809
0.9950 4.7966 4.5083 4.7388 4.8386 4.8798
0.99 4.5078 4.1999 4.4455 4.5513 4.5950
0.98 4.1972 3.8653 4.1292 4.2423 4.2888
0.97 4.0029 3.6543 3.9308 4.0489 4.0974
0.96 3.8581 3.4961 3.7829 3.9048 3.9548
0.95 3.7412 3.3679 3.6633 . 3.7885 3.8398
0.94 3.6424 3.2590 3.5620 3.6902 3.7426
0.93 3.5562 3.1637 3.4736 3.6045 3.6579
0.92 3.4794 3.0785 3.3948 3.5280 3.5825
0.91 3.4099 3.0012 3.3234 3.4589 3.5142
0.90 3.3462 2.9301 3.2579 3.3955 3.4516
0.88 3.2322 2.8024 3.1405 3.2820 3.3395
0.86 3.1316 2.6893 3.0368 3.1818 3.2408
0.84 3.0408 2.5868 2.9433 3.0915 3.1518
0.82 2.9577 2.4926 2.8575 3.0088 3.0703
0.80 2.8807 2.4049 2.7778 2.9321 2.9947
0.75 2.7074 2.2067 2.5984 2.7596 2.8249
0.70 2.5535 2.0293 2.4387 2.6064 2.6741
0.65 2.4122 1.8653 2.2919 2.4658 2.5359
0.60 2.2794 1.7102 2.1535 2.3335 2.4059
0.55 2.1520 1.5604 2.0206 2.2066 2.2814
0.50 2.0276 1.4133 1.8906 2.0828 2.1598
0.45 1.9042 1.2666 1.7615 1.9599 2.0393
0.40 1.7798 1.1178 1.6311 1.8360 1.9180
0.35 1.6523 0.9643 1.4971 1.7090 1.7936
0.30 1.5191 0.8030 1.3569 1.5763 1.6637
0.25 1.3765 0.6292 1.2065 1.4342 1.5248
0.20 1.2192 0.4361 1.0403 1.2775 1.3716
0.15 1.0377 0.2117 0.8481 1.0966 1.1950
0.10 0.8121 0.6085 0.8717 0.9757
0.05 0.4829 0.2575 0.5435 0.6560
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TABLE I—Continued

Prob. of

Gmslogze | oazp | hzpo | szp | ez
0.9995 5.4432 5.6425 ¢ 5.7343 5.7788 5.7924
0.9990 5.1917 5.4000 5.4958 5.5422 5.5563
0.9950 4.5523 4.7878 4.8950 4.9468 4.9625
0.99 4.2456 4.4964 4.6100 4.6648 4.6814
0.98 3.9128 4.1823 4.3037 4.3619 4.3796
0.97 3.7030 3.9854 4.1120 4.1727 4.1911
0.96 3.5457 3.8385 3.9693 4.0319 | 4.0509
0.95 3.4182 3.7198 3.8541 .3.9184 3.9378
0.94 3.3099 3.6193 3.7567 3.8224 3.8422
0.93 3.2152 3.5316 3.6718 3.7387 3.7589
0.92 3.1305 3.4534 3.5962 3.6643 3.6848
0.91 3.0536 3.3826 3.5277 3.5969 3.6177
0.90 2.9829 3.3176 3.4650 3.5351 3.5563
0.88 2.8560 3.2011 3.3526 3.4246 3.4463
0.86 | 2.7434 3.0983 3.2535 3.3272 3.3494
0.84 2.6416 3.0055 3.1642 | 3.2395 3.2621
0.82 2.5479 2.9203 3.0824 3.1591 3.1822
0.80 2.4608 2.8413 3.0065 3.0847 3.1082
0.75 2.2637 2.6635 2.8360 2.9174 2.9419
0.70 2.0873 2.5051 2.6845 2.7690 2.7944
0.65 1.9242 2.3595 2.5456 2.6330 2.6592
0.60 1.7700 2.2224 2.4149 2.5052 2.5322
0.55 1.6210 2.0907 2.2896 2.3827 2.4106
0.50 1.4748 1.9618 2.1673 2.2632 2.2920
0.45 1.3289 1.8339 2.0460 2.1448 2.1744
0.40 1.1810 1.7047 1.9237 2.0256 2.0561
0.35 1.0284 1.5720 1.7984 1.9035 1.9350
0.30 0.8679 1.4330 1.6674 1.7760 1.8085
0.25 0.6951 - 1.2841 1.5273 1.6398 1.6733
0.20 0.5032 1.1195 1.3727 1.4896 1.5244
0.15 0.2800 0.9292 1.1944 1.3166 1.3529
0.10 0.0000 0.6919 0.9728 1.1017 1.1401
0.05 0.3444 0.6495 0.7889 0.8303
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TABLE I—Continued

=11 k=11 k=11 k=11 k=12

=2 t=3 t=4 t=25 t=3
.6807 5.7773 5.8284 5.8511 5.8149
.4395 5.5402 5.5934 5.6170 5.5790

.8305 4.9432 5.0025 5.0288 4.9853

4.5408 4.6602 4.7229 4.7506 4.7039

4.2286 4.3560 4.4227 4.4522 4.4016

4.0329 4.1658 4.2353 4.2660 4.2126

3.8869 4.0242 4.0958 4.1274 4.0719

3.7689 3.9099 3.9834 | . 4.0158 3.9584

3.6691 3.8133 3.8883 3.9214 3.8624

3.5819 3.7201 3.8055 3.8392 3.7788

3.5042 3.6541 3.7318 3.7661 3.7043

3.4338 3.5862 3.6652 3.6999 3.6369

3.3693 3.5239 3.6041 3.6393 3.5751

.2536 3.4126 3.4948 3.5309 3.4645

3.1514 3.3143 | 3.3984 3.4354 3.3670

3.0592 3.2258 3.3117 3.3494 3.2791

2.9747 3.1447 3.2323 3.2707 3.1986

2.8963 3.0695 3.1587 3.1978 3.1240

0.75 2.7196 2.9006 2.9934 3.0341 2.9563
0.70 2.5624 2.7505 2.8468 2.8890 2.8075
0.65 2.4179 2.6129 2.7125 2.7560 2.6709
0.60 2.2818 2.4835 2.5863 2.6312 2.5426
0.55 2.1510 2.3594 2.4654 2.5117 2.4196
0.50 2.0231 2.2384 2.3476 2.3952 2.2995
9.45 1.8961 2.1183 2.2309 2.2799 2.1805
0.40 1.7679 1.9973 2.1133 2.1638 2.0606
0.35 1.6362 1.8733 1.9930 2.0450 1.9377
0.30 1.4984 1.7438 1.8673 1.9210 1.8093
.25 1.3507 1.6052 1.7331 1.7886 1.6720
.20 1.1874 1.4524 1.5852 1.6428 1.5206
.15 0.9985 1.2761 1.4149 1.4749 1.3460
0.7632 1.0571 1.2035 1.2667 1.1291

0.4186 0.7376 0.8958 0.9640 0.8128
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TABLE I—Concluded

k=12 k=12 k=13 k=13 k=14

t=4 t=25 t=4 t=25 t=25

5.8709 5.9002 . 5.9081 5.9424 5.9793

5.6373 5.6678 5.6757 5.7113 5.7494

5.0502 5.0841 5.0919 5.1314 5.1728

4.7725 4.8083 4.8158 4.8576 4.9005

4.4746 4.5126 4.5197 4.5641 4.6089

4.2886 4.3281 4.3350 4.3810 4.4271

4.1502 4.1909 4.1975 4.2449 4.2919

4.0387 4.0803 4.0867 4.1353 4.1831

0.94 3.9444 3.9870 3.9932 4.0427 4.0911
0.93 3.8623 3.9057 3.9117 3.9621 4.0111
0.92 3.7893 3.8333 3.8391 3.8904 3.9399
0.91 3.7232 3.7678 3.7735 3.8255 3.8756
0.90 3.6626 3.7079 3.7134 3.7661 3.8166
0.88 3.5543 3.6007 3.6059 3.6599 3.7113
0.86 3.4588 3.5063 3.5111 3.5664 3.6185
0.84 3.3729 3.4213 3.4259 3.4822 3.5350
0.82 3.2942 3.3435 3.3478 3.4052 3.4586
0.80 3.2213 3.2715 3.2755 3.3339 3.3879
0.75 3.0577 3.1098 3.1132 3.1739 3.2292
0.70 2.9125 2.9666 2.9693 3.0321 3.0887
0.65 2.7796 2.8354 2.8374 2.9023 2.9600
0.60 2.6547 2.7122 2.7137 2.7805 2.8394
0.55 2.5352 2.5944 2.5952 2.6640 2.7240
0.50 2.4186 2.4796 2.4797 2.5505 2.6116
0.45 2.3032 2.3659 2.3654 2.4382 2.5003
0.40 2.1870 2.2515 2.2503 2.3252 2.3885
0.35 2.0680 2.1345 2.1324 2.2096 2.2741
0.30 1.9439 2.0124 2.0095 2.0890 2.1548
0.25 1.8113 1.8821 1.8782 1.9604 2.0275
0.20 1.66562 1.7387 1.7337 1.8188 1.8875
0.15 1.4970 1.5736 1.5672 1.6560 1.7264
0.10 1.2883 1.3690 1.3608 1.4542 1.5270
0.05 0.9848 1.0716 1.0606 1.1611 1.2374
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TABLE II

Table of \/N\ corresponding to various probabilities, to be used for designing
experiments tnvolving 8 normal populations to decide which one has the largest,
which the second largest, and which the smallest population mean

Iérob. Otf VF Iérob. of ) JE lérob. of
A t t
Ranking N | Renking ok Ranking v
0.99 3.6428 0.88 2.1981 0.50 0.9084
0.98 3.2900 0.86 2.0860 0.45 0.7836
0.97 3.0690 0.84 1.9855 9.40 0.6592
0.96 2.9044 0.82 1.8935 0.35 0.5328
0.95 2.77117 0.80 1.8094 0.30 0.4021
0.94 2.6598 0.75 1.6211 0.25 0.2635
0.93 2.5623 0.70 1.4560 0.20 0.1121
0.92 2.4756 0.65 1.3064
0.91 2.3974 0.60 1.1674 18 0.0000
0.90 2.3258 0.55 1.0356

b) Suppose that it is known that o7 = 90, o3 = 130, and o3 = 191. Following
the method of Section 3C(ii) we see that we can let ¢* = 100; a; = 0.90, a; = 1.30,
and a; = 1.91. Then we have A = 4{¢. From a), above, we see that
N’ = (1.4338/0.4)’. Using equation (34) we find that Ny = 11.6, N, = 16.7,
N; = 24.6; thus we select 12, 17, and 25 observations from populations 1, 2,
and 3, respectively.

Example 2. Given a one-way classification of three populations. Suppose
that we have selected 15 observations from each of the populations. What is
the smallest difference g — pg = wiz — wmp that we can guarantee detecting
with probability at least 0.80?

Refer to Table II.

Entering the table we find that the value of v/N\ associated with a proba-
bility of 0.80 is 1.8094. If 61 = o2 = o3 = ¢ is known, say equal to 6 units, we
have ‘\/]3(#[1‘+1] - #[;‘])/6 = 1.8094 forz = 1,2; hence K3 — M[2] = M[2] = MK[1]
= 2.80 units; if the variances are completely unknown, no useful statement
can be made.

Example 3. Given a two-way classification (2 rows, 3 columns) of six popula-
tions, each having the same variance ¢”. Suppose that it is desired to find which
set of populations has the largest row mean, and which set of populations has
the smallest column mean, and to guarantee that the probability of correctly
choosing these two sets will be at least 0.60 when o — oy = 0.2 ¢ and B —
Bm = 0.4¢. How many observations must be taken from each population?
~ Refer to Table I, columns headed k¥ = 2,¢{ = land k = 3,¢ = 1.

" For a sample of size 9 from each population we have (9)(2) = 18 and (9)(3) =
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27 observations contributing to the column and row means, respectively. For
k=2¢t=1wehaved, = Ay VN, = 0.2 /27 = 1.0392, and hence the as-
sociated probability lies between 0.75 and 0.80; for k¥ = 3,¢ = 1 we have dz =
A2 VN, = 0.4 v/18 = 1.6971, and hence the associated probability lies between
0.80 and 0.82. Interpolation will show that the associated probabilities are
equal to 0.7688 and 0.8094, respectively, and hence their product is equal to
0.6223. If a sample of size 8 is taken from each population, the corresponding
product is equal to 0.5960. Hence select 9 observations from each population.

Example 4. Given three bivariate normal populations with unknown popula-
tion variances, covariances, and correlation coefficients. The population cor-
relation coefficient associated with the ¢th population will be denoted
by pi(¢ = 1, 2, 3); the ranked p; will be denoted by piy = przy = pra - It is not
known which population is associated with pp; . Suppose that it is desired to
find which population has the largest correlation coefficient, and to guarantee
that the probability of correctly choosing that population will be at least 0.90
with pig = 0.7 and pgz; — pzy = 0.10. How many observations must be taken
from each population?

Refer to Table I, column headed k = 3,¢ = 1.

The quantity d = VNN = /N(usy — w@)/oc now is replaced by
VN =3@G log. (1 + o)/ — pm) — 3 log. (I + p)/(1 — puy) = VN —3
log, 1.1902 = 0.174 v/N — 3 = 2.2302 (from the table, for P = 0.90). Hence
select 168 observations from each population.

9. Directions of future research. The results presented in this paper can be
extended and generalized in several directions. The formulation of problems in
terms of the ranking (multiple decision) approach rather than the test of homo-
geneity approach can be applied equally well to parameters other than popula-
tion means of normal distributions. As an example of this, the writer has con-
sidered the problem of ranking the population variances of normal distributions.
The results of this investigation, giving an exact rather than a large sample theory,
will be presented in a later paper.

Ranking problems can be formulated as several sample, or completely se-
quential (rather than single sample) multiple decision procedures with resultant
savings in the expected number of observations for a given probability of a
correct ranking. Some promising results have been obtained thus far [2], [18],
but many interesting unsolved problems remain, and additional research in
this area should prove very fruitful.

Among the unsolved problems for the single sample procedure, two are of
particular interest. It would be very desirable to know whether the multiple
decision procedures described in this paper are optimum in any sense. Also,
it would be useful to have a simple procedure for determining the most efficient
allocation of the sample sizes when the population variances are known and

unequal.
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