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Summary. The problem is considered of determining the least upper (or
greatest lower) bound for the expected value EK(X,, ---, X,) of a given func-
tion K of n random variables X, , - - -, X, under the assumption that X;, ---,
X, are independent and each X; has given range and satisfies k¥ conditions of
the form Eg{”?(X;) = cifori = 1, -+ -, k. It is shown that under general con-
ditions we need consider only discrete random variables X; which take on at
most k£ + 1 values.

1. Introduction. Let @ be the class of n-dimensional dfs (distribution func-

tions) F(x) = F(x;, ---, x,) which satisfy the conditions

(1.1) F(xy, -+, 2n) = Fi(x)Fa(ze) - -+ Folz,),

(12) [6#@ ar@ =i, i=1 k=1,

(13) F,(x)={0 o< i1 om,
1 ifz> B,

where the functions ¢i”(z) and the constants ¢;;, A;, and B; are given. We
allow that A; = — o and/or B; = . Here and in what follows, when the
domain of integration is not indicated, the integral extends over the entire
range of the variables involved. It will be understood that all dfs are continuous
on the right.

Let K(x) be a function such that

o) = [ K@) are

exists and is finite for all F in €. The problem is to determine the least upper
and the greatest lower bound of ¢(F) when F is in €. It will be sufficient to
consider only the least upper bound.

Special cases of statistical interest include K(x) = 0 or 1 according as a
function f(x) does or does not exceed a given constant; K(x) = max (z1, -+ + , Ta),
ete.; gi(z) = ' (given moments up to order k); gi”(z) = 1 or 0 according as
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z < b;orx = b; (given quantiles); ete. For

lifz £,

n=1  ¢P@) =2, K@ =
K(z) = 0 otherwise

the problem was stated and its solution found by Tchebycheff. This result was
extended to more general function K (x) by Markov, Possé, and others. References
and proofs are given by Shohat and Tamarkin [9]. An extension to the case
g%(x) = 2™ and A; = 0 was considered by Wald [10]. Recent contributions
are due to Karlin and Shapley (7] and Royden [8].

For n arbitrary, k = 1, ¢ =2, A; =0, B; = o,and K(z) = L or0
according as D 7 2; = t or <t, Birnbaum, Raymond, and Zuckerman [3] showed
that when looking for the least upper bound of ¢(F) we need consider only dfs
F; which are step-functions with at most two steps. They gave an explicit
solution for n = 2. For the case k = 3, ¢{’(x) = z' for ¢ = 1, 2, and
g(x) = |x — ¢]°, with ¢(F) the distribution function of the sum >0 s, the
inequalities of Berry [2], Esseen [4], and Bergstréom [1] give bounds which
are asymptotically best as n — « but can presumably be improved for finite n.

In the present paper it is shown that if, in the general problem as stated
above, we restrict ourselves to the subclass €* of € where the F; are step-functions
with a finite number of steps, then we need consider only step-functions with at
most k¥ + 1 steps (Theorem 2.1); the number ¥ 4+ 1 can in general not be
reduced. The same result holds in the unrestricted problem if (A) each F in €
can be approximated (in a certain sense) by a step-function in €* and (B)
o(F) is, in a sense, a continuous function of F (Theorem 2.2). Sufficient con-
ditions for the fulfillment of assumptions (A) and (B) are given in Sections 3
and 4.

2. The main theorems. Denote by @* the class of all F(x) = Fy(x) + -+ Fa(z,)
in @ such that F,, ---, F, are step-functions with a finite number of steps.
Let €, be the subclass of @* in which each F;forj = 1, ---, n is a step-func-
tion with at most m steps.

THEOREM 2.1.

sup ¢(F) = sup ¢(F).
FeC* FeCrya

Proor. Let F(x) = Fi(x1) --- F.(x,) be an arbitrary df in @* such that for
some j, F; has more than k 4 1 steps. It is sufficient to show that there exists
a df G in @1 such that ¢(G@) = ¢(F). This, in turn, will easily follow when we
show that if F,(xz) has m > k + 1 steps, there exists a df H,(z) such that

a) H.(z) has less than m steps;

b) H(x) = Fi(x1) -+ Fro1(@uo1)Ha(x,) is in C;

c) ¢(H) =z ¢(F).
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By assumption F,(z) is of the form

JO if z<a;
Folx) =<pr+ -+ + p: fa. £ <, r=1,--+,m—1;
ll if an £ z;
where
An§a1<a2<---<am§Bn;
p- >0, r=1, - ,m;
gapr + gips + -+ + GimPm = Cia, ¢ = 0,1, .-+ | k;
cn=1; g0 =1, r=1-,m;
gir = 987(@), i=1,---,k r=1,---,m.
Let
0 if z<a;
Ha(z) = (pr+ td) + -+ + (p, + )

ifa < z2<Gp; r=1--,m—1;

1 if a, £ 2.

In order to satisfy condition b) it is sufficient to choose ¢, and d; , 0, dyIn
such a way that

(2-1) pr+tdr§0, T=1,...,m;
(22) gadi + gads + -+ + gindm =0, ¢ = 0,1, --- , k.
We can write ¢(H) — ¢(F) = ¢tD -1 K.d, where

n—1
Kr=fK(x1;°“)xn-1) ar) d III Fl'(xi)}'
e
Let A = 0 or 1 according as the rank of the matrix

goi;, *°* , Jom

.........

Ki, - ,Kn

is less than or equal to k + 2. Then the equations (2.2) and > 7 K.d, = A
have a solution (di, --- , dw) # (0, --- , 0). Since > 7d, = 0, at least one
component of the solution di, -+ , dw must be negative. Having thus fixed
di, -+, dm, We choose ¢ as the largest number which satisfies the inequalities
(2.1). This number exists and is positive. Conditions a), b) and ¢) are now
satisfied, and the proof is complete.
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Let the distance d(F, G) between two dfs F(x) = Fi(z:) --- Fa.(x.) and

G(x) = Gi(z1) - - - Ga(x,) be defined by
d(F,G) = max sup |Fiz) — G;(z)].
15751 —0<z<0

We shall make the following assumptions.

AssumprioN A. For every F in @ and every 8 > 0 there exists an F* in €* such
that d(F, F¥) < é.

AssumprionN B. For every F in @ and every ¢ > 0 there exists & > 0 such
that for any G in @ which satisfies d(F, @) < § we have |[p(F) — ¢(@)| < e.

Lemma 2.1. If Assumptions A and B are satisfied,

sup ¢(F) = sup ¢(F).
FeC FeC*

The proof is obvious. An analogous theorem clearly holds with an arbitrary
distance function.

From Theorem 2.1 and Lemma 2.1 we obtain

TuroreM 2.2. If Assumptions A and B are satisfied,

sup ¢(F) = sup ¢(F).
FeC FeCly

In Sections 3 and 4 it will be shown that Assumptions A and B are satisfied
for certain classes € and functions K which are of interest in statistics.

We conclude this section by showing that Theorem 2.1 cannot be improved
without imposing additional restrictions. More precisely, for every k and every
n there exist functions K, g{” and constants 4;, B;, ¢;j such that the conditions
of the theorem are satisfied and supe ¢(F) > supe,, ¢(F) if m < k + 1. Further-
more, the functions g” and the constants 4 ;, B;, ¢;; can be chosen to be inde-
pendent of j. Let

gs'j)(x) = xi7 Cij = Ci, Ai = A, Bi = B’ J = 17 e, M,

where A and B are finite.
First assume n = 1. We can choose the constants ¢; and k£ + 1 distinet real

numbers a1, az, -+ , axy1 in [4, B] in such a way that the equations
ﬂfp1+a;p2+"'+af;+1pk+1=ca', 1=20,1, -,k
where ¢, = 1, have a unique solution (p1, - -+ , Pr+1) With p, > O for all r (see,

for example, [9]). Then the df F,, which assigns probability p, to the point a,
for all , is in Cx41. Let Ki(x) be a nonnegative continuous function, and let
Q(z) be a polynomial of degree k& such that K;(z) < Q(z) for 4 = z = B and
equality holds if and only if z = a,forr = 1,2, -+ , k + 1. Let o2(F) =
[ Ki(z) dF (z). Then for every F in €,

o s [ 0@ dF@) = wF),

and equality holds only for F = F,.
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Now suppose that supe,, ¢:1(F) = ¢1(Fo) for some m < k + 1. Then there
exists a sequence {F®} of cdfs in €,, such that lim $:1(F®) = ¢1(Fy). Since 4
and B are finite, there exists, by the Bolzano-Weierstrass theorem, a subsequence
{F©?} of {F*} which converges to a function F* in €,, at all points of continuity
of F* Since K,(z) is continuous, this implies lim ¢,(F*?) = ¢,(F*) = 61(Fy).
This is a contradiction since F* ¢ Fj .

For n arbitrary let K(z,, - -+ , z.) = Ki(z)Ki(x2) - - - Ki(2,), so that ¢(F) =
$1(F1) -+ ¢1(F,). If the conditions for the case n = 1 are satisfied, we arrive
at the desired conclusion, making use of the condition K;(z) = 0.

The assumptions that K, is continuous and 4, B are finite are inessential, at
least for £ = 2. This is seen from the fact that the bound of the Bienaymsg-
Tchebycheff inequality can not in general be arbitrarily closely approached
when the distribution is a two-step-function.

3. Approximation of a df by a step-function. It will now be shown that As-
sumption A is satisfied if € is the class of distributions of the product type
(1.1) with prescribed moments and ranges.

THEOREM 3.1. Assumption A is satisfied if @ is the class defined by (1.1) to (1.3)
with g?(x) = ™, where the m;; are arbitrary positive integers.

The theorem is an immediate consequence of

Lemma 3.1. Let F(z) be a df on the real line such that

(3.1) [+ ar@) =, P=1,
(3.2) F) 0 fz <A,
. z) =
1 ifx > B,
where we may have A = — o or B = . Then for every & > 0 there exists a cdf

F*(x) which is a step-function with a finite number of steps, satisfies conditions
(3.1) and (3.2), and for which

sup |F*(z) — F(z)| < 6.

To prove Lemma 3.1 we shall need

Lemma 3.2. If F(z) is any df which satisfies conditions (3.1) and (3.2), there
exists a df which is a step-function with a finite number of steps and satisfies the
same conditions.

The statement of Lemma 3.2 is well known. For example, it follows from
Shohat and Tamarkin ([9], Theorems 1.2,and 1.3 and Lemma 3.1).

Proor or LEmMa 3.1. Given 6 > 0, we can choose a finite set of points

A=a<u<a< - <an < Guy =B

such that p, = F(a,y1 — 0) — F(a,) < dforr =0,1, --- ,m. If p, % 0, let

0 if z < a,
F.(z) = p:l[F(x) — F(a,)] f a =2< a4y,

1 if Ar i1 é xz.
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By Lemma 32 there exists a df Fj(z) which is a step-function with a finite
number of steps and such that

[+ arr@) = [+ ar@), i=1,s,
Ff(x)={0 ifr <a,,
1 ifz > arq.
Let
0 if z < A4;
F*(x) = {F(a,) + p.F¥(x) ifa, £z <y, r=0,1,---,m;
1 if z = B;

where p,Fy(z) = 0if p, = 0. It can be verified that F*(z) has the properties
stated in Lemma 3.1.

4. Continuity of ¢(F). In this section we consider sufficient conditions for
the continuity of ¢(F) in the sense of Assumption B. The next theorem shows
that Assumption B is satisfied if ¢(F) is the probability that the random vector
X with df F is contained in a set S of a fairly general type.

TaEOREM 4.1. Assumption B s satisfied if K(x) = 1 or 0 according as x does
or does not belong to a Borel set S such that every set

Si(@r, <+ i1, Tigr, -0, Ta) = {xj:xeS,x;.ﬁxedfOrh;éj}, j=1 - ,n,

1s the union of a finite and bounded number of intervals.
(Here {x: C} denotes the set of all points z which satisfy condition C.)
Proor. Let 6 be an arbitrary positive number. Let F(X) = Fi(z1) + -+ Fa(xn)
and G(x) = Gi(x1) ‘- - G.(xa) be any two dfs in € such that

sup |Fi(z) — Gu(@)| < 8, h=1,---,m
Let ) |
FOx) = {H F»(x,.)} {hgl Gh(xh)}, i=01,---n,
so that F¥(x) = G(x) and F*”(x) = F(x). Then
8(F) = @) = T 16(F) = 4P

We may assume that every set S; is the union of at most N nonoverlapping
intervals, where N is a fixed number. For a fixed integer j and fixed values
z , with h £ j, denote these intervals by I, I;, --+ , Ix, where M < N. We
have

$(F") — ¢(FY)

= fL(:cl y X1, Tjg1, " "0 ,x,.) d{Fl(-’Cl) te Fj—l(xj-l)G:'+1($i+l) ce Gn(xn)},
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where L@y, -+, %1, Tig1, -+, Tn) = Do {[1, dF ;) — [1, dGi(x;)}.
Since

< 25,

fI . dFi(z;) — /; ; dG(z;)

we get [6(F) — ¢(G)| < 2nMs < 2nN3s, so that Assumption B is satisfied.

Assumption B of Theorem 2.2 is evidently satisfied under more general
conditions than those of Theorem 4.1. Thus if K(x) = diKy(x) + - -+ + dpK r(X),
where di, --- , dg are arbitrary constants and ¢.(F) = [ K,(x) dF(x) is con-
tinuous in the sense of Assumption Bforr = 1, --- , R, then¢(F) = [ K(x) dF (x)
is also continuous. The same is true if K(x) can be approximated by a function
of the form ) d,K,(x), uniformly in the range of the distributions in @.

Using Theorems 3.1 and 4.1 we can state the following corollary of Theorem
2.2.

THEOREM 4.2. Let C be the class of dfs F(x) = Fi(z1) -~ - Fu(x,) such that

Fi(4; —0) =0, FiB;+0) =1, fxm‘i dFj(z) = ci,
1= ly"'rk;j= 1’"'1"’7

where the numbers A;, B;, c:; and the integers m;; are given. Let S be a Borel set
such that every set {x; : x & S, z) fized for h = j} is the union of a finite and bounded
number of intervals. Then

sup f dF = sup f drF.
FeC J3 FeCpy1 Y8

6. Concluding remark. The problem considered in this paper can be modi-
fied by admitting only those dfs in @ for which the marginal distributions F; ,
--+, F, are identical. Some results for this case were obtained in [6]. With this
restriction Theorem 2.1 is no longer true, and the assumptions are no longer
sufficient in order to reduce the class of competing dfs to step-functions with a
bounded number of steps.

For example, consider the problem of the least upper bound for the expected
value of the largest of » independent, identically distributed random variables
with given mean and variance. Hartley and David [5] showed that under the
additional assumption that the df is continuous the least upper bound is at-
tained with a continuous df when n = 2. At least for n = 2 it can be shown
[6] that the Hartley-David bound cannot be arbitrarily closely approached
with a discrete df having a bounded number of steps.

On the other hand, if the assumption that the random variables are identi-
cally distributed is dropped, Theorem 2.2 implies that the least upper bound
is attained or approached with step-functions having at most three ‘steps.
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