794 R. D. LORD

REFERENCES

- [1] LIONEL WEISS, "Testing one simple hypothesis against another," Ann. Math. Stat., Vol. 24 (1953), pp. 273-281.
- [2] L. LECAM, "An extension of Wald's theory of statistical decision functions," unpublished.
- [3] A. Wald, Statistical Decision Functions, John Wiley and Sons, 1950.
- [4] C. Kuratowski, "Topologie I," 2nd ed., Warsaw, 1948. "Topologie II," Warsaw, 1950.
- [5] G. Choquet, "Convergences," Annales de l'université de Grenoble, N.S., Vol. 23 (1947-1948), pp. 57-112.
- [6] K. J. Arrow, D. Blackwell and M. A. Girshick, "Bayes and minimax solutions of sequential decision problems," *Econometrica*, Vol. 17 (1949), pp. 213-244.
- [7] L. Weiss, "A higher order complete class theorem," Ann. Math. Stat., Vol. 24 (1953), pp. 677-680.
- [8] L. Weiss, "Sequential procedures that control the individual probabilities of coming to the various decisions," Ann. Math. Stat., Vol. 25 (1954), pp. 779-784.
- [9] D. V. Lindley, "Statistical inference," J. Roy. Stat. Soc. Series B, Vol. 15, No. 1 (1953), pp. 30-76.
- [10] A. Wald and J. Wolfowitz, "Optimum character of the sequential probability ratio test," Ann. Math. Stat., Vol. 19 (1948), pp. 326-339.

THE DISTRIBUTION OF DISTANCE IN A HYPERSPHERE

By R. D. LORD

The Royal Technical College, Glasgow

1. In a note with the above title, Hammersley [2] has used ad hoc methods to deal with the distribution of the distance AB, when A and B are points uniformly distributed in a sphere of radius a in s dimensions. I show here how this question may be treated by general methods which I have developed elsewhere [3] for random vectors with spherical distributions. A random vector \mathbf{r} will be said to have a spherical distribution if its probability function is a function of $|\mathbf{r}|$ only.

I start with the observation that the problem is in fact one of the addition of independent random vectors with spherical distributions. We require the distribution of $\mathbf{r}_1 - \mathbf{r}_2$ where \mathbf{r}_1 and \mathbf{r}_2 are random vectors with the same uniform spherical distribution. But on account of the spherical symmetry, $-\mathbf{r}_2$ has the same distribution as \mathbf{r}_2 , so that the problem is equivalent to finding the distribution of $\mathbf{r}_1 + \mathbf{r}_2$. It will be dealt with in this form in what follows.

2. The first method uses the polar form of the characteristic function. For any spherical distribution in s dimensions let

$$P(r) dr = Pr\{r < |\mathbf{r}| < r + dr\}.$$

Received 10/5/53, revised 4/12/54.

The characteristic function of the distribution of r is $E(e^{i\mathbf{r}\cdot\mathbf{0}})$. On changing to polar coordinates it is found (as in [1] or [3]) to be a function of $\rho = |\mathbf{0}|$ only, and is

(1)
$$\Phi(\rho) = \int_0^\infty P(r) \Lambda_{s/2-1}(r\rho) dr,$$

where

(2)
$$\Lambda_{\alpha}(x) = \Gamma(\alpha + 1)(\frac{1}{2}x)^{-\alpha}J_{\alpha}(x) = 1 - \frac{(\frac{1}{2}x)^{2}}{1 \cdot (\alpha + 1)} + \frac{(\frac{1}{2}x)^{4}}{1 \cdot 2(\alpha + 1)(\alpha + 2)} - \cdots,$$

with inversion formula

(3)
$$P(r) = 2^{-s/2+1} \left\{ \Gamma(\frac{1}{2}s) \right\}^{-1} \int_0^\infty (r\rho)^{s/2} J_{s/2-1}(r\rho) \Phi(\rho) \ d\rho.$$

It should be emphasised that $\Phi(\rho)$ is the characteristic function of the s-dimensional distribution of \mathbf{r} and not of the one-dimensional distribution of $\mathbf{r} = |\mathbf{r}|$.

For a distribution uniform in a sphere of radius a

(4)
$$P(r) = \begin{cases} sr^{s-1}a^{-s}, & 0 \le r \le a; \\ 0, & r > a, \end{cases}$$

(5)
$$\Phi(\rho) = \Lambda_{s/2}(a\rho).$$

Multiplying characteristic functions and inverting, we obtain the probability function for $r_1 + r_2$ as

$$P_2(r) = s\Gamma(s/2 + 1)(2r/a^2)^{s/2} \int_0^\infty \rho^{-s/2} J_{s/2}^2(a\rho) J_{s/2-1}(r\rho) \ d\rho.$$

This integral is not completely evaluated by Watson [4], but we merely need to make simple substitutions (in line 6 of sec. 13.46 and in equation (2) of sec. 13.4). The result is

$$P_2(r) = \frac{s\Gamma(\frac{1}{2}s+1)}{\Gamma(\frac{1}{6}s+\frac{1}{6})\Gamma(\frac{1}{6})} r^{s-1} a^{-s} \int_A^{\pi} \cos^2 \frac{1}{2} \phi \ d\phi,$$

where $0 \le A \le \pi$ and $\sin \frac{1}{2}A = r/2a$. Putting $t = \cos^2 \frac{1}{2}\phi$, we obtain Hammers-ley's form

(6)
$$P_2(r) = sr^{s-1}a^{-s}I_u(\frac{1}{2}s + \frac{1}{2}, \frac{1}{2}),$$

where $\mu = 1 - r^2/4a^2$ and $I_x(p, q)$ is the incomplete Beta function defined by

$$B(p,q)I_x(p,q) = \int_0^x t^{p-1}(1-t)^{q-1} dt.$$

3. In the second method the distributions are treated as projections of spherical distributions in a space of a higher number of dimensions. It is clear that

796 R. D. LORD

from a spherical distribution of random vectors with O for center (i.e. O is the point $\mathbf{r}=0$) we obtain another spherical distribution with center O if we project the vectors orthogonally onto a space of lower dimensions through O. A simple calculation [3] shows that if any spherical distribution in space of (s+2m) dimensions is projected onto a space of s dimensions, the corresponding probability functions $P^{(s+2m)}(r)$ and $P^{(s)}(r)$, satisfy

(7)
$$P^{(s)}(r) = \frac{2\Gamma(\frac{1}{2}s+m)}{\Gamma(\frac{1}{2}s)\Gamma(m)} r^{s-1} \int_{r}^{\infty} P^{(s+2m)}(t) (t^2 - r^2)^{m-1} t^{-s-2m+2} dt.$$

If the distribution in the higher space is uniform over the surface of a sphere of radius a, then

(8)
$$P^{(s)}(r) = \begin{cases} \frac{2\Gamma(\frac{1}{2}s+m)}{\Gamma(\frac{1}{2}s)\Gamma(m)} a^{-s-2m+2} (a^2 - r^2)^{m-1} r^{s-1}, & r \leq a, \\ 0, & r > a. \end{cases}$$

When m = 1, this reduces to (4).

This shows that a uniform distribution through the volume of an s-dimensional sphere can be obtained by projection from a uniform distribution over the surface of an (s + 2)-dimensional sphere, each sphere having radius a. In the case s = 1, we see that a distribution uniform over a diameter can be obtained by projection from a distribution uniform over the surface of a sphere. This is essentially Archimedes' theorem on the surface area of a sphere.

Now for the sum of two vectors, each with a distribution uniform over the surface of an (s + 2)-dimensional sphere, we can appeal to a special case of Kluyver's original solution of the problem of random flights, or rather to the generalisation to any number of dimensions given by Watson [4]. From his results ([4], secs. 13.48 and 13.46 (3)), it follows that the probability function is

(9)
$$P_2^{(s+2)}(r) = \begin{cases} 2^{1-s} \frac{\Gamma(\frac{1}{2}s+1)}{\Gamma(\frac{1}{2}s+\frac{1}{2})\Gamma(\frac{1}{2})} a^{-2s} r^s (4a^2 - r^2)^{(s-1)/2}, & r \leq 2a; \\ 0, & r > 2a. \end{cases}$$

Substituting in (7) with m=1, we obtain $P_2(r)$ as a multiple of $\int_r^{2a} (4a^2-t^2)^{(s-1)/2} dt$, and then (6) follows.

If the distribution of each \mathbf{r}_1 and \mathbf{r}_2 is according to (8), with m not necessarily equal to 1, then it is the projection from space of dimensions (s+2m) of a distribution uniform over the surface of a sphere. The argument just used is applicable and shows that

$$P_2(r) = k \int_r^{2a} (4a^2 - t^2)^{m+(s-3)/2} (t^2 - r^2)^{m-1} t^{-2m+2} dt,$$

where k is a constant. When m = 1 this reduces to (4), but is otherwise more complicated. The result is still true when 2m is not an integer.

4. Hammersley proves that for large values of s the distance between two points in the sphere is nearly always equal to $a\sqrt{2}$, the diagonal of the rectangle determined by orthogonal radii. He does this by showing that as s tends to infinity, $|\mathbf{r}_1 + \mathbf{r}_2|$ is asymptotically distributed in a normal distribution with mean $a\sqrt{2}$ and variance $a^2/2s$.

From the characteristic function it is seen that Hammersley's result is a corollary of a more general one, namely that the s-dimensional distribution given by (8) is asymptotically normal with second moment $a^2s(s+2m)^{-1}$. Here a normal distribution has the probability function

$$P(r) = C_s r^{s-1} \exp \left(-\frac{1}{2} s r^2 / \mu_2\right),$$

where μ_2 is the second moment and C_s a constant, and has the characteristic function

$$\Phi(\rho) = \exp(-\frac{1}{2}\mu_2\rho^2/s).$$

The distribution (8) has characteristic function $\Lambda_{s/2+m-1}(a\rho)$. This can be verified by direct calculation, or derived from the facts that a spherical distribution and its projections (in the sense of sec. 3) all have the same characteristic function (proved in [3]), and that a distribution uniform over the surface of a sphere of radius a in s + 2m dimensions obviously has the characteristic function $\Lambda_{s/2+m-1}(a\rho)$. Now

$$\Lambda_{s/2+m-1}(a\rho) = 1 - \frac{a^2\rho^2}{2(s+2m)} + \frac{a^4\rho^4}{8(s+2m)(s+2m+2)} - \cdots$$
$$\sim \exp\left\{-\frac{a^2\rho^2}{2(s+2m)}\right\}$$

as s tends to infinity, uniformly in any ρ -interval. Thus the distribution (8) is asymptotically normal with $\mu_2 = a^2 s(s + 2m)^{-1}$.

Taking m = 1, we obtain the distribution (4) which is therefore asymptotically normal with $\mu_2 = a^2 s(s+2)^{-1}$. The distribution of $\mathbf{r}_1 + \mathbf{r}_2$ is thus asymptotically normal with

(10)
$$\mu_2 = 2a^2s(s+2)^{-1}.$$

Taking m=0, we see that the distribution uniform over the surface of a sphere of radius b is asymptotic to a normal distribution with $\mu_2=b^2$. Comparing with (10), we see that the distribution of $\mathbf{r}_1+\mathbf{r}_2$ is asymptotic to a distribution uniform over the surface of a sphere of radius $a(2s)^{1/2}(s+2)^{-1/2} \simeq a\sqrt{2}(1+s^{-1})$. This is equivalent to Hammersley's result.

We could avoid the use of characteristic functions in an increasing number of dimensions by projecting onto a diametral subspace of a fixed number of dimensions. Since projection does not alter the characteristic function, the result-ing calculation will be the same.

REFERENCES

- [1] S. Bochner and K. Chandrasekharan, "Fourier transforms," Ann. Math. Studies, No. 19 (1949), Princeton.
- [2] J. M. Hammersley, "The distribution of distance in a hypersphere," Ann. Math. Stat., Vol. 21 (1950), pp. 447-452.
- [3] R. D. LORD, "The use of the Hankel transform in statistics. I, General theory and examples," to be published in *Biometrika*.
- [4] G. N. Watson, A treatise on Bessel functions, Cambridge University Press, 1st edn., 1922, 2nd edn., 1944.

EXTREME VALUES IN SAMPLES FROM m-DEPENDENT STATIONARY STOCHASTIC PROCESSES

By G. S. Watson

University of Melbourne, Australia

Summary. The limiting distributions for the order statistics of n successive observations in a sequence of independent and identically distributed random variables are shown to hold also when the sequence is generated by a stationary stochastic process of a certain moving average type.

A sequence of random variables $\{x_i\}$ has been called *m*-dependent [3] if |i-j| > m implies that x_i and x_j are independent. If the variables in a strictly stationary sequence are *m*-dependent and have a finite upper bound to their range of variation, the largest in a sample of *n* successive members tends with probability one to this upper bound. This is a simple extension of Dodd's results [1] for the case of independence.

The following theorem shows that when this upper bound is infinite, the asymptotic distribution of the largest in such a sample is the same as in the case of independence.

Theorem. Let $\{x_i\}$ be a sequence of random variables, unbounded above and generated by an m-dependent strictly stationary stochastic process with the property that

(1)
$$\lim_{c \to \infty} \frac{1}{P(x_i > c)} \max_{|i-j| \le m} P[(x_i > c), (x_j > c)] = 0.$$

Then, if $\xi = n P[x_i > c_n(\xi)]$, for ξ fixed,

$$\lim_{n\to\infty} P[x_i \leq c_n(\xi); i=1,\cdots,n] = e^{-\xi}$$

Proof. Using the formula for the probabilities of the joint occurrence of a set of events in terms of probabilities of occurrence of their contraries (Feller [2],

Received 8/19/52, revised 7/2/54.