ON THE FACTORIZATION OF DISTRIBUTIONS

By HENRY TEICHER
Purdue University

1. Summary. A family of probability distributions is called ‘‘factor-closed”
(f.c.) if it is closed under the operation of factorization. The classical binomial
family and certain generalizations of it are shown to be f.c. The multinomial
family is also f.c. Most families of infinitely divisible distributions are not f.c.

2. Introduction. If Fi(x) and Fy(x) are any two cumulative distribution
functions (c.d.f.’s), the convolution (denoted by ) of F; with F. is again a c.d.f.
say .

1) F=F@ =F «Fy = '[: Fi(x — y) dFs(y) = Pr{X < z}

where Pr denotes probability measure and X is called the random variable
(r.v.) possessing the c.d.f. F. Further, if X; and X, are independent r.v.’s having
cdf’s F, and F. with corresponding Fourier transforms or characteristic
functions (c.f.’s) ¢.,(t) and ¢,,(t), then F = F, % Fyisthecdf. of X = X; + X,
having, as is well known, the c.f.

@) 6:(0) = buy(0)-dus(t) = L " ' ap(a).

If one commences with ¢,(t) or F(z), any such representation as (2) or (1) is
termed a factorization of ¢.(t) or F(z) and the components ¢.,(t) or Fi(x) are
called factors.

For an arbitrary distribution F, factorization is not unique. That is, F =
Fy% Fy = Fy * F3 does not imply F, = F;.If F is infinitely divisible, this is no
longer possible. Many results concerning factorization, as well as references,
are given by Lévy [4], [5].

To avoid trivialities, we presume in what follows that all c¢.d.f.’s have at least
two points of increase and consider two c.f.’s ¢1(f) and ¢»(f) as equivalent if for
some real o,

$1(t) = exp {iat} ¢a(2).

The starting point of this investigation is the following

DeriNiTioN. A family $ of c.d.f.’s will be said to be decomposable (8') if, for
any element F of $, the relationship F = G * G, implies that G; and G: are mem-
bers of the family 8'. In particular, if § = §’, the family 8 will be called factor-

closed (f.c.).!

Received 12/14/53.
1 The class of all c.d.f.’s as well as the family of prime or indecomposable c.d.f’s (i.e.,
the only “factors” of ¢(f) are the trivial ones exp {iat} and ¢(f) exp{—iat}) are trivially
f.c.
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Thus, Cramér’s theorem [1], [2] on the factorization of the normal distribution
states that the normal family is f.c. A corresponding result of Raikov [3] avers
that the Poisson family is f.c.

For later usage, P(2) is defined to be a quasi-polynomial if, for real d; and r;
and integral m = 2, P(z) = D i ri2*. If, in addition, m = 2, P(z) will be
termed a binomial quasi-polynomial.

3. The general binomial family. We define a sequence of independent r.v.’s
{Xi}iforj = 1727 e, N = 2;by

Pr{X; =a;} =p;, PriX;=0b;}=¢i=1-p;,
where a; > b;jarerealand 0 < p; < 1forj = 1,2, ---, n. Let

ci=a;—b;>0 V' =2 X;.

i=1

The cf. of V' is
oy (1) = 7I:Il (pie™ + g; €' = exp {it g bj} JI:II (pie™ + ¢)).
It suffices to consider the equivalent c.f.
o = 1T s + 0) = 411 " + 2

where A is a constant and ; = ¢;p;" > 0. As ¢v(t) depends on the parameters
aj,bj,p;,andn, it represents a family of c.f.’s and there exists the corresponding
family of ¢.d.f.’s, say 3, whose explicit form is not required here. This family will be
dubbed the general binomial family since it constitutes an obvious generalization
of the classical binomial distributions connected with coin tossing, ete. It will
be shown to be f.c. under certain conditions.

As the c.d.f. of X; and hence of V is a step function with a finite number of
jumps, the same must be true of any factor of the c.d.f. of V. We may therefore
confine our attention (in looking for factors of ¢v(t)) to c.f.’s of the form ¢(t) =
> m.r; explitd;}, where r; is positive, d; is real, and m is a positive integer
>2. That is, we need only consider c.f.’s which are quasi-polynomials in z = e*
with positive coefficients.

LemMA. If a polynomial with nonnegative coefficients admits a factorization
into quasi-polynomials with nonnegative coefficients, it admils a factorization into
(ordinary) polynomials having the same coefficients.

Proor. Let Py(z) = H{ Pi(2), where Py(2) is an ordinary polynomial with
nonnegative coefficients and P;(z) is a quasi-polynomial for ¢ = 1, 2, .-+, r.
Also, let m; be the smallest exponent of P;(z) for ¢ = 0, 1, --- , r. Since Y1 m;
is a nonnegative integer mqo, we have immediately Po(z) = ]I Pi(z), where
P’(2) is a quasi-polynomial with m; = 0 for¢ = 0, 1, --- , 7. As any exponent
gppearing on the right side of the above equation must also appear on the leff
side, the Pi(z) must be ordinary polynomials. Q.E.D.

The distinguishing characteristic of the family 3 is that ¢+(f) may be repre-
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sented, by substituting z = ¢”, as a product of binomial quasi-polynomials. If
¢v(¢) may also be expressed as a product of quasi-polynomials which are not all
reducible to binomial quasi-polynomials, it will be established that 3 is not, in
general f.c. Consider the identity

e+ 3+ +8) =+ 2)E + 5° + 22° + 42 + 48)

Now, although P,(z) is in general reducible to (z + 3)(z + 4)(z" — 2z + 4),
it is irreducible into ordinary polynomials having nonnegative coefficients. By
the lemma it is also irreducible to quasi-polynomials having nonnegative co-
efficients. If each parenthetic factor in (3) is divided by the sum of its co-
efficients and z is replaced by ¢*, the expression on the left side is the c.f. of a
member of 3, while that in the middle is a product of two c.f.’s, the second of
which is not a member of 3.

On the other hand if 3 is suitably restricted, it is f.c. Let 3.2 denote the sub-
family of 3 with ¢; = cor2cforj = 1,2, - - -, n. We have then

TueoreM 1. The family 3, 2. 1s f.c. for any (positive) c.

Proor:If¢; =1lor2forj=1,2, .-, n,then

®3)

Ve = ¢v() = A I=I &+ a)

is the canonical decomposition of ¥(2) into linear and quadratic factors. As
G; > 0, it is clear that no matter how y(z) is factored into ordinary polynomials,
these must always be reducible to products of binomial factors with positive
coefficients. With the lemma, this proves the theorem for the case ¢ = 1. For
arbitrary (positive) ¢, the transformation y = 2° returns one to the case just
examined.

CoROLLARY 1. Let 375 denote the subfamily of 3, wherein p; = p for j =
1,2, -+, n. Then 32 is f.c.

Proor: By Theorem 1, 3%, is decomposable (3..2). That 35, is also f.c. fol-
lows directly from the fact that (for ¢ = 1) all the roots of ¢(z) must be equal
to —g or =+i(@)"~

From Corollary 1, it follows that the only factors of the classical binomial
(Bernoulli) distributions are themselves binomial distributions. It suffices here
to choose a; = 1, b; = 0, and p; = p.

One might also define 3” as that subfamily of 3 for which p; = p for j = 1,
2, - -+, n. However, it is simple to show via a counter-example that 3” is not f.c.

In generalization of the preceding, we define for any integral k = 2 the gen-
eral -nomial family of distributions, say, U} , as follows: Let {X;} be a sequence
of independent random variables with

PI‘{Xj=aji}=pj;‘, 7:=1:2:"'7k’

k
0<pis <1, le,-;=1, allj =1,2, -+ ,n.
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There is no loss of generality in supposing a;; > aje > - -+ > ay for all . Then
V' = > .1X; will be a c.v. having the “general k-nomial distribution.” We con-
sider the case k = 3.

TueoREM 2. If aj; forms, for each j, an arithmetic progression whose common
difference is independent of j, and if pls < 4p;pjs for all j, then Us s f.c.

Proor. Let bj; = a;; — aj3 > 0fors = 1 or 2. Then if b, = b, by hypothesis
bsx = 2b. As earlier, it suffices to consider

ev(®) = H (pie™ + ppe’™ + pi).

But this is the canonical decomposition of a polynomial in W = ¢"**. In view of
the positivity of the coefficients, and the lemma, U, is necessarily f.c. The con-
ditions p}s < 4p;pjs preclude trivial decompositions into binomial distributions.

The factor-closedness of U; cannot be extended even to the case where
the a;; are in arithmetic progression but the difference depends on j. It suffices
to note the counter-example
(@° + 302° + 685957) (2* + 2z + 6)(2° + 32 + 6)

= (& + 52 + 1%)E" + 255" + 25z + 38)(2' + 192" + 2 + 38).

4. The multinomial distribution. The factorization problem, as well as (1)
and (2), extend readily to the m-dimensional case, that is, to m random variables
or to a single vector random variable with m components. Where X, F(z), and
¢(t) were written previously, we need only substitute (Xi,:::,Xn),
F(xi, -, Tm), and ¢(l1, -+, tm). Cramér has shown [2] that the family of
multivariate normal distributions is f.c.

We consider the classical multinomial distribution with n independent repe-
titions of an experiment whose m mutually exclusive and exhaustive outcomes
A,, -+ A, have occurrence probabilities p1, -« + pm . If X; is the r.v. denoting
the number of occurrences of A; in the n trials, then

Pr{(X: = 2), -, a;=xM}=(m Ilmoﬁm?~-ﬁm

where D 1'z; = nand D1 p; = 1. Here
b, te, ooy tm) = [Pre" + pae’® + - pue'™]™.
Let z; = e"f’ and ¢(21, -+, 2m) = ¢(t1, -+, tn). As before, the only possible
factors of ¥ are of the form
4) Lt L o A A= s 2y ),

Again there is no loss of generality in supposing the z; to be nonnegative integers,
that is, that y; is a polynomial rather than a quasi-polynomial. We now prove
THEOREM 3: The family of (classical) multinomial distributions s f.c.
Proor: Analogous to (2), we have, where y; is of the form (4) for7 = 1 or 2,

(P21 + poz2 + -+ + Pmm)” = Y1-¥2



FACTORIZATION OF DISTRIBUTIONS 773

Since the irreducible factor (p21 + -+ + PwZnm) is an n-fold factor of ¥1-ys,
it must be an n;-fold factor of ¥; and an n.-fold factor of ¥, , with n; + n, = n,
that is,

Y = (2__; pm) Qi(z1, -, 2m), i=1,2

Clearly, Q; = constant = 1, since ¢(1, 1, --+,1) = ¢(0, ---,0) = 1. Finally,
0 < n; < nif degenerate c.f.’s and c.d.f’s are precluded, as earlier.

Slight generalizations of Theorem 3 are possible. The writer has proved that
the family of (correlated) multivariate Poisson distributions is f.c., but this
will not be given here.

6. Infinitely divisible families. Returning to the unidimensional case, F(x)
is called infinitely divisible (i.d.) if [p(2)]"'" is a c.f. for every positive integer n.
Khintchine’s form [6] of Lévy’s formula [4] gives as a necessary and sufficient
condition for F(z) to be i.d. that

. P i _ g ttu 1+u2>
® oo =i+ [ (o -1 - 2N sgq

u?

where v is real and G(u) is bounded, monotonic nondecreasing and can be nor-
malized so that G(u") = G(u), G(— ) = 0,and G(+ «) = B. Furthermore,
the normalized representation is unique.

If G(u) is a step function with only a single jump poinf, that is

o -5 TV g s
then (a) yields the normal family of distributions while those in (b) are closely
related to the Poisson family. If ¢ = 1 and v = ¢°, then (b) is the Poisson
family.

Suppose that G(u) has n discontinuities a; < a» < --+ < a, with saltuses
bi, b2, -+, ba. Then G(u) = Gu(w) = Ga(u; 01 -+ @n; by - -+ by) has a cor-
responding id. ¢.f. ¢n(t ;a1 -+ - @n; b1 - - - ba) and cdf. Fo(z ;a1 -« @n; b1+ -+ by).

For any fixed n = 1, 2, --- , consider the family

Fn = (Fal@;a - Q3 bu)}.

If G.(u) is a step-function, denote the corresponding family of c.d.f.’s by F,.
THEOREM 4. For any fized n = 2, 3, -+ , the i.d. families §, and F,, are not
f.c. ‘

Proor. Let b = 2 27 b, . Define
.G_'.‘&L_)_:__b, u;an; IM, u<an’
Giw) ={ B—1b Gaw) =4 °
0 y U< @ny (1, uz2an.

, Further, let #% () be given by (5) with G%(u) replacing G(u), and define ¢ (t)
analogously. Clearly, G,(u) = (B — b)G(u) + bG.(u), whence

¢n(t; ay * - Qn; by - - bn) = d’:(t)d’;(t)



774 HENRY TEICHER

Since G%(u) has only one saltus, the c.d.f. corresponding to ¢%(t), say Fi(x)
belongs to either & or ¥ . Thus, &, or F, is not f.c. for n = 2. In particular,
if G, is a step function, F{(z) is a normal or (almost) Poisson c.d.f.
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