ON A THEOREM OF PITMAN
By Gorrrriep E. NOETHER

Boston University

Summary. A theorem by Pitman on the asymptotic relative efficiency of two
tests is extended and some of its properties are discussed.

1. Introduction. The idea of the relative efficiency of one estimate with re-
spect to another estimate of the same parameter is well established. This can-
not be said, however, of the corresponding concept for two tests of the same
statistical hypothesis. This paper is concerned with a definition of the relative
efficiency of two tests which seems to be due to Pitman (see, e.g., [1] p. 241)
and has been used in several recent papers.

DEeriniTIoN. Given two tests of the same size of the same statistical hypothesis,
the relative efficiency of the second test with respect to the first is given by the
ratio my/ne , where n, is the sample size of the second test required to achieve
the same power for a given alternative as is achieved by the first test with
respect to the same alternative when using a sample of size n; .

In general the ratio n;/n. will depend on the particular alternative chosen
(as well as on n;). However, in the asymptotic case, this somewhat undesirable
fact can be avoided. It might be argued that restriction to the asymptotic case
is even more undesirable in itself, but the unfortunate fact remains that for
many test procedures in current use the asymptotic power function is the only
one available.

Now, at least for consistent tests, the power with respect to a fixed alternative
is practically 1 if the number of observations is sufficiently large. Therefore, the
power no longer provides a worthwhile criterion for preferring one test over
another. On the other hand, it is possible to define sequences of alternatives
changing with n in such a way that as n — « the power of the corresponding
sequence of tests converges to some number less than 1. It seems then reasonable
to define the asymptotic relative efficiency of the second test procedure with
respect to the first test procedure as the limit of the corresponding ratios n,/n, .

A theorem due to Pitman allows us to compute this limit if certain general
conditions are satisfied [1]. The purpose of this paper is to give an extension of
Pitman’s theorem and to discuss some of its properties. The derivation of the
present version of the theorem follows Pitman’s original method of proof. Since
this proof has not appeared in print, full details are given.

2. Asymptotic power. Assume that we want to test the null hypothesis H,:
0 = 6, against alternatives H: § > 6, . As mentioned in the Introduction, we
shall assume actually that a particular alternative 6 = 6, changes with the sample
size n in such a way that lim,., 6, = 6, .
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To be more definite, let the test be based on the static T, = T'(z1, - - - , Zn).
Let' ET, = ¥.(0) and var T, = ¢5(6). Assume that

A. Yalo) = -+ =9 (0) =0, ¢ (6) > 0,
B. limMasw 7 ™Y () / 0u(60) = ¢ > 0 for some & > 0.

The indicated derivatives are assumed to exist. We shall consider the power of
the test based on T, with respect to the alternative H,: 6, = 6, + k/n’, where
k is an arbitrary positive constant. In addition to A and B we shall assume

C. i ¥ (62) /Y50 (80) = 1,  liMnsw 0a(8,) / 0a(fe) = 1,

D. the distribution of [T, — ¥.(6)] / o.(8) tends to the normal distribution with
mean 0 and variance 1, uniformly in 6, with 6, < 6 < 6, 4+ d for some d > 0.

Let ¢(\) = fx exp (—iz") dz / v/2x and find A\, such that ¢(\.) = a.

For sufficiently large n, a critical region of approximaté size a is given by

Tw 2 Tala),  [Tala) — ¥a(60)] / ou(60) = Na.
The power of this test with respect to the alternative H; is given by
La(6) = P{Ts 2 Tu(@) | 0} ~ 6(tn),
where t, = [0a(60)Aa + ¥n(00) — ¥n(02)] / on(6,). Now
¥n(02) = ¥a(bo + k/n®) = ¥a(80) + (1/m)(k/n’)"¥5" @), 6 < 8§ < 6,
and

(B0 — (1/m1)(k/7’)" 3" 0) /9" Bl (Be) N
[04(61) /2 (60)] 0 (60) noo U6 )
Thus asymptotically, L,(6,) ~ ¢(A\. — k"c/m!).

It follows from the proof that condition (D) can be replaced by the some-
what weaker condition
D’. the distribution of [T, — ¥.(0s)] / 0(6s) tends to the normal distribution
with mean 0 and variance 1, both under the alternative hypothesis H; and under
the null hypothesis 6, = 6, .

It is also clear that alternatives of the type 6, < 6 or |6, # 6, or the case
when ¢ (6)) < 0, can be handled correspondingly.

Let v > 6 and consider the alternative Hy : 6, = 6y + k/n” an alternative
which converges to 6, faster than H, . Now

LK YR (8) _ L A 2 O

tn~ Aa = }.1.1.2 min™ o,(0) Ao = ,1;1.1.2 mino—om pimg, (0g)

ln =

A,

1J. Putter [4] has pointed out that the functions ¥,(8) and ¢%(8) need not necessarily
be the mean and variance of T, respectively, as long as conditions A, B, C, and D or D’
are satisfied.
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and the power of our test with respect to this alternative H, is equal to the size
of the critical region. The test cannot distinguish between H, and H, . Similarly,
if y < 8, the power of our test converges to 1.

3. Asymptotic relative efficiency of two tests. Assume now that we have two
tests based on the statistics T, and T2, . Assume further that 8, > 8, and con-
sider the alternative Hy : 6, = 6, + k/n’* . It follows from our previous results
that the second test is ineffective with respect to this alternative, while the power
of the first test can be made as large as we please by choosing k sufficiently large.
Therefore, the asymptotic relative efficiency of the second test with respect to
the first test is zero.

Thus, from now on, we assume that § = 8 = 8.

According to our definition of relative efficiency, the two tests must have
identical power with respect to identical alternatives. The two tests have identi-
cal power if

(1) kT ci/my! = k3*ca/ms!
The alternatives are identical if
(2) ky/ni = ka/nj.

If nowm; = m, = m, asit must beif m;6 = % for7 = 1 and 2, which is true in
most cases, we can proceed as follows. From (1) and (2) we have

mo ()" <c)m _ e U6 / a0 _ | REM@) _

n: \ks e me (/MWD 60) [ o1 @)™~ noe BI(80)

21

where
(3) Rin(6) = {7 (6) / 0in(6), i=12

Pitman has called the quantity R™(6,) the efficacy of the ith test in testing
the hypothesis Hy : 6 = 6, . Thus we get

Prrman’s THEOREM. The asymptotic relative efficiency of two tests satisfying
A, B, C, and D or D', with 8 = 8 and my = my , is given by the limit of the ratio
of the efficacies of the two tests.

Form = 1and é = %, this theorem reduces to the one quoted in [1]. If mé = 3,

(4) E21 = hmn-»uo R%n(oo) / R%n(oo)-
If, in addition,
(5) lima .o W57 (60) / ¥A% (60) = 1,

then (4) reduces to Ey = limp e 01n/05n -

This is the usual expression for measuring the asymptotic relative efficiency of
two estimates of the same parameter. Thus, only if (5) is satisfied can we use
the ratio of the variances of the two test statistics as a measure of the asymptotic
relative efficiency of the two tests. In particular, if T1, and T, are unbiased
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estimates of the parameter 6, (5) is satisfied with m = 1, and E,; is the same as
the asymptotic relative efficiency of T, and T, used as estimators of 6.

4. Comparison with another definition of relative efficiency. Another defini-
tion of the relative efficiency of two tests in current use (see, e.g., [2] p. 597) is
based on the ratio of the respective sample sizes under the assumption that the
power functions of the two tests have equal slope at 6 = 6, .

We shall show that if m = 1 and § = 1, the two definitions give the same
value for the asymptotic relative efficiency, provided a very general condition is
satisfied.

Under the conditions of Pitman’s theorem we have, as before, L,(8) ~ ¢(t,)
where

= Maon(60) + ¥n(80) — ¥u(6)]/ 0n(6).

If L, (6) converges umformly to some limit, this limit must be dé(¢.)/d6. Actually,
the exact form of L’ (6) will rarely be known, so that the uniform convergence
cannot be investigated. However, even in th1s case it is customary to replace
L, (8) by dé(t.)/d6 in computing the ratio of the slopes of the two power func-
tions. Thus it seems reasonable to compare the asymptotic relative efficiency
based on the slopes dé(t,)/do with E,; . Now

do(tn)
0=0¢

d0 0=0o '\/—
. 11 2 ‘pn(oo) n(on) 1 15 2 1/2
= \/Zrexp(“f“)[ (o) F e mJ ~ Var P (~Pen”

provided o,,(6)/ox(8) = 0o(n/n), which is very generally true. The requirement
that the two power functions have equal slope at the point § = 6, becomes

ny = &Vn,, so that the asymptotic relative efficiency according to this
definition is again given by

(m/n2) = (c2/c1)’ = En .

6. Efficacy of a test. Still assuming that m = 1 and § = %, it is interesting
to investigate more closely the efficacy R% , where R, is given by (3). Consider
the function ¢ = Y,(u) determined by E T, = ¢,(6). Unless y,,(6) = 6, T, is not
an unbiased estimate of 6, but may be considered an unbiased estimate of the
ficticious parameter r = ().

Let u = ¢n(t) be the inverse of ¢ = y¥,(u) and define the statistic U, = ¢n(T,).
Then we may write

Un = 0 = 0u(Ta) — ou(r) = (Ta — 7) @u(r) + -+~ .

If it is permissible to neglect terms of higher order in 7', — 7, we find E U, ~ 6
and

exp ('_ltn)

var U, ~ [pn(0)[0%(6) = o5(8) / [¥n(0))’ = RZ(6).
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Thus, if the above conditions are satisfied, asymptotically the efficacy of T,
is the reciprocal of the variance of an asymptotically unbiased estimate® of 6
based on T, .

Now, under the regularity conditions for the Cramér-Rao inequality,
var U, = 1/nE(d log f/86)*. Therefore

R%(0) < nE(3 log f/a6)".

Thus we may use the quantity R%(6) / nE(d logf/36)" as a measure of the
asymptotic efficiency of the test based on the statistic T, .
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2 Essentially this same result has also been obtained by Stuart [3]. However Stuart
uses it even in some cases for which m = 1 but §  }. That it is then no longer correct
can be seen easily from the generalized form of Pitman’s Theorem given in Section 3 of
this paper.



