follow. It may be that the use of decision limits which depend upon the value of
n will produce a better test than (2), which uses the customary constant limits
for the sequential probability ratio test.

REFERENCES

TWO COMMENTS ON “SUFFICIENCY AND STATISTICAL
DECISION FUNCTIONS”

BY R. R. BAHADUR AND E. L. LEHMANN

Columbia University and University of California, Berkeley

In the following comments we employ the notation and definitions of [1].
The first comment answers a question raised in [1] by giving an example of a
necessary and sufficient subfield which cannot be induced by a statistic. The
second remark clarifies this example somewhat by discussing the connection
between statistics and subfields in general. It was hoped that this connection
would be so close as to provide the answer to another question raised in [1]:
whether the existence of a necessary and sufficient subfield implies that of a
necessary and sufficient statistic. However, an example given at the end of the
second comment shows that such a result cannot be proved without making deeper
use of sufficiency.

1. A counter example. The following result was communicated to us by
David Blackwell.

L E M M A 1. (Blackwell). Let S_0 be a proper subfield of S and suppose that for
each x the set $\{x\}$ consisting of the single point x is in S_0. Then S_0 cannot be induced
by a statistic.

P R O O F. Suppose there exists such a statistic, say T, and let T be the field of
sets B in the range of T such that $T^{-1}(B) \in S$. Since $\{x\} \in S_0$, there exists $B \in T$
such that $T^{-1}(B) = \{x\}$, and, by definition of T, a set $A \in S$ such that $T(A) = B$.
We therefore have $T^{-1}[T(A)] = \{x\}$, and since always $T^{-1}[T(A)] \supset A$, we
have that $T^{-1}[T(x)] = x$ for all x. Therefore, if A is any set in S, we see that
$T^{-1}[T(A)] = A$ so that $A \in S_0$ and hence our assumption that S_0 is induced by T
implies that $S_0 = S$.

We now give an example of a necessary and sufficient subfield that cannot be

Received July 24, 1953, revised May 24, 1954.
induced by a statistic. A trivial such example would be the case of two normal distributions defined over the Lebesgue sets S of the real line. Then S_0, the class of Borel sets, is a necessary and sufficient subfield, and this cannot, by Lemma 1, be induced by a statistic. The example is, however, uninteresting since $S_0 = S[S, P]$ and S is induced by the necessary and sufficient statistic $T(x) = x$. In this case, therefore, the necessary and sufficient statistic is equivalent to the necessary and sufficient subfield.

An example in which this is not the case can be based on a problem discussed by Halmos ([2], p. 71, prob. 2). Let X be the interval $(0, 1)$, let S_0 be the class of Lebesgue sets of X, and let p denote Lebesgue measure on S_0. Let $M \subset X$ be a fixed set which is not Lebesgue-measurable, and let the complement of M be denoted by \bar{M}. Define S to be the class of all sets of the form $EM + F\bar{M}$, with E and F in S_0. Then S is a field containing S_0. We take (X, S) to be the sample space. To define P, let G and H be fixed sets in S_0 such that

$$G \subset M \subset H$$

and $p(G) = p_*(M)$, $p^*(M) = p(H)$,

where p_* and p^* denote inner and outer Lebesgue measure. Let $D = H - G$, and for any set $N = EM + F\bar{M}$ in S define

$$\lambda(N) = p(EM + F\bar{M}D) + \frac{1}{2}p(ED) + \frac{1}{2}p(FD).$$

Halmos shows that λ is a measure on S such that $\lambda = p$ on S_0. Let the set P of probability measures on S consist of the two measures λ and μ, where μ is defined by $d\mu = 2x \, d\lambda$.

It is easily seen that in this case (i) S_0 is a necessary and sufficient subfield (cf. Theorem 6.2 of [1]), (ii) $T_0(x) = x$ is a necessary and sufficient statistic (cf. Theorem 6.3 of [3]), and (iii) P is a completed set of measures on S, that is, if a set A is S-P-null, then every $B \subset A$ is in S (and therefore S-P-null). We shall show that no necessary and sufficient subfield is equivalent to a statistic; a fortiori, no such subfield is inducible by a statistic.

Suppose to the contrary that S_* is a necessary and sufficient subfield, and that $S_* = S_*(S, P)$, where S_* is the subfield induced by a statistic T. It follows from the essential uniqueness of the necessary and sufficient subfield (cf. Corollary 6.2 of [1]) that S_* is necessary and sufficient. Consequently, by (i), S_* is equivalent to S_0. The sufficiency of S_* means that T is a sufficient statistic. Hence, by (ii), T_0 is essentially a function of T. More precisely, there exists a function F on the range of T into X, and an S-P-null set N, such that $T_0(x) = F(T(x))$ on $X - N$. This, together with (iii), implies that the subfield induced by T_0 is essentially a subfield of S_*. However, T_0 induces S itself, so that S_* must be equivalent to S.

Thus S_* is equivalent to S and also to S. We conclude that S_0 is equivalent to S, that is, $S_0 = S_*(S, P)$. Since \bar{M} is in S, and P contains λ, this conclusion implies that there exists a set in S_0, E_0 say, such that the symmetric difference of E_0 and \bar{M} is of λ-measure zero. This is, however, a contradiction, since the symmetric difference in question is $E_0\bar{M} + \bar{E_0}\bar{M}$, and its λ-measure is not less than $\frac{1}{2}p(E_0\bar{M}) + \frac{1}{2}p(\bar{E_0}\bar{M}) = \frac{1}{2}p(D) + p(D) = p^*(M) - p_*(M) > 0$.
2. The connection between subfields and statistics. The above Lemma of Blackwell provides a necessary condition for a subfield to be inducible by a statistic. We shall now obtain a necessary and sufficient condition. As is pointed out in [1], any subfield S_0 of S induces a partition π if we put $x \sim x'$, provided for all $A_0 \in S_0$ we have $x \in A_0 \Leftrightarrow x' \in A_0$. Let E_x denote the set of π containing x. Then we may characterize E_x as the largest set containing x and such that for all $A_0 \in S_0$ either $E_x \subseteq A_0$ or $E_x \subseteq A_0$.

Not every partition π can be induced by a subfield of S, and if it can there may be more than one subfield inducing it. Let us denote by C_π the (possibly empty) class of all subfields of S that induce π. We then have

Lemma 2. If C_π is nonempty, it contains a largest member S_π which is given by

$$S_\pi = \{ A : A \in S, x \in A \Rightarrow E_x \subseteq A \text{ for all } x \in X \}.$$

Proof. Since C_π is nonempty, there exists a subfield S_1 of S which induces π. For any $A_1 \in S_1$ and any $x \in X$ it follows that $x \in A_1 \Rightarrow E_x \subseteq A_1$ so that $S_1 \subseteq S_\pi$. Therefore, if π' is the partition induced by S_π, we see that π' is a refinement of π. (In general, if S_i induces π_i for $i = 0$ or 1 and if $S_1 \subseteq S_0$, then π_0 is a refinement of π_1).

We shall now prove that, conversely, π is a refinement of π'. This will show that $\pi' = \pi$ and hence that S_π induces π. Since we have already shown that S_π contains any S_1 that induces π, this will establish that S_π is the largest member of C_π.

Let E'_x be the set of π' containing x. Then E'_x is the intersection of all $A \in S_\pi$ that contain x. Since by definition of S_π all of these sets also contain E_x it follows that $E_x \subseteq E'_x$, as was to be proved.

We can now state

Lemma 3. Let C_π be nonempty. Then one and only one of the subfields constituting C_π, can be induced by a statistic, namely S_π.

Hence: A necessary and sufficient condition for a subfield S_0 to be inducible by a statistic is that $S_0 = S_\pi$, if S_0 induces π.

Proof. We remark first that if T is a statistic, then the subfield S_0 induced by it is the class of all $A_0 \in S$ for which $T^{-1}(T(A)) = A$. Now let E_x be defined relative to π as before and let $T(x) = E_x$. Then $T^{-1}(T(x)) = E_x$ and we see that $A_0 \in S_0$ (the subfield induced by T) if and only if $A_0 \in S$ and $x \in A_0 \Rightarrow E_x \subseteq A_0$.

This shows that $S_0 = S_\pi$ and hence S_π can be induced by a statistic.

On the other hand, let T be any statistic whose subfield S_0 induces π and let $F_x = \{ x' : T(x') = T(x) \}$. Then

$$x \in A_0 \Rightarrow F_x \subseteq A_0, \quad x \in \tilde{A}_0 \Rightarrow F_x \subseteq \tilde{A}_0.$$

It follows from the characterization of E_x given earlier that $F_x \subseteq E_x$. Therefore, $A \in S_\pi$, $x \in A \Rightarrow F_x \subseteq A$, and hence $A \in S_\pi$. It follows that $S_0 = S_\pi$.

One might hope that Lemma 3 would establish the existence of a necessary and sufficient statistic as S_{π}, where π is the partition induced by a necessary and sufficient subfield. Unfortunately, however, the notion of statistic is not invariant.
under equivalence \([S, P]\). A subfield equivalent to a statistic need not itself be a statistic. In an attempt to avoid this difficulty, one may define a pseudo-statistic as any subfield equivalent to a statistic. If Lemma 3 remained valid for pseudo-statistics in the sense that a member of \(C_v\) is a pseudo-statistic if and only if it is equivalent to \(S_v\), this would establish the desired result.

The following example shows that this stronger version of Lemma 3 is not correct. Let \(S_v\) be the class of all Lebesgue sets on the real line and \(S_0\) the class of all Lebesgue sets differing only by a set 0 from a set symmetric with respect to the origin. Clearly, \([x] \in S_0\) for all \(x\) so that \(S_0 \in C_v\). Also \(S_0\) is a pseudo-statistic since it is equivalent to the subfield induced by \(T(x) = |x|\). But clearly \(S_0\) and \(S_v\) are not equivalent.

REFERENCES

A NOTE ON CONFIDENCE SETS FOR RANDOM VARIABLES

Lionel Weiss

University of Virginia

Suppose the chance variables \(X_1, \ldots, X_m, Y_1, \ldots, Y_n\) have a joint probability distribution depending on the unknown parameters \(\theta_1, \ldots, \theta_k\), but otherwise of known form. We assume that there is a set of sufficient statistics for \(\theta_1, \ldots, \theta_k\), denoted by \(T_1(X_1, \ldots, X_m, Y_1, \ldots, Y_n)\), \(T_r(X_1, \ldots, X_m, Y_1, \ldots, Y_n)\). We shall let \(X\) denote the vector \((X_1, \ldots, X_m)\), \(Y\) the vector \((Y_1, \ldots, Y_n)\), \(\theta\) the vector \((\theta_1, \ldots, \theta_k)\), and \(T(X, Y)\) the vector \((T_1(X, Y), \ldots, T_r(X, Y))\). \(P_0(A)\) shall denote the probability of \(A\) when the vector of parameters equals \(\theta\), and \(P_0(A | B)\) shall denote the conditional probability of \(A\) given \(B\) when the vector of parameters equals \(\theta\).

Given a number \(\alpha\) between 0 and 1, if for each vector \(X\) we can find a set \(S(X)\) in \(n\)-dimensional Euclidean space such that \(P_0(Y \in S(X)) = \alpha\) identically in \(\theta\), then the system of sets \(S(X)\) is called a "parameter-free confidence set of level \(\alpha\) for the random vector \(Y\)."

Since \(T(X, Y)\) is a set of sufficient statistics for \(\theta\), the joint conditional distribution of \(Y\) given that \(T(X, Y) = t = (t_1, \ldots, t_r)\) is independent of \(\theta\). But then for any given vector \(t\), it is possible to construct a region \(S'(t)\) in \(n\)-dimensional Euclidean space such that \(P_0(Y \in S'(t) | T(X, Y) = t) = \alpha\) identically in \(\theta\)

Received April 7, 1954, revised November 10, 1954.