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THE DISTRIBUTION OF DISTANCE IN A HYPERSPHERE
By R. D. Lorp

The Royal Technical College, Glasgow

1. In a note with the above title, Hammersley [2] has used ad hoc methods
to deal with the distribution of the distance AB, when A and B are points uni-
formly distributed in a sphere of radius @ in s dimensions. I show here how this
question may be treated by general methods which I have developed elsewhere
[3] for random vectors with spherical distributions. A random vector r will be
said to have a spherical distribution if its probability function is a function of
|r| only.

I start with the observation that the problem is in fact one of the addition of
independent random vectors with spherical distributions. We require the dis-
tribution of r; — r, where r; and r, are random vectors with the same uniform
spherical distriution. But on account of the spherical symmetry, —r, has the
same distribution as rs , so that the problem is equivalent to finding the distribu-
tion of r; + r, . It will be dealt with in this form in what follows.

2. The first method uses the polar form of the characteristic function. For any
spherical distribution in s dimensions let

P(r)dr = Pr{r < [r| < r + dr}.
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The characteristic function of the distribution of r is E(e™?). On changing to
polar coordinates it is found (as in [1] or [3]) to be a function of p = |g| only,
and is

W) @) = [ POAos () i,

where
A(@) = T'(a + 1)(Go) “Jalz)

&) _ 1a)’ (32)*
B VP R ¥ pr )T o) B

with inversion formula
3) P(r) = 27 (T(25)}™ / (70)""2T 1jos(r0) B () dp.

It should be emphasised that ®(p) is the characteristic function of the s-dimen-
sional distribution of r and not of the one-dimensional distribution of r = |z|.
For a distribution uniform in a sphere of radius a

s—1 —-s

s a, 0=r=a;
@ P = {7 S
(5) ®(p) = Asp2(ap).

Multiplying characteristic functions and inverting, we obtain the probability
function for r; + r; as

Py(r) = sT(s/2 + 1)(2r/a")"" fo p T 2(@p)J oj2—1(rp) dp.

This integral is not completely evaluated by Watson [4], but we merely need to
make simple substitutions (in line 6 of sec. 13.46 and in equation (2) of sec. 13.4).
The result is

_ SP(%S 'l" 1) s—1 _—s i 21
Pz(r) - f‘—(%s-———l——%ﬁ(—g r a /; (60 ] 2¢ d¢,

where 0 £ A < 7 and sin 24 = r/2a. Putting { = cos’ ¢, we obtain Hammers-
ley’s form

(6) Py(r) = ' LGs + 4, 3),
where u = 1 — 7°/4a” and I.(p, q) is the incomplete Beta function defined by

B(p, 9)I.(p, ¢) = fo zt”_l(l — )" gy,

3. In the second method the distributions are treated as projections of spher-
ical distributions in a space of a higher number of dimensions. It is clear that
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from a spherical distribution of random vectors with O for center (i.e. O is the
point r = 0) we obtain another spherical distribution with center O if we project
the vectors orthogonally onto a space of lower dimensions through O. A simple
calculation [3] shows that if any spherical distribution in space of (s + 2m) di-
mensions is projected onto a space of s dimensions, the corresponding probability
functions P“**™(r) and P*(r), satisfy

(7) P(c)(r) - %%___Iw P! ./; ® P(c+2m)(t) (tz _ r2)m—1t—-a—2m+2 dt.

If the distribution in the higher space is uniform over the surface of a sphere of
radius a, then

2T (384+m) —somiz, 2 2\m—1_s—1

=2 a — )" r < a,
(8) P¥(r) = {T(3s)T(m) @=r)

0, r > a.

When m = 1, this reduces to (4).

This shows that a uniform distribution through the volume of an s-dimensional
sphere can be obtained by projection from a uniform distribution over the surface
of an (s + 2)-dimensional sphere, each sphere having radius a. In the case s = 1,
we see that a distribution uniform over a diameter can be obtained by projection
from a distribution uniform over the surface of a sphere. This is essentially
Archimedes’ theorem on the surface area of a sphere.

Now for the sum of two vectors, each with a distribution uniform over the
surface of an (s 4 2)-dimensional sphere, we can appeal to a special case of
Kluyver’s original solution of the problem of random flights, or rather to the
generalisation to any number of dimensions given by Watson [4]. From his re-
sults ([4], secs. 13.48 and 13.46 (3)), it follows that the probability function is

- TGs+1) ., 2 2\ (s—1)/2
—2 2 __ 0 *r(4a’ — 1) , r £ 2a;
9 PeG) = )2 T FPT@® ¢
‘ 0, r > 2a.

2
Substituting in (7) with m =1, we obtain Py(r) as a multiple of f (4a® =)V gy,

and then (6) follows.

If the distribution of each r; and r, is according to (8), with m not necessarily
equal to 1, then it is the projection from space of dimensions (s + 2m) of a dis-
tribution uniform over the surface of a sphere. The argument just used is ap-
plicable and shows that

2a
Pyr) =k | (4 — £ymednng — i gy
r

where % is a constant. When m = 1 this reduces to (4), but is otherwise more
complicated. The result is still true when 2m is not an integer.
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4. Hammersley proves that for large values of s the distance between two
points in the sphere is nearly always equal to a\/2, the diagonal of the rectangle
determined by orthogonal radii. He does this by showing that as s tends to in-
finity, |r; 4 r.| is asymptotically distributed in a normal distribution with mean
a+/2 and variance a/2s.

From the characteristic function it is seen that Hammersley’s result is a
corollary of a more general one, namely that the s-dimensional distribution given
by (8) is asymptotically normal with second moment a’s(s + 2m)™". Here a
normal distribution has the probability function

P(r) = Co"" exp (— ¥sr'/ua),

where p; is the second moment and C, a constant, and has the characteristic
function .

®(p) = exp (— 3uap’/s).

The distribution (8) has characteristic function A,24m-1(ap). This can be
verified by direct calculation, or derived from the facts that a spherical distribu-
tion and its projections (in the sense of sec. 3) all have the same characteristic
function (proved in [3]), and that a distribution uniform over the surface of a
sphere of radius @ in s 4+ 2m dimensions obviously has the characteristic function
Asj24m—i(ap). Now

B a2p2 a‘p‘
Mmmalap) =1 = o Y ST oG Fom D

~ exp { - L}
2(s + 2m)
as s tends to infinity, uniformly in any p-interval. Thus the distribution (8) is
asymptotically normal with u, = a’s(s + 2m)™.
Taking m = 1, we obtain the distribution (4) which is therefore asymptotically
normal with u, = a’s(s + 2)™. The distribution of r; + r, is thus asymptotically
normal with

10) pe = 2d’s(s + 2)7%

Taking m = 0, we see that the distribution uniform over the surface of a sphere
of radius b is'asymptotic to a normal distribution with u, = b*. Comparing with
(10), we see that the distribution of r; + r; is asymptotic to a distribution uni-
form over the surface of a sphere of radius a(2s)"*(s + 2)™* ~ a4/2(1 + s7).
This is equivalent to Hammersley’s result.

We could avoid the use of characteristic functions in an increasing number
of dimensions by projecting onto a diametral subspace of a fixed number of di-
mensions. Since projection does not alter the characteristic function, the result-
ifg calculation will be the same.
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EXTREME VALUES IN SAMPLES FROM m-DEPENDENT STATIONARY
STOCHASTIC PROCESSES

By G. S. Warson

Uneversity of Melbourne, Australia

Summary. The limiting distributions for the order statistics of n successive
observations in a sequence of independent and identically distributed random
variables are shown to hold also when the sequence is generated by a stationary
stochastic process of a certain moving average type.

A sequence of random variables {z;} has been called m-dependent [3] if
|t — j| > m implies that z; and z; are independent. If the variables in a strictly
stationary sequence are m-dependent and have a finite upper bound to their
range of variation, the largest in a sample of n successive members tends with
probability one to this upper bound. This is a simple extension of Dodd’s re-
sults [1] for the case of independence.

The following theorem shows that when this upper bound is infinite, the
asymptotic distribution of the largest in such a sample is the same as in the case
of independence.

THEOREM. Let {x;} be a sequence of random variables, unbounded above and
generated by an m-dependeni strictly stationary stochastic process with the property

that

. 1
(l) ch—l'{i m |,,;I£lﬁ;{m P[(:m > C), (xj > C)] = (.

Then, if £ = n Pla; > ca(£)], for ¢ fized,

limP[a:, < C,,(E);i = ]_, -..,n] _.___e_E

n—ro0

Proovr. Using the formula for the probabilities of the joint occurrence of a set
of events in terms of probabilities of occurrence of their contraries (Feller [2],
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