NOTES

ON A SEQUENTIAL TEST FOR THE GENERAL LINEAR HYPOTHESIS!
By Paur G. HoeL
Unaversity of California, Los Angeles

1. Introduction. A few years ago I reported [1] on a sequential method for
testing the general linear hypothesis, but held up publication until some of the
properties of the method had been investigated further. Johnson [2] recently
published a paper in which he obtained the same sequential test, but from an
entirely different point of view. His method of derivation is based on showing, by
means of a theorem of Cox [3], that the likelihood ratio approach to the problem
can be used successfully. My method is a direct generalization of Wald’s sequen-
tial ¢-test. This note outlines the nature of this generalization, and also points
out some additional properties of the test.

2. Method. The general linear hypothesis assumes that the variables z;,
Ty, -+, %, wWith means u, us, + -+ , u; and common variance ¢° possess the fre-
quency function

(]) f(xl, ey, xz) = (21!'0')—1 exp {;TZI [; (III, - [J.,')2 -+ r;=zk;.1 IL’?J}

It tests the hypothesis Hy: u = -+ = p, = 0, for p £ k. The means
Mkt1, * - , 4 have the value zero. The parameters ppi1, -, u, and ¢ are
nuisance parameters, and therefore make H; a composite hypothesis.

Following Wald’s [4] procedure and notation for the sequential i-test, let
the parameter space Q be divided into the three regions w, , @, , and @ — w, — w, .
The region w, will be chosen as that part of Q& where Hy holds. The region w, will
be chosen as that part of Q where

D 2
Xz
=1 O

where )\, is a selected constant. The boundary of w, will be denoted by S, . As
normalized weight functions choose

m o (20", O=o=olmlSci=p+1,,k
va(6) = { 0 , elsewhere;
az o (20)"7", Oso=sclmlsci=p+1-,k
v(6) = { 0 , elsewhere.
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GENERAL LINEAR HYPOTHESIS 137

Here a1, az, b1, and b, are certain related constants to be specified later. With
these weight functions and with H,’,‘,lf(xla , '+, Zi1a) denoting the likelihood
function for a sample of size n from (1), form the quantities

Pine = f Uy (0) gl f(xla y T xla) dSrc;

Sre

Pone = f Va (0) H1f<x1a, ft xla) de.

Here 8S,. is that part of the surface S, and w,, is that part of the region w, where
0o =cand|u] Scfori=p-+1, -,k These are truncations of S, and
wq to permit the existence of the necessary integrals.

Now choose b; = b + 1 — p, form the ratio pise / Pone , and allow ¢ to become
infinite. The resulting limit, which will be denoted by pi» / Don , is then treated
as the likehood ratio in the standard sequential probability ratio test. By choos-
ingb; = —1 and ! = kit can be shown that this test reduces to the test proposed
by Johnson.

The procedure, in outline, for obtaining the reduced form of this test is as fol-
lows. The numerator integral in pi. / pon , which is a surface integral over S, ,
is expressed as an integral over the ui, ---,u, plane, and the denominator
integral is expressed as an integral with respect to o. Then, letting

Lia y i"_"l’"';p’k_*-la"'yl?
Ria =
xia—-a';i, i=p+1,"',’€,
it is shown that pi. / po. is a homogeneous function of degree zero in the zi, .
This permits the replacing of z;o by zia / vV >3 2%, , which in turn enables one
to evaluate the denominator integral. The numerator integral is evaluated by
introducing spherical coordinates, expanding one of the exponential functions
in the integral, and integrating term by term. The resulting series will be found

to reduce to a confluent hypergeometric function. The result of these manipula-
tions is the expression

(2) % = ™ FGnl 4+ p — k — by — 1], 3p, 6*/2\0)
on

where 6% = n\in 2.0 &/ [Dony Dot T — M Dy £

This derivation requires that b; < 0. If by is chosen equal to —1, the preceding
test reduces to the Johnson test except for one minor feature. Johnson’s formula-
tion of the general linear hypothesis does not include the variables zx41, -+ , 2;,
and as a result our first parameter values in the confluent hypergeometric func-
tion are not in agreement unless I = k. His derivation applies equally well to the
formulation given in (1), and then his test will be identical with (2) for b, = —1.
The choice of by = —1 in (2) is probably as good a choice as any other,

3. Properties. If the principle of invariance is applied, the sequential test (2)
will possess an interesting property.
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From (1) the frequency function for a sample of size n is

(3) = @roy™ exp{ B[S+ 3 x]}

22a=1

i=k+1
By an orthogonal transformation for which zi; = (za + -+ + zw) / V7,
fort =1, ---,k, (3) can be reduced to the canonical form
@ L= Gy {1 [ 3 T + 5 3 s+ 56— VA )

From this it follows that the problem specification will remain invariant under
the following groups of transformations:

() Fa=xn+ec fori=p—+1,---,k
(11) any orthogonal transformation on the variables i« when the variables

Ti, o, xkl are deleted, and any orthogonal transformation on the variables
’/
T, o ;xpl’

(ill) Fia = Xia, fori=1,---,Landa=1,---,n
Standard methods will show that the maximal invariant under these groups
of transformations is

=§:xﬁ/[i Zk:x +3 E xﬁi].

fe=] a=2 i=l a=1 i=k+1

In terms of the original variables z;. , the expression for ¢, reduces to

P n 1 k
$n = n D I} / [Z 2 T —n 2 £2]
=1 a=] i=1 i=p+1
Thus, if the test of H, is to be an invariant sequential test, it must be based
on the sequence of variables ¢1 , ¢z, ¢3, - - - . Since (2) is based on this sequence,
it is an invariant test. The distribution of ¢, depends on the parameters through
the single parameter

ol
A= D
i=1 0?

As a consequence, for any invariant test, testing the hypotheses
Hy:pi=0 vs. Hy:pi=ui, i=1,--,p,

is equivalent to testlng the hypothesis A = 0 against the alternative X = X,
where N, = D Fui’ / 0%

Johnson has shown that test (2) is the probability ratio test for testing A = 0
against A = Ao based on the variables ¢, , ¢, ¢3, - -- . If the latter variables
were independent, it would follow from the optimum property of the proba-
bility ratio test that test (2) with by = —1 is the optimum invariant test of Hy .
However, since these variables are not independent, this conclusion does not
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follow. It may be that the use of decision limits which depend upon the value of
n will produce a better test than (2), which uses the customary constant limits
for the sequential probability ratio test.
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TWO COMMENTS ON “SUFFICIENCY AND STATISTICAL
DECISION FUNCTIONS”

By R. R. BaHAaDpUR aAND E. L. LEEMANN

Columbia University and University of California, Berkeley

In the following comments we employ the notation and definitions of [1].
The first comment answers a question raised in [1] by giving an example of a
necessary and sufficient subfield which cannot be induced by a statistic. The
second remark clarifies this example somewhat by discussing the connection
between statistics and subfields in general. It was hoped that this connection
would be so close as to provide the answer to another question raised in [1]:
whether the existence of a necessary and sufficient subfield implies that of a
necessary and sufficient statistic. However, an example given at the end of the
second comment shows that such a result cannot be proved without making deeper
use of sufficiency.

1. A counter example. The following result was communicated to us by
David Blackwell.

LemmMa 1. (Blackwell). Let Sy be a proper subfield of S and suppose that for
each x the set {x} consisting of the single point z is in Sy . Then S, cannot be induced
by a statistic.

Proor. Suppose there exists such a statistic, say T, and let T be the field of
sets B in the range of T such that T'(B) ¢ S. Since {z} ¢ Sy, there exists B ¢ T
such that T7'(B) = {x}, and, by definition of T, a set A ¢ S such that T(4) = B.
We therefore have T7'[T(A4)] = {x}, and since always T '[T(4)] D A4, we
have that T7'[T'(z)] = = for all z. Therefore, if A is any set in S, we see that
T7[T(A)] = A so that A ¢ S, and hence our assumption that S, is induced by T
implies that Sy = S.

We now give an example of a necessary and sufficient subfield that cannot be
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