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1. Summary. Multidimensional stochastic approximation schemes are pre-
sented, and conditions are given for these schemes to converge a.s. (almost
surely) to the solutions of k stochastic equations in k¥ unknowns and to the point
where a regression function in k variables achieves its maximum.

2. Introduction. Let H(y | z) be a family of distribution functions depending
upon a real parameter x and let M (z) = f y dH(y | ) be the regression func-

tion corresponding to the family H(y | ). Robbins and Monro [1] define a sto-
chastic approximation method to solve the equation M(z) = o, where a is a
specified constant. Their method is such that the approximating random vari-
ables converge in probability to 6, where 6 is a root of the equation M(x) = .
These results are generalized by Wolfowitz [2]. Kiefer and Wolfowitz [3] define
a stochastic approximation scheme which converges in probability to 6, where 6
is the point at which M (z) achieves a maximum. Finally, it is shown [4] that in
fact, in both of the situations mentioned above, the approximating sequence of
random variables converges a.s. to 8. _

The object of this paper is to extend these results to several dimensions. More
precisely we consider the following two problems.

(A) Let (Y. .}, -+, {Y®... .} be k families of random variables with
corresponding families of distribution functions {F{D....}, -+, {F®.. .},
each depending on k real variables (z1, ---, z). Let MP(2,, -+, 2) =

f y dF$P... 5, for i = 1, --- | k, be the corresponding regression functions.
0

Then, if a;, - -+, o are k specified numbers, it is desired to find a stochastic
approximation method such that the sequence of approximating random vectors
converges a.s. to a solution of the equation

M(‘)(xl,...’xk)=a‘, i:l,...’k_

Here it is assumed that the distributions F*” and the regression functions M‘”
are unknown; however, it is possible to make an observation on the random
variable Y{... o, for ¢ = 1, --- , k, and any choice of real numbers (z,, - - - , 2x).

(B) Let {Ys,....s} be a family of random variables, F.,.... ., be the corre-
sponding distribution functions, and M (21, -, 2x) the corresponding regres-
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sion function. Subject to the assumptions of (A), it is desired to estimate that
set, of numbers (8, , - - -, 6x) for which the function M achieves its maximum.

The approximating sequences defined in this paper are straightforward general-
izations of the sequences defined in [1] and [3]. The methods of proof used here
were strongly motivated by the methods used in [2] and [3].

3. A theorem on almost sure convergence. The following theorem is an im-
mediate consequence of the martingale convergence theorem of Doob [5].
TueoreM. Let X, be a sequence of random variables satisfying

(i) supa E{|Xa.|} < o,
(li) Zo,:gl E{[E{Xn+l - Xn | Xl, e )Xﬂ}+]} < .

Then X, converges a.s. to a random variable.

As usual, we define X* by Xt = 4[X + |X|]. We immediately obtain the
following

CoroLLARY. Let X, be a sequence of integrable random variables which satisfy
condition (ii) of the theorem and are bounded below uniformly in n. Then X, con-
verges a.s. to a random variable.

Proor. Let Y, = X, — a, where a is chosen so that ¥, = 0 for all n. Then

n—1

E{|Y.|} = E{Y.} = E{Y4} +J§ E{Yin — Y;} £ E{Yy)

n—1

+ Z E{[E{XJ+1 - Xlelr ) XJ}+]}

=1

Hence the theorem applies to the sequence Y, and consequently to the sequence
X, .

4. Convergent sequences of random vectors. Let Ei be a real k-dimensional
vector space spanned by the orthogonal unit vectors uy, - -+ , u . If  and y are
two vectors in Ej , we denote their inner product by (z, y) and their norms by
| and ||y||, respectively. Suppose that to each x & Ej corresponds a random
vector Y, ¢ E; . Denote by M (x) the vector representing the conditional expecta-
tion of Y, when z is fixed.

Let now f(z) be a real-valued function defined on Ej and possessing continuous
partial derivatives of the first and second order. The vector of first partial deriva-
tives will be denoted by D(z) and the matrix of second partial derivatives by

A(z). That is
D(z) = (%,) |z A = (62390;)”

Then, for any real number a, we have by Taylor’s theorem

f@ + a¥.) = fz) + «D@), Ya) + 3aX¥s, Alx + 0aY.)Y.),
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where 6 is a real number with 0 < 8 < 1. Consequently we may take expecta-
tions on both sides to obtain

4.1) E{f(z+ aY.)} = f(z) + a(D(z), M (2)) + 3’E{(Yz, A(w + 6aY)Y2)}.

Let now {a.} be a sequence of positive numbers and consider the following
sequence of recursively defined random vectors

4.2) Xop1 = X+ aaYa,

where X is chosen arbitrarily and where Y, has the distribution of Y, when X,
yields the observation x. The object of this section is to set down conditions

under which X, converges a.s. to zero.
To simplify writing we shall employ the following notation throughout:

Z. = f(z), UG = (D), M), Vi) = E{(Y., Alx + 6aY.)Y.)}.

When we substitute the random variables X, for z and the numbers a, for a,
the corresponding random variables will be denoted by Z,, U., and V,. We
shall assume throughout that M (0) = 0.

Consider now the following set A of conditions:

A;: glan= ©, Z,lai< ©;

A, Z, = 0;

A;: ess|l|1§|| U) <0 for every ¢ > 0;
Ag: e;iﬂfz” |Z, — Zo| > 0 for every ¢ > 0;
A;: _Va(x) SV <w for every number a.

Then we have

THEOREM 1. If the sequence a, satisfies A, and if there exists a real-valued func-
tion f(x) with continuous first and second partial derivatives satisfying A, « -+ As,
then the sequence {x,} defined by (4.2) converges a.s. to zero.

Proor. From (4.1) we obtain

(43) E{Zuni1 | Z1, -+ 1 Zn} = Zn + aaB{Ua| Zs, -+, 24}
+%23E{V,.|Z1, <o, Za} as.
Since M (0) = 0, we have, by virtue of conditions A,
E{Un|Z1,+*,Zs} S 0as., E{Va|Zi, - +,Za} =V as,
both for all n. Hence
(4.4) E{Znyr — Zn|Z1, -+, Za} < 303V as.
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We may assume V to be nonnegative. Using this fact together with conditions
A; and A, we may apply the corollary of Section 3 to obtain

(4.5) P{Z, converges} = 1.

Taking expectations on.both sides of (4.3) and iterating, we have
B{Znw) = 2, + 21 o; B{U;} + Zl Y ARAR
j= i=

From what has been said abeve it follows that
E{Z.,} = 0, E{U,} =0, E{V.,} =V, n=1,---.

Since V is nonnegative and the series Y ¢ a% converges, the nonpositive term
series 2.7 a.E{U,} also converges. By virtue of the fact that D ¥ a. = « we
have
lim sup E{U,} =0, liminf E{|U.|} = 0.
Let {n:} be an infinite sequence of integers such that limi,o E{|Unl} = 0.
Then U.,, converges to zero in probability and there exists a further subsequence
5ay {Uum;} such that
P{lim U,,, = 0} = 1.
k>0

From condition A; it follows that P{limy,, X, = 0} = 1. Since Z, is a con-
tinuous function of X, it follows from (4.5) that ‘
(4.6) P{lim Z, = Z,} =1
Now consider a sample sequence {X,} such that for the corresponding sequence
{Z,} we have lim,,e0 Z, = Zo. From condition A, it is clear that for such a
sequence we must have lim,.. X, = 0. Hence (4.6) gives the desired result.

We may obtain the same result by assuming a slightly different set of condi-
tions: A’, changing A; and Aj; to:

Ajz: There exists e > 0 such that sup V.(x) £ V < « for every number a;
0s 12| I<e

Ag: There exists A > 0, with A > %a, for each n, such that sup [U(x)
,. <1 sl
+ A VZ(z)] < 0 for every 6 > 0 and every number a.

Then we have
THEOREM 2. If the sequence {a,} satisfies condition A, and if there exists a real-
valued function f(x) with continuous first and second partial derivatives satisfying
Ay, A3, Ay, and As, then the sequence {X,} defined by (4.2) converges a.s. to zero.
, The proof of this theorem follows very closely that of Theorem 1, and so is
omitted.
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6. Examples. In this section we illustrate the results of the previous section
by a few simple examples. Assume that the problem is as described in (A) of
Section 2. Then to each = ¢ E) corresponds to a random vector Y, ¢ E;, with co-
ordinates Y fors = 1, -+ - , k. Let M(z) be the vector of conditional expecta-
tions, when x is given. Without loss of generality we assume that a; = 6; = 0 for
i =1, k.

ExampLE 1. Let B be a negative definite k£ X k matrix and assume

@) for some p > 0, |[z|| < p implies M(x) = Bz;
(ii) llz| > p_implies M(z) = M(lp/|la]lx);

(iii) o2 £ o* < o for each z ¢ E;, and each ¢ = 1, - -+ , k, where o3 is
the variance of the 7th component of Y. .

Under these conditions it is clear that both || M (x)|| and E{||Y.||"} are bounded
uniformly in z. Now define f(x) by f(x) = ||z||*. If we choose the sequence {a.}
to satisfy condition A;, we can easily verify that the remainder of condition A
is satisfied. To do this we note that A, and A, are obviously satisfied from the
choice of f(x). Further we have

Uw) = 2(x, Bx) flz]] < »
2[p/||z]|] {x, Bx) l=ll > p;
Va(x) = 2E{|Y.|"} for every number a.

From the boundedness of E{||Y .||’} it is clear that As if also satisfied. It remains
to check A;. To do this we recall that for every negative definite matrix B
there exists a positive number b such that {x, Bx) < —b||z|’. Thus 1f ¢ is any
positive number with 0 < ¢ < p, we have

(e, Be) = —bé ezl =p  [/llzlll (@ Bx) = —bs" if ||zl > p.

Hence A; is also satisfied and Theorem 1 applies.
Exampre II. Consider a negative definite matrix B and assume

(i) M(x) = Bz;
(ii) there exist ¢ > 0 and C > 0 such that || z || < eimplies E{|| Y. |’} = C
(iii) there exists p > 0 such that || z || > e implies

(x’ Bx) + pE{“ Y, “2} =
With f(x) again defined by f(x) = || z ||*, we have
U(z) = 2z, Bx),  Va(x) = 2E{|| Y. |"} for all a.

Hence it is clear that if we choose the sequence {a.} to satisfy condition A, we
need only verify Ag , since the other conditions follow immediately. To do this,
assume first that || x || < e as determined by assumption (i) of this example
and let A be any positive number. Let b > 0 be such that (x, Bx) < —b ||z |[*.
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Then we have
U(x) + 2V (@) = 2[(z, Bz) + B{|| Y. |["}]
< 2((z, Bz) + (] < 2[—b || z||* + AC].
Hence it is clear that if 0 < § = ||z || £ ¢, we can choose A, such that
U(z) + MV (z) < 2[-b8" 4+ MC] <0,

and if || z || > ¢, choose 0 < X2 < p, where p is determined by assumption (iii)
of the example. Then

e 22 VTN _ (2.2 20) ¢, o) + 225, Ba) + o] ValF]

2
< (P - *2) (&, Ba) < — (P:_*_) b < 0,
P

Hence by choosing A = min (A,, A;) we satisfy condition A; and Theorem 2 ap-
plies.

6. The maximum of a regression function in several variables. In this section
we turn to problem (B) of Section 2. Assume once more that « is a variable point
in E; and to each x corresponds a random variable Y, , with corresponding re-
gression function M (x). Assume, without loss of generality, that M (x) has a
unique maximum at £ = 0. The problem becomes one of constructing a sequence
{X,} of random vectors with the property

P{lim X, = 0} = 1.

n->0

Let {a.} and {c,} be two infinite sequences of positive numbers satisfying condi-
tions B:

B;: lime¢, =0, By D a, = o, Bs: D anc, < o,

n>0 n=1 n=1
® a 2
B4: Z <’2> < o,
n=1 \Cn
Suppose now z ¢ E; and let ¢ be a positive number. Let u;, - , u be the or-

thonormal set spanning E; . We construct a random vector Y, . by taking & 4- 1
independent observations on the random variables Y., Yateu;» *** 5 Yaoteup and
defining

Ya.c = [(Yz+cu1 - z), %y (YIMk - !)]'

We proceed to construct a recursive sequence of random vectors by choosing X3
arbitrarily and defining

(6.1) Xn+1 = Xn+ an Yn/cn )

where Y, has the distribution of Y., when X, yields the observation x. The
intuitive reason for (6.1) is fairly clear, since Y ,/c, is the vector in the direction
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of the maximum slope of the plane determined by the & -+ 1 vectors
(Xn ’ YX..)) (Xn + ¢, YX.-H-.“:)’ ] (X,. + catt ’ Yx.+c,.1ib)-

We denote the vector of first partial derivatives and the matrix of second partial
derivatives of M (z) by D(z) and A(x), respectively. We write D, for D(X,) and
A, for A(X,), and denote by A, the vector whose coordinates are the diagonal
entries of 4, , by A, the vector E{Y, | X,}, and by o2 the variance of Y, . With-
out loss of generality we assume that M (0) = 0 so that M (x) < 0 for all z. Then

we have
TureorEM 3. Suppose the sequences {a,} and {c.} satisfy condilions B and
further that

(1) M(x) is continuous with continuous first and second derivatives;
(i) oz £ " < oo
(iii) for every positive number e there exists a positive number p(e) such that
|zl = ¢ dmplies M(z) < —p(e) and || D(@) || Z p(e).
(iv) The second partial derivatives "M (x)/dx.0x; are bounded for i,j = 1, - -- , k

Then the sequence { X} defined by (6.1) converges a.s. to zero.
Proor. Expanding —M (X ,+1) we obtain, with0 < ¢ < 1,

2

~M(Xo) = —M(X) = 2D, V) - 22 (., A(X,. rol Y,,) Y.).
Taking conditional expectation for given X, we have

2
An

B{=M(Xw) | Xa} = —M(X.) = 22 (Do, &) — 5%

E{(Y,.,A <X,. +6 g_ Y,.) VAY! X,.} as.
Since A () is a bounded matrix and ¢ is bounded, we have
IE{(Yn, A<Xn + ogﬁ Yn) Yn) I Xn} I § Kl “ An “2 + KZ,

where K; and K, are suitably chosen positive constants. By virtue of the hy-
pothesis we obtain

AY = cDn, ui) + 3cius, AXn + 6Pcuduyd, =1,k
where AS is the sth component of A, and 0 £ 6 < 1fori =1, ---, k. Hence
(Day An) = ¢a || D “2 + %CKDA ’ An)
Al = call Dall* 4+ cDn, Aa) + fen || 4 |I"
Now by hypothesis, || 4, || is bounded, say || A ||* £ K. Then
[{Dn, An) [ = K || D[’
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After some computation we find
E{—M(Xu) | Xo} S —M(X,) = aaf]| Da |l — 3K1a,]
- || D, || Ki"[ic, — 2Kianca)} + 3K Ksalch + iKwal/ct  as.,

where n is chosen so large that [1 — 1K,a,] and [c, — Kia.c,)] are both nonnega-
tive.
Let M. be a sequence of random variables defined by

L || Da]l 21,

0 otherwise.

n

We note that for n sufficiently large we have
(6.2) an{|| Dn |[P 11 — 3Ki@a] — Ao || D || K3"[hcn — 3K10ac,)} =
Hence, for such n we obtain
E{—MXnn) | Xa} £ —M(X4) +.auen(l — \o) || Da || K37 | 3 — 3Kun |
+ IK\Kkicl + iKyah/ch as.

This inequality clearly is still preserved if we take conditional expectations with
respect to M (X,) on both sides. But now we note that

Do ac KA — 3K:a.] E{(1 — \o) || Da || | M(X,)} converges a.s.;
2.1 3KiKalch and D7 3Ksa?/c} both converge.

These follow from conditions B and the definitions of A, . Hence, we may again
apply the corollary of Section 3 to obtain that M (X,) converges a.s. to a random
variable. Now we note that ) Ja; diverges to 4+ « and that M(X,) < 0. Hence
the series

2. GE{||D; (1 — 3Kiai) — N || Dy || K3"(ke; — 3Kuajc;)
i=1

converges. This, together with (6.2), insures the existence of a subsequence Da,
with the property P{limj,,D., = 0} = 1. Hence X,, converges a.s. to zero.
Since M(x) is continuous and M (0) = 0, we have P{lim;. .M (X,) = 0} = 1,
which implies the desired result.
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