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ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Montreal meeting of the Institute, September 10-13, 1954)

1. On Quadratic Estimates of Variance Components in Balanced Models,
A. W. Wortham, Chance Vought Aircraft and Oklahoma A and M College.

A balanced model is defined as a model whose analysis of variance mean squares are sym-
metric in the squares of the observations. Included in this class of models are: (1) Com-
pletely Randomized, (2) Randomized Blocks, (3) Latin Squares, (4) Graeco-Latin Squares,
(5) Split Plots, (6) Factorial Arrangements, etc.

The ““analysis of variance estimates’’ of the variance components are the estimates ob-
tained by solving the system of equations which result when the observed and expected
mean squares in the analysis of variance table are equated. For any infinite population
let the general balanced model be ¥ijsg:+in = g + 3 k=1 Akix + €iyiz* i, , Where u is a con-
stant, Ay and eiy5,- - +i, are independent random variables with zero means, finite fourth
moments, and variances of and oj respectively. Let 63 and &f be ‘‘the analysis of variance
estimates’’ of the variance components o and og . It is shown that the quadratic estimate
of &0 grot (g5 known) which is unbiased, independent of u, and has minimum variance is
given by 3/ gioi . That is, the best quadratic unbiased estimate of the linear combina-
tion of the variance components is given by the same linear combination of ‘“‘the analysis
of variance estimates’’ of the variance components.

2. The Coefficients in the Best Linear Estimate of the Mean in Symmetric
Populations, A. E. Sarhan, University of North Carolina.

In a previous paper (‘“Estimation of the Mean and Standard Deviation by Order Sta-
tistics” by A. E. Sarhan, Ann. Math. Stat. Vol. 25 (1954), pp. 317-328) the best linear esti-
mate of the mean of a rectangular, triangular and double exponential population were
worked out. By considering some other symmetric distributions with different shapes, it is
found that the coefficients in the estimates form a sequence. From the sequence, it is ob-
served that the coefficients in the estimates are influenced by the-shape of the distribution.
The variances of the estimates are also so affected.

3. Distribution of Linear Contrasts of Order Statistics, Jacques St. Pierre,
University of North Carolina.

Consider 7 + 1 independent normal populations with unknown means, mo , m1 , *** , ma ,
respectively, and with a common known variance ¢2 = 1 (say). Suppose a sample of size N
is available from each population; and let z¢@) > za) > *** > %) be the ordered sample
means. Consider the linear contrasts z = x¢q) — c1Tay — *** — CuZ(ny , where Divic; = 1,
¢i20, (@ =1,2, -+, n). The probability density function of the contrasts z is derived
under the null hypothesis Ho: me = m; = +++ = m, . The density of the contrasts z is also
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obtained in the case of three populations, under the hypothesis — o <m; £ m; < my < + .
Particular hypotheses are considered and tables are given. Finally, the particular contrast
Y = @) — Zq) is considered in the general case.

4. Note on Fourier Periodogram Analyses of Time Series, B. F. Kimball,
New York State Public Service Commission.

R. A. Fisher’s treatment of the probability distribution of the squares of the amplitudes
of the Fourier harmonics R, is followed. One deals with a time series y; of N observations.
The null hypothesis is taken as the hypothesis that E(y;) = 0 and that the y; are indepen-
dently and normally distributed with constant variance. Let the index n of Rn denote the
index of the fitted harmonic such that N/n denotes the period of this harmonic. If N/n is
an integer one can replace the series of N terms by one of N /n means X y:/n where the y;
are of the same phase in period N/n. The harmonics of this series are selected harmonics
of the original series. This paper examines the implications of such a breakdown for the
testing of the significance of the short period harmonics relative to the null hypothesis.

5. Univariate Two-Population Distribution-Free Discrimination, David 8.
Stoller, RAND Corporation.

A univariate random variable, 2, is defined by the composite cumulative distribution
function, F(z) = 6F1(2) + (1 — 0)F2(2);0 < 6 < 1. Restrict F; and F; to be such that the
optimum a priori discriminating regions are 81 = {2z |2z < ¢} and S: = { z| 2 > ¢}, where
¢ is unique. Optimum discrimination is defined as that which maximizes the probability
of correctly classifying z. Denote the above maximum probability by Q(¢). Given an inde-
pendent random sample of size N from F(z), each member of which is classifiable, a dis-
tribution-free estimate of ¢, denoted by ¢*, is constructed as follows. Let {(2) = k(z) —
h(z), where k(z) is the number of observations from the first population (i.e., that defined
by F:) which are less than or equal to 2, and h(2) is similarly defined for the second popu-
lation. Then ¢* is any value of z that maximizes ¢(2). The estimate, {¥*, possesses two asymp-
totically optimum properties: (1) the probability of correct classification induced by using
¢* instead of ¢ converges in probability to Q(¢), and (2) the quantity, t(¢*), may be used to
construct an estimate of Q(¢) which converges in probability to Q(¢).

6. New Types of Easily Constructed Partially Balanced Incomplete Block
Designs, John Mandel and Marvin Zelen, National Bureau of Standards.

In the planning of experiments in the physical sciences one is often confronted with natural
limitations on the size of experimental blocks. Therefore, the use of incomplete blocks is
becoming ever more widespread in this type of application. In this paper a type of partially
balanced incomplete block design is introduced, the construction of which consists in re-
placing each treatment of a balanced design with a group of treatments which themselves
form a balanced design. A large class of designs thus becomes at once available by com-
bining Latin Squares with Youden Squares, or Youden Squares with Youden Squares. An
important property of these designs is the possibility of two-way elimination of error (ac-
cording to rows and columns). A general formula is given for the Least-squares estimation
of corrected treatment effects. Because of the flexibility of the proposed designs, their ease
of construction, and simplicity of analysis, they are well adapted to experiments in physical
and chemical laboratories. Investigations are in progress to extend the results to designs
formed from combinations of chain block and other partially balanced incomplete block

designs.
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7. The Stochastic Convergence of a Function of Sample Successive Differ-
ences, Lionel Weiss, University of Virginia.

Let f(z) be a bounded density function with at most a finite number of discontinuities,
and such that there are two finite numbers, A and B (A < B), with f(z) nondecreasing in
the interval (—«, A) and nonincreasing in the interval (B, «). Let X1, X, , -+ , X5 be
independent chance variables each with the density f(z). Define Y1 £ Y2 < +-+ < Y, as
the ordered values of X1, Xz, +*+ , Xn; Ti as Yiy1 — Y; ; and Ra(f) as the proportion of
the values T, -+ , T'a_1 Dot greater than ¢/(n — 1). S(¢) denotes [1 - f :o f(x)e~¥@ d:v];
and V(n) denotes sup,>, | Ra(t) — S(¢) | . Then it is shown that V(n) converges stochas-
tically to zero as n increases. This result can be used to demonstrate the stochastic conver-
gence of various functions of T, -+- , Th-1, including some which have been discussed
in the literature.

8. On a Modified T? Problem, Ingram Olkin, Michigan State College and S.
S. Shrikhande, College of Science, Nagpur. .

Consider two independent random vectors X = (X1,:++,X,), ¥ = (Y1, ,7Y),
each obeying a p-variate normal probability law with EX = (01, -+, 0&, ur41, *** , Hp),
EY = (61, , 6k, vks1, " , ¥p), and same covariance matrix 3, with all the parameters
unknown. On the basis of a sample of » and m observations from X and Y, respectively,
the hypothesis Hy : u; = »; against Hy:ps # vi @ =k + 1, -+, p) is to be tested. The
problem is equivalent to the case where X and Y are random vectors with means EX =
©, -+ ,0,¢x41,°** , ), EY = (0, -++ , 0), and same covariance matrix 3. On the basis
of one and n observations from X and Y, respectively, Ho: ¢: = 0 against Hi: ¢; # 0
(¢=1Fk+41,--,p)is to be tested. The likelihood ratio statistic is obtained and its dis-
tribution under Hy and H; derived. If k = 0, the statistic reduces to Hotelling’s T statistic.

9. The Validity of Sheppard’s Corrections for Grouping, F. J. Anscombe,
University of Cambridge and Princeton University.

The moments of an absolutely continuous one-dimensional distribution are to be com-
pared with the moments of the same distribution when it has been ‘‘grouped’’ with constant
grouping interval. The characteristic function 6*(t) of the grouped distribution may be
expressed as a Fourier series in terms of the characteristic function 8(t) of the ariginal
distribution. The expansion is similar to those for moments given by R. A. Fisher (Philos.
Trans. Roy. Soc. London, Ser. A., Vol. 222 (1922), pp. 309-368, section 5), but requires no
condition on the original distribution other than absolute continuity of the distribution
function F(z). Sheppard’s formulas are obtained when the periodic terms in the series are
neglected. The periodic terms are small if | 8(¢) | is small for large ¢, and this condition is
related to the differentiability of F(z) for all values of z. The emphasis that has often been
placed on the differentiability of F(z) at infinity or at the ends of a finite range is mislead-
ing, because these points are not specially important.

10. Unbiased Tests Based on Unbiased Estimators, Reed B. Dawson, Depart-
ment of Defense.

A test of a point-hypothesis 6 = 8, of a distribution parameter will be said to be strongly
unbiased when the power depends on ¢ alone and exceeds the size against all alternatives.
For any a, 0 < a < 1, there exists a strongly unbiased test of size « if and only if there
exists a real-valued function f(6) which is zero at 6, , strictly positive elsewhere, and pos-

g
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sesses a bounded unbiased estimator. For, if w(z) is the rejection probability corresponding
to an outcome z, letf = Fw — «;if fisgiven, takew = a + Kf , where f”(z) is the estimator
and K is a suitable positive constant. One application concerns a sample of n items from
the family of all distributions over the unit interval. The possible strongly unbiased tests
of a point-hypothesis on the rth moment form a bounded convex body in E, over which
the power is a linear functional. A second application (Mosteller’s suggestion) concerns
the hypothesis of independence of two attributes in a 2 x 2 table where sampling proceeds
until a chosen cell attains a fixed quota. Powers of the determinant of the underlying prob-
abilities admit bounded unbiased estimation, giving unbiased tests without the Neyman
structure.

11. The Mean Square Error of the Sample Median, Harold Hotelling, Univer-
sity of North Carolina.

For random samples of any odd number from an arbitrary population, the ratio of the
mean square error in the sample median, regarded as an estimate of the population median,
to the corresponding population parameter, is shown never to be less than unity. This
lower bound is actually attained for the familiar two-point distribution with equal proba-
bilities. The fact that in this case the accuracy, however measured, of the median of a
large number of observations is no better than that of one random observation destroys
the argument sometimes given that the median should be used in the absence of knowledge
of the form of the underlying distribution. (Research sponsored by the Office of Naval
Research at Chapel Hill, North Carolina).

12. The Moments of the Sample Median, J. T. Chu and Harold Hotelling,
University of North Carolina.

Moments of medians of random samples are studied by a method involving expansion
about % of the inverse of the cumulative distribution function, and in other ways. Readily
calculable approximations are found, both for large and for small samples, with close upper
and lower bounds on the errors of approximation. The asymptotic behvaior for large sam-
ples is examined. Calculations are carried out for the Laplace, Cauchy and normal distribu-
tions. (Research sponsored by the Office of Naval Research at Chapel Hill, North Carolina).

13. Distribution of the Largest Vote in Unstructured Random Balloting, Leo
Katz, Michigan State College

The exact distributions of the maximum vote are obtained for two balloting arrange-
ments. In both, each person votes once at random without prior reduction of the field of
choice by a nomination process. In the first arrangement, a person may, if he (randomly)
wishes, vote for himself; in the second, voting is gentlemanly. The second case has direct
application to determination of “‘stars’’ in sociometric testing. An approximation is given;
it is shown to be reasonably accurate for moderate-sized groups.

14. Statistical Programming, D. F. Votaw, Jr., Yale University.

Statistical programming problems arise when some of the constants in a programming
problem are unknown but statistical information about them is available. In this paper
several methods of statistical programming are compared in connection with a special
linear programming problem. The application of simultaneous confidence interval estima-
$ion is discussed. (Work sponsored by the Office of Naval Research.)
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15. Exact Tests of Significance for Combining Inter- and Intra-Block Informa-
tion in Incomplete Block Designs (Preliminary Report), Marvin Zelen,
National Bureau of Standards.

Consider an incomplete block design where the number of blocks is greater than the
number of treatments (b > v). It is then shown under the usual assumptions for the re-
covery of inter-block information that two independent F tests of the null hypothesis
(all treatments are the same) exist; one using only inter-block information and the other
using the intra-block information. Let F;(: = 1, 2) represent the F ratio obtained for each
test; 1 + r:\/o? represent the expected value of the numerator to the denominator of re-
spective F ratios, where A = Z(¢; — #)2/v — 1 is a measure of the departure from the null
hypothesis (i.e., A = 0 if H, is true); also let p; = P{F = F; | Hy}. Then a combined test
which seems to ad]ust for the differences in power of the two independent tests is given
by the region {p.p @}, where Q is chosen such that P{plpz SQl=Q—6"/1 —0=aqa
(level of sngmﬁcance), and 8 = 7y} /ri05 . For example, 0 = 1 — E/E[0?/o? + kol] for bal-
anced incomplete block designs where o2 is the “within block’’ variance, o; the ‘“‘between
blocks’ variance component, ¥ is the efficiency factor and k is the plot size. Approxima-
tions to the power function of the test have heen derived and preliminary calculations
indicate that the above critical region seems to have greater power as compared to weight-
ing the individual p;’s equally as in Fisher’s method.

16. Moments and Related Quantities of the Null Distribution of Linear Con-
trasts of Order Statistics in the Case of Three Populations, Jacques St.
Pierre, University of North Carolina.

Consider three independent normal populations with unknown means, mo , m; , ms re-
spectively, and with a common known variance ¢? = 1 say. Suppose a sample of size N is
available from each population. Let ) > 2y > () be the ordered sample means. Con-
sider the linear contrasts z = z@) — cxay — (1 — ¢)2z) , where 0 < ¢ < 1. An expression
for the kth moment about the origin is obtained. Properties of the moments and related
quantities (skewness and kurtosis coefficients) are established, considering these quanti-
ties as functions of the nonstochastic parameter c. Tables of moments of low order are
given in cases of special interest.

17. Application of Faa di Bruno’s Formula in Mathematical Statistics, Eugene
Lukacs, Office of Naval Research.

Letz = G(y) and y = f(x) be two functlons such that all the derivatives of G(y) and f(z)
up to order p exist. We denote by D%{ } the operation of determining the kth derivative
of the function in the braces with respect to ¢t and we write f, = DY{f(t)} /v!, f = fo = f(©)
then Dfz = DP{GQ[f(1)]} = Zp'DEGW)}fil -+« fit/Gal -+ i, 1) where the summation is to
be extended over all partitions of p such that 4, 4 4o 4 + -+ + %, = k and 1ky + @2ks + -++ +
isks = p. This formula is due to F. Faa di Bruno [Sullo Sviluppo delli Funzioni, Annali
di science mathematiche e fisiche 6 (1855), pp. 479-480,]. Faa di Bruno’s formula can be ap-
plied in mathematical statistics. The relations between the cumulants and the moments
of a dlstrlbutlon are derived easily by means of this formula. It is also useful in the study
of R. A. Fisher’s k-statistics. For instance, the explicit formula, expressing the k-statistic
of order p in terms of the observations, can be obtained. In addition to these familiar re-
sults, the followingrtheorem is proven. Let ;1 , 22, *** , z, be n independent observations
taken from a population with distribution function F(z) and denote by p an integer greater
than one. Assume that the pth moment of F(z) exists. The population is normal if, and only
if, the k-statistic of order p is independent of the sample mean.
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18. On Simultaneous Minimax Point Estimation, Waldo A. Vezeau and Koichi
Ito, St. Louis University.

This paper is concerned with simultaneous minimax point estimation of all the param-
eters in the multivariate distribution function of a parent population on the basis of a
sample of fixed size. Extending results due to K. Miyasawa (Bull. Math. Stat., Vol. 5(1953),
pp. 1-17), it is shown that if the risk is a bounded function of s parameters, 6,, «-* , 6,
and their point estimates, d;, <+ , d, , and a convex, measurable function of dy, - , d,
for any fixed 6; , *++ , 6., and if the space D of d, -+ , d, is compact and convex, then
there exists a set of simultaneous minimax point estimates of 6, , +++ , 6,in D. Applications
of this theorem are made to simultaneous minimax point estimation of the parameters in a
multinomial distribution, the mean and variance (or standard deviation) of a univariate
normal distribution, and the means, variances and covariances of a multivariate normal
distribution.

19. Estimation of Structural Parameters when the Number of Incidental Pa-
rameters is Unbounded, J. Wolfowitz, Cornell University.

Let TI7-1 I173: f(2:5 | 0, «;) be the frequency function of the observed chance variables
{Xii}, i =1, ,n;j =1, , mg, which depends upon the unknown (structural) par-
ameter 6 and the unknown (incidental) parameters {a;}. The author proves that in general
there exists no estimator of 8 which is efficient for all sequences {a;}. This verifies a con-
jecture of the author’s, described in the Proc. Roy. Dutch Acad. Sci., Ser. A, Vol. 56, No. 2,
and Indag. Math., Vol. 15, 1953, where a heuristic supporting argument was given.

20. On Power Properties of Certain Simultaneous Tests, K. V. Ramachandran,
University of North Carolina.

(1) Let 41, y2, *** , Yk be k independent normal variates with E(y;) = u; and v(y;) =
o*(1 =1,2,++ , K). u; and ¢? are unknown but an independent estimate s? of 2 with v d.f.
is available. To test the hypothesis: y1 = u2 = *++ = pg we have a short cut test of Tukey
based on the studentized range. (2) Let 1, 2, *** , yx be k independent normal variates
with variances o} , o3 , +** , ok respectively. To test the hypothesis: == = ok
we have the Fpax ratio test of Hartley. In this paper the following properties of the tests
are proved. The power function of the tests depend only on k — 1 parameters, namely,
i1 = pi — m(@ = 2,8, .-+ , K) in case (1) and 7i_y = %/} (i = 2,3, -+ , K) in case (2).
The tests are completely unbiased but the power functions do not have the monotonicity
property. A set of useful lower bounds are obtained for the power in the two situations.
Power properties of multivariate and other generalizations of these tests are being inves-
tigated.

21. On Tests of Normality and Other Tests of Goodness of Fit Based on Dis-
tance Methods, M. Kac, J. Kiefer, and J. Wolfowitz, Cornell University.

The authors study the problem of testing whether the common distribution function
(d.f.) of the observed independent chance variables @, , -+ , %, is a member of a given
class. A classical problem is concerned with the case where this class is the class of all
normal d.f.’s, and for the sake of brevity the description in this abstract will be limited
to some of the results for this problem. For any two d.f.’s F(y) and G(y) let §(F, G) =
sup, | F(y) — G(y) | . Let N(y | 4, o) be the normal d.f. with mean p and variance o2
Define & = n1Z7z; , s = n1Z7 2} — #2. Let Ga(y) be the empiric d.f. of 1, *+ , z, .

»,The authors consider, inter alia, tests of normality based on v, = 5(Gay), N(y | &, s%)
and on w, = f (Ga(y) — N(y | & s)2 dyN(y | %, s?). It is shown that the asymptotic power



812 ABSTRACTS

of these tests is considerably greater than that of the optimum x? test. The covariance
function of a certain Gaussian process Z(f),0 < ¢ < 1, is found. It is shown that the sample
functions of Z (t) are continuous with probability one, and that, as n — «,lim P{nw, < a} =
P{W < a}, where W = f :, [Z (2)]? di. Tables of the distribution of W and of the limiting dis-
tribution of /7 v, are given. The role of various metrics is discussed.

22. Tolerance Regions (Preliminary Report), D. A.S. Fraser and I. Guttman,
University of Toronto.

Three definitions are considered for tolerance regions. A ‘‘distribution-free tolerance
region” has the distribution of its probability content independent of the parameter.
A ‘“‘B-content tolerance region’ has probability content at least 8 with an assigned level
of confidence. A ‘‘B-expectation tolerance region’ has probability content on the average
equal to 8. For the first definition a necessary and sufficient condition has been obtained
for the characteristic function of the region. For sampling from univariate distributions
for which the order statistics are complete, the nonexistence of distribution-free tolerance
regions was obtained in the discontinuous case and some results on distribution-free toler-
ance bounds were obtained in the continuous case. For the third definition an analogy with
hypothesis testing has been established by introducing a density function to indicate the
desirability that different points of a distribution be included in the region. For normal
distributions the center of the distribution was weighted more heavily than the tails and
most stringent tolerance regions obtained. For univariate distributions they were [X == \o]
and [X = \s,] depending on whether or not ¢ was known. In the multivariate case they are
based on Hotelling’s 7 statistic.

23. Comparison of the Power of Nonparametric Two Sample Tests against
Normal Alternatives, Benjamin Epstein, Wayne University.

This is a sampling study in which we compare the power of run, rank sum, exceedance,
and truncated maximum deviation two sample tests. The particular case studied involves
normal alternatives whose distance apart is measured by the difference in population means.
Two hundred random samples of size 10 are drawn from each population. These results
are related to recent work of Dixon and Teichroew [Abstract, Ann. Math. Stat. Vol. 25,
(1954), p. 175]. There are, however, these differences: (i) in the present study we assume
that the two samples have been placed (simultaneously) on life test, thus making the times
to failure available in an ordered way and (ii) include exceedance and truncated maximum
deviation rules among the nonparametric tests. Such rules are particularly useful in life
test situations. Experimental sampling assigns the following order to the power (best to
worse) : rank sum, untruncated maximum deviation, truncated maximum deviation, ex-
ceedance, and run. The first four power curves are fairly close together and are all substan-
tially better than the power curve for the run test. Also included in the paper is experi-
mental information on the expected number of items failed in reaching a decision when an
exceedance or truncated maximum deviation rule is used. Substantial savings in this direc-
tion are possible. (Research sponsored by the Office of Ordnance Research, U. S. Army).

24. On the Distribution of Radial Errors Having Normally Distributed Com-
ponents,’ A. C. Cohen, Jr., University of Georgia.

For a set of p independent random variables z; (j = 1,2, - , zp), each of which is nor-
mal (0, &), the radial error defined as r = (2} + 3 + -+ + :c’j,)” is considered. It is well
known that the distribution of r is given by [2r/a2]f»(r2/0%) where f,(x?) is the x? frequency
function with p degrees of freedom. This paper is concerned with the problem of estimat-

ing’ the scale parameter o from unrestricted (complete), truncated, and censored samples
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of r. Maximum likelihood estimators are developed for each of these cases, and asymptotic
estimate variances are given. In the case of unrestricted samples, (pné?/0?) has a x? dis-
tribution with pn degrees of freedom, where n is the number of sample observations and
¢% is the maximum likelihood estimate. Tables and graphs of functions necessary for solv-
ing the maximum likelihood estimating equations for truncated samples are given for
P = 2 and p = 3. Illustrative examples relating to target analysis studies are included.

25. Confidence Bounds on Departures from a Particular Kind of Multi-Col-
linearity of Means, S. N. Roy, University of North Carolina.

For k (p + ¢)-variate N(&: , Z), where Z((p + ¢) X (p + ¢)) is symmetric p.d. with sub-
matrices Zu(p X p), Zu(g X ¢) and Zia(p X ¢), and £((p + ¢) X 1) has column subvec-
tors £1:(p x 1) and £:(¢ X 1), we can set, in the following way, confidence bounds
on £: — Z13nts which are departures from the hypothesis £&; — ZuZnts =
0(@=1,2,--- ,k). Let Su1, S22 and Si2 stand for the submatrices of the “within’’ covari-
ance matrix pooled from k samples of size n each and z1:(p X 1) and zes(g x1) G =1, --+ , k)
for the subvectors of the k& sample mean vectors. Then setting S1.2 = Su — 81287 Stz ,
and B(p x k) and B(p x k) for the matrices with respective column vectors z1; — S128% T2
and & — 2122&152.- (¢ =1, ,k), we have, with a confidence coefficient, say 1 — «, the
following set of simultaneous confidence bounds (for all arbitrary nonnull ¢’(1 X p) and
unit-length b(k x 1)): @’Bb — [k(a'Sis0)ca(p, k, nk — k)2 < @8 < a'Bb +
[k(a’S1.28)ca(p, k, nk — k)]1'2, where co(p, k, nk — k) is the upper a-point of the distribu-
tion of the (central) largest determinantal root based on p, k and nk — k D. F. Test for the
associated hypothesis is also easily obtained.

26. The Efficiency of Tests, Wassily Hoeffding and Joan R. Rosenblatt, Uni-
versity of North Carolina.

The efficiency of a family of tests is defined. Let {X.} be a sequence of random variables
such that for every = the vector (X, -+ , X,) has cdf G, in some class C, . Let Ci, , Cas
be disjoint subsets of C, such that we prefer one or the other of two alternatives A, A
according as Gy, € Cin (2 = 1,2). Given a1 , a2 , we say thatthe problem ({C1,}, { Con}, a1, a2)
is solved by a test (general nonsequential two-decision rule) ¢, such that
P(¢n selects A; | Gn) = 1 — a; for all Gn € Cip (¢ = 1, 2). The index of efficiency of a family
of tests J for the problem ({Cin}, {Caa}, a1, a2) is N(3) = N(3J, {C1s}, {C2}, a1, a2), the
least sample size with which the problem can be solved by a member of the family 3. If
31, 32 are two families of tests, the efficiency of J; relative to Ji is given by eff (3;/3:1) =
N(31)/N(3;). The determination of N(J) is closely related to finding a test which maxi-
mizes the minimum power. Let 6(G,) be a real-valued function of G and suppose Ci, =
{Gr : 6(Gy) = 61}, Con = {Gr : 6(G,) = 65}, 61 < 6 . Under suitable assumptions, we derive
asymptotic expressions for N(J) as § = 6, — 6, tends to zero while a1 , @2 remain fixed.

27. On a Decision Procedure to Select the Population with the Largest Mean
(Preliminary Report), R. C. Bose and Jacques St. Pierre, University of
North Carolina.

Consider » 4+ 1 independent normal populations with unknown means mp, =
my = Mg -+ * = My, respectively, and with known or unknown common variance o2. Suppose
a sample of size N is available from each population, and a decision procedure is required
to select the population with the largest mean, with the following properties. (a) Either
a decision is made that the population from which the ith sample was drawn has the larg-
estrmean, or no decision is made. (b) The probability of making a wrong decision (if a
decision is made) is less than a pre-assigned number «, (independent of the unknown means
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mo ,my, - , m, . Subject to the requirements (a) and (b), the decision rule must control
the chance of indecision. The case of three populations with known o2 is considered in de-
tail, and the properties of a decision rule based on the auxiliary statistic y = z@y — zqy
are studied, where z) = a1y = Z(2) are the ordered sample means, the rule being to decide
that z¢) comes from the population with the largest mean if ¥ > k, and not to take a de-
cision if y < k. The general case when n > 2 and ¢2 is unknown is under consideration.

28. Most Economical Multiple-Decision Rules, William Jackson Hall, Uni-
versity of North Carolina.

Suppose z has an unknown distribution function F, belonging to one of m disjoint classes

W1, *** , wm ,and suppose 4; , -+ , A, are corresponding alternative decisions. A decision
rule Dy , based on a sample of size N, is said to be a ‘““most economical multiple-decision
rule (M.E. d.r.) relative to (@1, *** , @m), 0 < a; < 1, for choosing among A, *++ , An”

if it satisfies (1) Pr(D» chooses A; | F) = a;forall F e wi(z = 1, -+ , m) and if N is the
least integer n for which (1) can be satisfied. It is proved that to obtain M.E. d.r.’s one
need only consider d.r.’s in the sequence {D%}, n = 0,1, 2, -+ , where D% denotes a mini-
max solution w.r.t. a certain weight function for samples of fixed size n. If w; contains but
one distribution F; (i = 1, .-+ , m), D%, is of the form: (2) choose 4; if a:L; = a;L; (j =

1,--+,m) where L, *-+ , L, are the likelihood functions of the sample corresponding to
F,, -+ ,Fpand a1, --- , an are positive constants. In the general case, DS, is of a similar
form where now F,, -+ , F,, are “average’ distribution functions, averaged w.r.t. least

favorable conditional distributions over w;, *** , wm (if existent). Similar results are
obtained for “M.E. d.r.’s relative to (8:5),0 < 8:; < 1,” defined as above with (1) replaced
by (1') Pr(D, chooses A; | F) < B;;forall F ew;(i # j;j =1, , m); and (2) is replaced
by: (2) choose A; if Zppibely < Zpeibily (j = 1, -+ , m), for some positive constants
by, ,bm . Other properties of the d.r.’s are derived and various extensions and examples

given.
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Personal Items

Archie Blake is now employed as an Advisory Engineer in the Systems Anal-
ysis of Westinghouse Electric Corporation, Baltimore, Maryland.

E. L. Cox has left Operations Research Group, Case Institute of Technology,
to take a position with Chemical Corps Biological Laboratories, Frederick,
Maryland. °

Harold Davis has transferred from Headquarters, United States Air Force
to The Operations Analysis Office, Hq. Far East Air Forces.

Professor Hilda Geiringer is on leave of absence from Wheaton College in
order to complete and prepare for publication on behalf of Harvard University
some of the post-humous work of Richard von Mises.

Dr. S. G. Ghurye has accepted the position of Reader in Statistics, Depart-
fnent of Mathematics and Statistics, University of Lucknow, Lucknow, U.P.,,

India.



