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of R than in the original populations. The R distributions are in fact quite
similar if allowance is made for the difference in population standard deviations.
Hence we can have quite a bit of confidence in using normal curve constants
when making control charts for ranges for moderately skewed populations
and small sample sizes.
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THE STOCHASTIC CONVERGENCE OF A FUNCTION OF SAMPLE
SUCCESSIVE DIFFERENCES!

By LioNneL Werss
University of Virginia

1. Summary and introduction. Let f(z) be a bounded density function over
the finite interval [4, B] with at most a finite number of discontinuities. Let
X1, X», -+, X, be independent chance variables each with the density f(z).
Define ¥, < Y; < --- £ Y, as the ordered values of X,, X;, -, X,, and
Tias Yiy — Y. Also define R,(¢) as the proportion of the variates Ty , «- - , Toy
not greater than ¢/ (n — 1). We shall denote [1 — [% f(z)e™“® dz] by S(t),
and sup;zo |Ra(f) — S(¢)| by V(n). Then it isshown that as n increases, V(n)
converges stochastically to zero. The relation of this result to other results is
discussed.

2. Proof of the stochastic convergence of V(n) to zero.

LemMa 1. If for each given t, R,(t) converges stochastically to S(t) as n increases,
then V(n) converges stochastically to zero.

Proor. We must show that for any given positive numbers e and 8, there is a
positive integer N (e, §) such that if n > N(e, 8), then P[V(n) < ¢ > 1 — .
We can find a finite set of values ¢y < ¢, < --- < {, such that

Slto) < %e, 1 —8E) <3e  Sltip) — St) < 3¢
1=0,1,---,s — 1,
Also, by the hypothesis of the lemma and other familiar considerations, we can
find a positive integer, say N (e, 8), such that if n > N(e, §),

Pl|R.(t) — S(t:)| < 3¢ for =0, ---,8 > 1 — .
But then the lemma is proved, for it is easily verified that if |[R.(t;) — S(t;)| < e

simultaneously for ¢ = 0, --- | s, then |R.({) — S(f)] < e simultaneously for
allt = 0.
LEmMA 2. Let X, , - -+, X, be independent chance variables each with a uniform

distribution on [0, 1]. Let M denote the number of these variables falling in the closed
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interval [C, D], where 0 £ C < D < 1,andlet Y, £ Y2 £ -+ £ Y denote the
ordered values of the variables in [C, D). Define Wo = Y, — A,and W, = Y, u — Y,
fori =1, ---, M — 1. Finally, define L(n, t) as the total number of values of
Wi, -+-, Wu_1 which are not greater than t / (n — 1) for a given t = 0. Then
L(n, t) / (n — 1) converges stochastically to (D — C)[1 — e”'] as n increases.
Proor. We denote (D — C) by G, and by K(n, ) the total number of
Wy, -+, Wy_1not greater than ¢ / (n — 1). Clearly, the lemma will be proved
if we can show that K(n, t) / (n — 1) converges stochastically to G(1 — )
as n increases. The distribution of M is binomial, with parameters G and n,

and the joint conditional density of Yy, ---, Y given M is M!/G" in the
region C £ ¥; £ --- £ Yu = D, and zero elsewhere. Thus the joint con-
ditional density of Wy, -+, Wi given M is M!/ G™ in the region W, = 0

and Y M5' W, £ G.

Define Z; tobe 1 if W; < ¢t/ (n — 1), and zero otherwise. By the symmetry
of the joint conditional distribution of Wy, -+, Wy, E K(n, t) =
E{M -E[Z, | M]}. The conditional density of W, given M is M(G — w)*™" / G*
for0 < w < G Thus E[Z,|M] =1 — (1 — t/ (n — 1)G)", assuming G 2
t/ (n — 1), which involves no loss of generality, since G is fixed and we are
interested in what happens as n increases. By routine manipulations of the
moment generating function of M, we find that

EK(n, t) = E{M[1 = (1 =t/ (n — D&"]}
=nG—[l—t/(n—D]"'mG —nt/@n— 1),

From this, we find that E[K(n, t) / (n — 1)] approaches G(1 — ¢) as n in-
creases. Next we examine

s[5e0] - E) 2 (F B )

() e (FA)+ (L) r(EE )

But > Z% = > Z., and from above we have that E[D>  Z;/ (n — 1)] ap-
proaches G(1 — e~‘) an n increases. Therefore E[K(n, t) / (n — 1)’ has the
same limit as

<}?“‘> [}: > 7. z] ( 1) EIM(M — 1)-E(ZoZy | M)\,

1]

This last equality holds because of the symmetry of the distribution of
Wo, +++, Wxy_1. The joint conditional density of W,, W, given M is
MM — DG — wo — w)¥? /G for wy, wy = 0 and wo + wy < G. Thus

) N A T 2 Y
E(ZoZ,| M) =1 2<1 (n — 1)G> + <1 (n — 1)G> ’
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provided G = 2t/ (n — 1), which involves no loss of generality. Therefore
E[K(n, t) / (n — 1)]’ has the same limit as

() #aor = of1=2( - gtg) + (1~ 52a) ]
-FEI () (o)

(1 -52) (-52) ]

This last expression approaches G°[I — 2¢~° 4+ ¢ ] = [G(1 — ¢ )] as n in-
creases. But this proves Lemma 2, since the variance of K(n, t) / (n — 1) ap-
proaches zero as n increases.

With a few simple changes in notation, Lemma 1 serves to show that
supso |[L(n, £) / (n — 1) — G(1 — ¢™')| converges stochastically to zero as n
increases. Also, when ¢ = 1, Lemmas 1 and 2 prove that V(n) converges sto-
chastically to zero for the special case where f(z) = 1 on the interval [0, 1].

Now we turn to the proof that V(n) converges to zero in the general case.
We denote [%f(x) dz by F(x). By the assumptions about f(z) listed in Section 1,
given any positive number vy, we can break the interval [A, B] into a finite
number k(y) of subintervals (a,, ai), -+, (Gep—1, Gey), With ap = 4 and
ar(yy = B, such that in the interior of each subinterval (a;, a:11), f(z) is con-
tinuous, and for any z in the subinterval, | f(z) — f(a)) | < y for¢ =0, -+,
k(y) — 1. Choose any particular subinterval (a;, a;41),andlet @1 £ @ < -+ <
Q » denote the ordered values of those variables X1, - - - , X, which fall in (a;, @:41),
while T; shall denote Q;;; — Q; forj = 1,---, M — 1. Denote F(Q;y1) —
F(Q;) by W;. Then, defining L;(n, ) in terms of Wy, --- , Wy_; as in Lemma
2, with the subscript ¢ to show that we are dealing with the interval (a;, a;+1),
we have that sup (30| Li(n, t)/(n — 1) — {F(aiy1) — F(a:)}(1 — € ) | con-
verges stochastically to zero as n increases. (This is so because F(X;) has the
rectangular distribution over (0, 1) for any j.) By construction, we have

Wj = F(Qj+1) - F(Q;) = T],(f(at) + 0.7')’ IBJI <.

Therefore, if T; < {/(n — 1), then W; < (f(a;) + v)t/(n — 1), and conversely.
Then, letting K;(n, t) denote the number of the values T'; which are not greater
than ¢/(n — 1), we have

Li(n, t(f(a;) — v)) = Ki(n, t) £ Li(n, t(f(a:;) + v)).

Using R.(¢) as defined in Section 1, this becomes
1 et

—— > Lin, t(fla) — ) — k(y) < Ra(t)

n—1 =

1 k(y)—1

2 Li(n, t(f(as) + 7)) + k(v).

n—1 {3

IIA
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Given any positive values ¢, 3, we first choose v so small that

k(y)—1 . B '
3 (Plaw) — P@)e 6" = [ [ dr| < e
=20 A
for ¥ equal to either y or —v. Then we choose N (¢, 8) so large that if n > N (e, 3),
then k(y)/(n — 1) < % ¢ and also

Plsupiso | Li(n, §)/(n — 1) — {F(aiys) — F(a)}(1 — €| < e /4k(y),
1=0,---,kly) —1] >1—238.
But then if n > N (e, 9),

k(y)—1

(Flai) — Fla)}(1 — ¢79%") — 1e < Ra(D)
1=0
k(y)—1 >1- 8’

2 {Flamy) — F@)}(1 — ™) + 3¢

or P{|R.(t) — S(t)| < €} > 1 — 5. This shows that for any given ¢, E.(f)
converges stochastically to S(¢). Then by Lemma 1, V(n) converges stochasti-
cally to zero.

The same results hold with only slight modifications in the argument when
A = — and/or B = o, provided that there exist finite numbers A’ and
B', with A’ < B’, such that f(z) is nondecreasing in the interval (—«, 4’)
and is nonincreasing in the interval (B’, «).

IA

3. Relation to other results. The stochastic convergence of certain functions

of Ty, - -+, T can be proved simply by the use of these results. For example,
Sherman [1] studied the chance variable Q, defined as
n—1
1
%iul Te—m +3|Yi—A|+3|B—Yal.

Let us assume that A is the least upper bound of all numbers a such that F(a) =
0, and B is the greatest lower bound of all numbers b such that F(b) = 1. Then
as n increases, | Y1 — A | and | B — Y, | converge stochastically to zero. Thus
Q. converges stochastically to a constant if and only if Un = AT —
1/(n — 1) | converges stochastically to the same constant. We can write U, as

S + V. where
1 1
L =1 — T, = . -
8 2 i:T.-g;/(n—l) {n -1 } v i:T,~>zll:(n—1) {T n — 1}

But D HT; — 1/(n — 1)} = V. — 8. converges stochastically to
1(B — A — 1). Thus U, converges stochastically to a constant if and only if
S, converges stochastically to a constant. We can write

5= [ (A - ) a0 = 3[R - [ im0

N
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Integrating by parts, we find that S, = 1[iR.(¢) dt. By the result proved in
Section 2 this last expression converges stochastically to

%fol [1 - fABf(x) e’ dx] dt = %[1 + fAB e’ dr — (B — A)].

Therefore 2, converges stochastically to 3(1 + A — B) + [%¢7® dz. For the
special case A = 0 and B = 1, this is essentially the result contained in theorems
3 and 4 of [1].
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Note added in proof. Professor Julius Blum has pointed out that Lemma 2
holds with the words “converges stochastically” replaced by “converges with
probability one.” Then it is easily seen that all the results above hold when this
replacement is made.
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(Abstracts of papers presented at the Chapel Hill meeting of the Institute, April 22-23, 1955)

1. Estimation of Location and Scale Parameters by Order Statistics from
Singly and Doubly Censored Samples. Part I. The Normal Distribution
up to Samples of Size 10. A. E. Saruan and B. G. GREENBERG, Uni-
versity of North Carolina.

The variances and covariances of the order statistics for samples of sizes <20 from a
normal distribution were calculated to 10 decimal places from Teichroew’s tables of the
expected value of the product of two order statistics. By the use of these values, and with
the table of expected values of Rosser, the best linear estimates of the mean and standard
deviation were calculated from singly and doubly censored samples up to samples of size 10.
This was accomplished by applying the method of least squares to the linear combination
of the ordered known observations to obtain unbiased estimates with minimum variance.
The variances of the estimates were also calculated. An alternative linear estimate was
derived for larger values of n which can be used to obtain estimates from doubly censored
samples.

2. An Application of Chung’s Lemma to the Kiefer-Wolfowitz Stochastic Ap-
proximation Procedure. Cyrus DERrMAN, Syracuse University.

Let M(z) be a strictly increasing regression function for z < 6, and strictly decreasing
regression function for £ > 0. Kiefer and Wolfowitz (Ann. Math. Stat., Vol. 23 (1952),
pp. 462-466) suggested a recursive scheme for estimating . They proved, under certain
regularity conditions, that their scheme converges stochastically to 6. Their conditions



