ON THE DISTRIBUTION OF THE SAMPLE MEDIAN!

By Joun T. CrU
Unaversity of North Carolina

1. Summary. Upper and lower bounds are obtained for the cumulative distri-
bution function of the sample median of a sample of size 2n 4 1 drawn from a
continuous population. It is shown that if the parent population is normal, then
the distribution of the sample median tends ‘“rapidly”’ to normality. Other kinds
of parent populations are also discussed.

2. Introduction. Let a continuous population be given with cdf F(z) (cumula-
tive distribution function) and median ¢ (assumed to exist uniquely). For a
sample of size 2n + 1, let % denote the sample median. The distribution of Z,
under certain conditions, is known ([2], p. 369) to be asymptotically normal
with mean ¢ and variance 0% = 1/4 [f(¢)(2n + 1), where f(z) = F’(x) is the pdf
(probability density function).

Several authors, among them Hojo [4] and Cadwell [1], have stated that
numerical investigations showed that, if the parent population is normal, “the
convergence (of the distribution of %) to normality is surprisingly fast.” How-
ever, no mathematical proof or disproof seems ever to have been given for this
experimental result.

This paper shows mathematically that the findings are correct. Upper and
lower bounds are obtained for P[—z < (£ — §) / o < y] in (8) and (9). If no
very high accuracy is required, these bounds are reduced to a simpler form in
(10) and (11). Examination of these bounds makes it evident that the distribu-
tion of (& — £) / o, tends “rapidly” to normality.

Rectangular and Laplace parent populations are briefly discussed. It seems
that in these cases the distribution of (8 — &) / o, tends to normality at a “much
slower speed.”

3. Upper and lower bounds. Let F(z) and f(x) be respectively the cdf and pdf
of a certain population whose median is £. If g(z) is the pdf of the sample median
% of a sample of size 2n + 1, then

glx) = C.JJF@)]'[l — F(x)]"f(x), C. = (2n+ 1)/ nn!.

If f(¢) £ 0 and f’(z) is continuous in some neighborhood of z = £, then % is
known ([2], p. 369) to have an asymptotically normal distribution with mean
¢ and variance
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For finite n, let the cdf of ( — £) / o, be H(z). Then for any y > 0,

Etyon F(t+yey)
H(y) — 3 = j; g(t) dt = C, fm u" (1 — u)" du
F(t+ya,)—1/2
= ()™ Ca ( (1 — 4®)" dv.

Applying the transformations
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we obtain without difficulty
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where B, = (3)**Y'C,\/2x / v/2n + 1 and

() m(t) =t/ V1 —exp (—8), h(t) =texp (=) / V1 — exp (—8);

h=~—@n+1)log (1 — (4/a) [FE + you) — 317},

(4)
o= ~/—@n + 1) log {1 — &/8) [F + you) — 3P}

It can be shown (by differentiations) that h:(¢) and h.(¢) are respectively mono-
tonically increasing and decreasing functions of ¢, when ¢ = 0, and that
lim g 1(f) = limyso he(f) = 1. Hence we obtain from (1) and (2)

W) =} oL o F 2\,

H(y) %%aBn,‘/l 2n+2[¢<t‘1/2n+1> %:l,

Hw =3 208, 4/ 1+ 5 (0 g/ 5n) ~ 1)
where

(5) () = ‘[w (1//2x) exp (—3iz?) dz.
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In a similar way we can show that, for arbitrary z > 0 and y > 0,

H(y) — H(—x) - -
o il o/ 55 -0 (/2D
© H(y) — H(—x)

1 2n 2n
< bB, = = ) - - =
=B g/ +2n["’<‘*1/2n+ 1> o t*1/2n+ 1>]
where f; and #; are obtained from ¢ and ¢ in (4) by replacing y by —z.

It can be seen from (4) that if x and y are fixed, & = & = y + O(1) and &; =
ty = 2 + O(Q1) for large n. The following sections will show, for various kinds of
parent distributions, that if @ and b are properly chosen, then (6) remains valid
if & , &, and &3 , ¢, are replaced by y and x, respectively.

If n is large, upper and lower bounds for B, can be obtained by using Stirling’s
formula. Feller [3] showed that for n = 4,

_(1+o)]’ o] < 1.

— 1
| — n+1/2 — et N v 77
n!l = vV/2rn exp[ n + o 3607

If the last term, — (1 4 6) / 360n°, is omitted, then it can be shown that

i m + 3

1
1+ 8 24n? 2n + 1)

1
<B"<1+§%+16n(8n—-1)’

or B, ~1 4+ n.

4. Normal parent population. Suppose that a sample of size 2n + 1 is drawn
from a normal population with mean ¢ and variance o*. The distribution of %
is then asymptotically normal with mean ¢ and variance wo® / 2(2n 4+ 1). It has
been shown that if, for x > 0,

) ¢(z) — ¢(—2) = a®) V1 — exp [~ (2/m) 7],

then a(z), a function of x, never exceeds 1 and is very close to 1 for all values of
z > 0. Williams [6] proved that a(z) < 1 and tabulated 1/a(z) — 1 for a number
of values of 2 ranging from .1 to 2.0. Pélya [5] gave several proofs for the same
inequality and remarked that if /1 — exp [— (2/x)x? is used as an approxima-
tion to ¢(x) — ¢(—=z), “then the error committed is less than one per cent (even
less than .71 per cent) of the quantity approximated.” In other words, a(x) >
9929 for all z > 0.
For arbitrary £ > 0 and y > 0, let

T =V1/2 T/ F1, yua=V7/2 y/Vom + 1
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Applying (7) to (6) yields
H(y) — H(—2z) = min {a(z,), a(y.)}

Y S Y == ST ==

H(y) — H(—x)

O sny/ i [e (/) e (/5]

where ¢(z) and a(z) are defined by (5) and (7). If no very high accuracy is re-
quired one may use

(10) H(y) — H(—z) = 9929 (1 + }4n) V1 — 1/(2n + 2) l6(y) — ¢(—2)],
(11) H(y) — H(=2) = (1 + }6n) V1 + 1/2n [¢(y) — ¢(—2)].

6. Other parent populations.

A. Rectangular distribution. Let f(xr) = 1/ (d — ¢), where ¢ < z < d. Then
£=3(+dandos = (c — d)*/4(2n + 1). Let H(x) bethe cdf of (Z — £) / o4 .
If z > 0and y > 0, then lower bounds for H(y) — H(—z) are the right sides
of (8) and (10), without the factors min {a(z,), a(y.)} and .9929. The upper
bounds for H(y) — H(—z) are the right sides of (9) and (11) with an additional
factor max {b(z,), b(y.)}, where b(z) is defined by

2 2

z . =_% . =_Y
@ = g T 2> mmgiy k=g
We note that b(x) is close to 1 only if z is close to 0, for example, b(.1) = 1.02
and b(.2) = 1.05. This means that unless z and y are small, upper and lower
bounds for H(y) — H(—x) are not very close to each other except for large n.
B. Laplace distribution. Let f(x) = (1 /2\) exp [— |z — & / \], where — 0 <
z < o, Then ¢ is the median and o2 = A\’ / (2n + 1). Define ¢(z) by

(12) 1 —¢7 =c¢(x) V1= e, z >0,

We say that ¢(x) < 1. If z = 1, this is obvious; if z < 1, we use (7) to prove
it. It then becomes clear that upper bounds for H(y) — H(—z) are the same as
those corresponding to a normal parent population, that is (9) and (11). Lower
bounds for H(y) — H(—xz) are the right sides of (8) and (10) with min {a(z,),
a(y»)} and .9929 replaced by min {c(z,), ‘c¢(y.)}, where c¢(z) is defined by (12)
and 2, = £/ /2n + 1. Again we remark that ¢(z) is close to 1 if z is small or
large, for example, ¢(.1) = .99, ¢(.2) = .92, and ¢(8) = .97, while ¢(1) = .79
and c¢(2) = .87.

Finally we note that since ¢(x) tends to 1 asz tendsto0, H(y) — H(—z) tends
to ¢(y) — ¢ (—x) asn tends to infinity. Therefore (2 — £) / o, has an asymptoti-
cally normal distribution. In the general theorem which showed that (% — £) / o»
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has an asymptotically normal distribution (see] 2], p. 369, also the beginning
of Sec. 3), it is required that f'(¢) be continuous. For a Laplace distribution,
however, f'(¢) does not exist.
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