STATISTICS AND SUBFIELDS!

By R.‘R.‘ BanADUR
The University of Chicago

1. Introduction and summary. Let (X, S, k) be a probability measure space:
X is set of points z, S is a field of subsets of X, and u is a countably additive
measure on S with u(X) = 1. A subfield is a field S, of subsets of X such that
Sy, © S, that is, each Si-measurable set is also S-measurable. A statistic is a
function defined on X. There is no a priori restriction on the class of statistics;
in particular, statistics are not necessarily real-valued, and a real-valued statistic
is not necessarily an S-measurable function. For any statistic f, let S; denote the
class of all sets which are S-measurable and of the form f~'(B), where B is a
subset of the range of f. The class S; is clearly a subfield, and is called the sub-
field snduced by f. ‘ ' ' ' ‘

The induced subfield S, plays a central role in the study of a statistic f, for
the following reason. The probabilist or mathematical statistician is usually con-
cerned not with the statistic f as such, but rather with the class of random vari-
ables (i.e., real-valued S-measurable functions) which depend on z only through
f, and, as is easily seen, this class of random variables is exactly the class of real-
valued S;-measurable functions. In case the given statistic f is a random variable
(and therefore itself an object of study), the argument just given continues to
apply, because in this case f is necessarily an S;-measurable function.

This paper discusses certain measure-theoretic problems concerning the rela-
tions between subfields, subfields of the apparently special form Sy, and sta-
tistics. The main problems, as also the main conclusions, are described in the
following paragraphs. Most of the conclusions of the paper are valid only in the
case when (X, S) is (or may be taken to be) a euclidean sample space, that is,
X is a Borel set of the m-dimensional euclidean space (1 < m < «), and S
is the field of Borel sets of X. It is assumed henceforth that this is the case under
consideration. .

There are two main problems. The first is whether every subfield is inducible
by a statistic. This problem is discussed (in a more general setting) in [2], and the
conclusions of the present paper complement those of [2].

It is shown here that every subfield is inducible by a statistic if and only if
the sample space is discrete, that is to say, X is a countable set and S is the class
of all subsets of X (Theorem 1). This result is, however, not quite relevant to
situations where the natural equivalence relation between subfields is not identity
but approximability to within sets of u-measure zero. The equivalence relation
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referred to is defined as follows. A subfield S; is a contraction of a subfield S, if
corresponding to each real-valued S;-measurable function f; there exists an
S;-measurable function f, such that f,(x) = fi(x) except on a set of u-measure
zero; we then write S; C S, [S, u]. The subfields S, and S; are equivalent if each
is a contraction of the other; we then write S; = S, [S, u]. It is shown that, in
fact, corresponding to any subfield S, there exists an f such that S; is equivalent
to Sy, and that this f may be taken to be a random variable (Theorem 2).

. In the literature the notion of contraction (and the derived notion of equiva-
lence) has been defined for statistics in two ways, which are here called con-
traction and functional contraction. A statistic f is a contraction of a statistic g
if Sy is a contraction of S, (that is, S; € S, [S, ul); f is a functional contraction
of g (written f C ¢ [S, u]) if there exists a function & on the range of g into that
of f, and an S-measurable set N with u(N) = 0, such that f(z) = h(g(z)) for =
in X — N. (Cf. [3], [4].) It seems to the writer that for most (possibly all) tech-
nical purposes the relevant concept is contraction as just defined (cf. Lemmas
7.1 and 3.2 of [1]). However, functional contraction has simpler interpretations
and greater intuitive appeal. . _

The second problem is the exact relation between contraction and functional
contraction. It is shown that, in general, functional contraction does not imply
contraction (Example 1), and also that contraction does not imply functional
contraction (Example 2). If, however, both f and g are random variables, then
S; © S,y [S, p] if and only if f € ¢ [S, u] (Theorem 3). It follows, in particular,
that if the sample space is discrete, then contraction coincides with functional
contraction.

The problems described above arose in connection with the theory of suffi-
ciency, and the results have applications in that theory. It follows, for example
(assuming that the sample space is euclidean and that the set of alternative dis-
tributions of the sample point is a dominated set), that if f is a necessary and
sufficient statistic, then S; is a necessary and sufficient subfield (Corollary 2).

The following are some general conclusions bearing on mathematical models
for studies such as [1]. (a) The notion of a subfield, while certainly no less general
than that of a statistic, is in fact no more general. (b) There is no loss of gen-
erality, or other disadvantage, in defining a statistic to be a random variable.
On the contrary, admission of nonmeasurable functions to the discussion leads
to inconsistencies between extension and functional extension—this seems un-
desirable. (¢) If f is a random variable, it is immaterial whether f is regarded as a
statistic or as a Borel-measurable transformation (ef. [1], p. 431). These satis-
factory conclusions do not necessarily hold for an arbitrary space (X, S, p). An
example given in [2] shows that at least (a) and (c) are not valid in the general
case.

2. Theorems. Let R be the real line, and R be the class of Borel sets of B. In
general, we shall denote the n-dimensional euclidean space by R” and the class
of Borel sets of R" by R (1 < n £ «). The following well-known result (cf.
[5], pp. 159-160) is stated here as a lemma for convenience of reference.
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LemMa 1. There exists a one to one function a, on R™ onto R such that A ¢ R”
implies a,(A) € R and B & R implies a,'(B) e R* (1 £ n £ ).

If f is a statistic on X into a space Y, and C is a class of subsets of Y, then
f7X(C) denotes the class of all sets of X which are of the form f~'(B) with B ¢ C.
Clearly, f'(C) is a field if and only if C is a field. A function f on X into R"
is said to be S-measurable if /' (R") is a subfield of S.

In this section and the following one, a number of results involving S-measur-
able functions (specifically, Lemmas 2, 4, 5, 6, 8, and 9; Theorems 2 and 3;
Corollaries 1 and 3) are stated and proved in terms of real-valued functions. It
can be seen from Lemma 1, or otherwise directly from the proofs, that these
results are in fact valid for S-measurable functions in general.

Lemma 2. A function f on X into R is S-measurable if and only of f is an S;-
measurable function.

Proor. Since S; < S in any case, f '(R) & S, implies./(R) & S. Conversely,
if f is S-measurable, then A £f'(R) implies 4 ¢ Sy, by the definition of S;, so
that f'(R) < S, . This completes the proof.

TraEOREM. 1. A necessary and sufficient condition that every subfield of S be in-
ductble by a statistic is that X be a countable set.

Proor. Suppose first that X is countable, and let there be given a field Sy
S. For each z ¢ X let E, be the intersection of all sets A < X such that x ¢ 4
and A €Sy. Let D;, D;, ---, be an enumeration of the sets E, such that D; n
D;isemptyfori # jand U;D; = X. Define f(x) = iforzx e D; (1 =1,2, ---).
We shall show that So = S; .

Since X is separable in the discrete topology, the intersection of any collec-
tion of subsets of X equals the intersection of a countable subcollection. Hence
D; € S, for each 7. Since S; = {f'(N):N < I} where I is the set of positive
integers, and f'(N) = U,wD;, it follows that A ¢ S, implies A ¢ S, . To prove
the converse, choose and fixan 4 ¢ S, . Sincez ¢ E forallz, wehave 4 C U...E.;
on the other hand, E, C A for each z ¢ A, so that U,.,E, < A; hence 4 =
U..kE. = U, .wD; = f(N) for some N < I. Thus A ¢ S, implies A ¢ S; . Hence
S; = Sy . Since S, is arbitrary, the first part of the theorem is proved.

To prove the second part suppose that X is an uncountable set. Let S* be
the class of all sets A such that one of the sets A and X — A4 is countable. Then
S* is a subfield of S such that for each x ¢ X the set {z} belongs to S*. More-
over, it can be shown that S* = S, that is to say, there exists at least one 4 £ S
such that neither 4 nor X — A is countable. It follows from Lemma 1 of [2]
that there exists no f such that S* = S;. This completes the proof.

A subfield Sy is separable if there existsa countable class C of subsets of X such
that S, is the field generated by C. While S itself is separable, a given subfield
Sy may or may not be separable. However, we have:

Lemma 3. Corresponding to any subfield S, there exists a separable subfield S*
such that S* = Sy [S, u].

Proor. For the purposes of this proof only, for any two sets A and B in S

3 The writer is indebted to Professor A. Dvoretzky for this remark.
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write A «~ B if and only if (A — B) u (B — A) is of u-measure zero. Let {@,:
6 £ @} be the set of equivalence classes generated by the relation <, where Q is
an index set of points 6. For any 6 and § in Q define p(6, §) = u(4 — B) +
u(B — A), where A and B are sets in @y and @; respectively. Since S is separable,
Q is a separable metric space under the metric p  ([5], p. 168).

Let Qo be the set of all 8 such that @ contains at least one Se-measurable set.
Then Q is a nonempty subset of @ and therefore separable. Let Q* be a countable
subset of Q, which is dense in Q. For each 6 in Q* let A5 be an S,-measurable
set in @y, and let S* be the field generated by the class {Aq:0 £ Q*}. It is clear
that S* is a separable field, and that S* C S,. We proceed to show that S, &
S$* [S, ul.

Choose and fix an A £ Sy . By the definition of Q,, there exists a 6 £ Qp such
that A €@y . Since Q* is dense in Qo , there exists a sequence {6,} in Q* such that
limya, p(6,, 8) = 0. Letting f, denote the characteristic function of the set A4,
it follows from the definition of S* that there exists a sequence fi, fz, - -- of
S*-measurable characteristic functions such that lim,., f. = fo in measure.
Hence there exists a subsequence of {f,}, say {g.}, such that, except on an S-p-
null set, lim,.,, g.(x) = fo(z)([5], p. 93). Let B be the set of all x such that
lim,., ga(x) = 1. Then B is S*-measurable, and A «— B. Since A is arbitrary,
we conclude that Sy < S* [S, u]. This completes the proof.

LEMMA 4. If S* is a separable subfield, there exists an S-measurable function f
on X into R such that f'(R) = S*.

Proor. Suppose that S* is generated by C = {4, 4,, ---}. Let ¢; be the
characteristic function of A , and define y(z) = (¢1(x), ¢o(x), - - -). Suppose that
¥ takes values in the space R" of points 7y = (r1, r2, ---)forl = n £ «.
Since A; = {z:¢i(x) = 1} = ¢ '(B), where B, = {rum:r; = 1}, we have
A; ey ' (R™) for each 7; hence S* < ¢ '(R"). On the other hand, since each ¢, is
an S*measurable function, ¢ is S*-measurable also, so that ¢ '(R") < S*.
Thus S* = ¢ (R"); the lemma as stated now follows from Lemma 1 by taking

= ai.
LemMa 5. If f is an S-measurable function on X into R, then f(R) = S;
(S, ul.

Proor. According to Lemma 2, f'(R) € S;. We have therefore to show that
S; € /(R) I8, ul.

We recall that we have assumed X T R™, X e R",and S = {X nA:4 ¢ R"}.
Let o, be the function described in Lemma 1, and write an(X) = ¥, an(S) = T,
g(y) = flam'(y)) for y ¢ Y. Then Y is a Borel set of the real line, T is the class
of Borel sets of Y, g is a T-measurable function on Y into R, and f(R) =
(g (R)), S; = am'(T,). Define »(C) = u(ay'(C)) for C e T. It is then easily
seen that the desired conclusion is equivalent to T, < ¢ '(R) [T, »].

Choose and fix a set A ¢ T,. By definition of T,, there exists a set B C R
such that g'(B) = A. Now, since A is a Borel set, and g is a Borel measurable
function, it follows from Lusin’s theorem ([6], p. 72) that foreach &k = 1,2 ...
there exists a set A, ¢ T such that A, © A4, v(4 — A;) < 1/k, and g(4;) ¢ R.
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Let Ao = U A, . Then Ao e T, Ao S A, v(A — Ao) = 0,andg(do) = U,g(4s) =
By (say) is a Borel set. Now, g '(By) = g '(g(4o)) 2 4o . Also, By = g(4o) &
g(A) = B, so that g”(By) € g '(B) = A. Hence C = g '(By) is a set such that
Ao C C C A, sothat (4 — C) = 0;since C isa set in g"'(R), and since 4 ¢ T,
in this argument is arbitrary, it follows that T, < ¢ '(R) [T, »]. This completes
the proof.

ReMARK 1. The preceding argument shows that u is a perfect measure, i.e.,
for each real-valued S-measurable function f, corresponding to each set 4 in Sy
there exists a B in f'(R) such that B € A and u(4 — B) = 0. (Cf. [9], p. 18;
also pp. 248-251.) Perfection is a little stronger than the property stated in
Lemma 5. The fact that u is perfect can be deduced, alternatively, from Theorem
1 of [9], p. 18, since (X, S, u) is a euclidean space.

ReMARK 2. If X is an uncountable set, the “exact” form of Lemma 5 is false,
that is to say, there do exist S-measurable functions f for which f™(R) = S;.
This follows easily from the theory of analytic sets [7].

As an immediate consequence of Lemmas 3, 4, and 5 we have:

TaEOREM 2. Corresponding to any subfield S, there exists an S-measurable func-
tion f on X into R such that Sy = S, [S, p].

The remainder of this section is devoted to showing that, for S-measurable
functions, contraction coincides with functional contraction (Theorem 3).

LemMa 6. If f is an S-measurable function on X into R, and S; & S, (S, ul,
then f < g [S, ul.

Proor. Since f is S;-measurable (cf. Lemma 2), the hypothesis S; © S; [S, u]
yields the existence of an S,-measurable function, h say, such that the set
{z:f(x) ¥ h(x)} is S-p-null. Denote this last set by N, and let g(X — N) =

Since h is S,-measurable, it depends on z only through g (cf. Lemma 3.2 of
[1]), say h(zx) = k(g(zx)) for all z. Define k* = k on A and = a on g(X) — 4
where « is a point in f(X). Then k* is a function on the range of g into that of
f such that {z:f(z) > k*(g(x))} is a subset of N; this completes the proof.

Let S be the class of all sets of the form 4 u C where A4 is S-measurable and C
is a subset of an S-u-null set, and define z(4 u C) = u(A4). Then S is a field con-
taining S, & is a probability measure on S, and g(4) = u(A) for A ¢ S. For any
statistic f, S, is defined, as usual, as the class of all S-measurable sets of the form
f7(B). (Note. In general, S; is different from (S;).)

Lemma 7. If f S g IS, &), then S, € §, [§, a).

Proor. By hypothesis, there exists a function & on the range of g into that of
f, and an S-g-null set N such that f(z) = h(g(z)) on X — N. Choose and fix a set
in 8;,say 4 = f(B). Define A* = g~'(C), where C = h™'(B).

Write N* = {z : f(z) # h(g(z))}. Then N* C N, so that N* is an S-g-null
set. We have A*n (X — N*) = {z:g e h'(B),f = hg} = {x:hg e B,f = hg} =
{z:feB,f = hg} = An (X — N*). Hence A* — A T N*and 4 — A* C N*
Since A is S-measurable and 7 is complete on S, it follows that A* is S-measur-
able (and therefore in S,;) and that A* differs from A by a set of g-measure
zero. Since A ¢ S; is arbitrary, the lemma is proved.

LemmMa 8. If g is an S-measurable function on X into R, then S, = §, [S, al.
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Proor. Since S € §, we have S, & §,; and since ¢ is S-measurable, g"'(R) <
S, by Lemma 2. Thus ¢ '(R) € S, < S,. The desired conclusion can now be
established by showing that S, € ¢ '(R) [S, &]. The demonstration of this last
relation is essentially the same as the proof of the nontrivial part of Lemma 5,
and so is omitted.

LemMma 9. If g is an S-measurable function on X into R, and f & ¢ [S, ul, then
S;r S S, [S, ul.

Proor. fCgl[S,ul « fCglS, al

—85,¢c8,558 (Lemma?)
- 8,cs, IS (Lemma 8)
- 8, <S8, (5,4
< 5, C S, [S, 4l

TueoreEM 3. Let f and g be S-measurable functions on X into R. Then Sy C S,
(S, ulif anonly if f S g [S, ul.

The proof is immediate from Lemmas 6 and 9.

It can be shown by the methods used in this section that Theorems 1, 2, and 3
are valid for any probability space (X, S, u) which satisfies the following condi-
tions: (i) for each z in X, {z} is S-measurable, (ii) S is separable, and (iii) x is
perfect. However, such a space can differ but little from a euclidean sample space.

3. Applications to the theory of sufficiency. We suppose now that there is
given a euclidean sample space (X, S), as before, and a dominated set P of
probability measures on S. Definitions of the technical terms used here without
explanation are given in the first part of [1]. The conclusions of this section are
relevant to problem 3 of [1], p. 441.

Let u be an arbitrary but fixed probability measure, not necessarily in P, such
that for each S-measurable set 4, u(4) = 0 if and only if p(4) = 0 for each p
in P. The existence of such a p is assured by Lemma 7 of [8].

CoROLLARY 1. There exists a function f on X into R such that:

(a) f is S-measurable,

(b) S; is a necessary and sufficient subfield,

(¢) f vs a necessary and sufficient statistic.

Proor. Since P is dominated, it follows from Theorem 6.2 of [1] that there
exists a subfield S, (say) which is necessary and sufficient. Let f be a function on
X into R such that (a) holds, and such that S; = S, [S, u]; such an f exists, by
Theorem 2. Property (b) is immediate (cf. Corollary 6.2 (iii) of [1]), and it re-
mains to verify (c). Since S; is sufficient (= f is sufficient) by (b), we have only
to show that f is a necessary statistic. Let g be any sufficient statistic. Then
S; € S, [S, ul, since S, is sufficient by hypothesis and S; is necessary by (b).
Hence f € ¢ [S, u], by (a) and Lemma 6. This completes the proof.

ReEMARK. It is evident from Lemma 5 that Corollary 1 remains valid if S;
is replaced by f'(R) in (b). It can be shown that this modified version of Corol-
lary 1 is valid not only in the present case but in any framework (X, S), P
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provided that P is a separable metric space under the metric é(p, ¢) =
Supacs |p(4) — g(4)].

CoROLLARY 2. If ¢ 18 a necessary and sufficient statistic, then S, is a necessary
and sufficient subfield.

T'roor. We have only to show that if ¢g is a necessary statistic, then S, is a
necessary subfield. Let f be a funetion on X into R such that conditions (a), (b),
and (c¢) of Corollary 1 are satisfied. Since f is sufficient and ¢ is necessary, we
have ¢ C f [S, u]. Hence S, € S; [S, u] by Lemma 9. Since S; is necessary, it
follows that S, is necessary, and the proof is complete.

It should be stated here that the converse of Corollary 2 is false (cf. Example
2 in Section 4), and also that the corollary itself is false in the general case (cf.
(2]).

CoROLLARY 3. Let g be an S-measurable function on X into R. Then g is a neces-
sary and sufficient statistic if and only if g '(R) is a necessary and sufficient sub-
field.

Proor. In view of Corollary 2 and Lemma 5, we have only to show that if
S, is a necessary subfield, then g is a necessary statistic; since g is S-measurable,
the desired result follows from Lemma 6 by the argument used in establishing
part (¢) of Corollary 1.

4. Two examples. In both examples, X = U X V is the set of all points
x = (u,v) with —0 < u < o, — < v < »; 8 is the field of Borel sets of
X5 P = {ps:— o < 0 < =}, where pg is the measure on S corresponding to u
and v being independent normally distributed random variables, with means
6 and O respectively and variances 1; and p = pe—o . Let U and V denote, respec-
tively, the coordinate axes v = 0 and u = 0. Let U and V denote, respectively,
the Borel sets of U and V.

The first example shows that the following propositions are false:

(1) Iff < g[S, ul, then S; € S, [S, u]. (Cf., however, Lemmas 7 and 9.)

(ii) If f is sufficient, and f is a functional contraction of ¢ (that is, f < ¢ [S, u)),
then g is sufficient. (Cf. Theorem 6.4 of [1].)

ExampLE 1. Let f(u, v) = u. To define g, let N € V be a set such that N
has linear measure zero but is not in V. Let g(u, v) = wforveV — N, and
g(u,v) = 0forveN. Then f C ¢ [S, ul], and also ¢ < f [S, u] so that fand ¢
are functionally equivalent. However, it is easily seen from Fubini’s theorem
([6], p. 83) that S; = f~'(U) while S, contains only X and the empty set.

The second example shows that the following propositions are false:

(i) If S, € S, [S, u], then f S ¢ [S, u]. (Cf., however, Lemma 6.)

(iv) If S, is a necessary and sufficient subfield, then f is a necessary and suffi-
cient statistic. (Cf., however, Corollary 3 together with Lemma 5.)

ExampLE 2. Define ¢g(u, v) = u. To define f, let M C V be a set which is not
measurable with respect to linear measure on V, and let f(u, v) = (u, 1) for
v e M and f(u, v) = (u, 2) forveV — M. We shall show that S; = S,, so that
f and ¢ are equivalent, but that f is not a functional contraction of g.

Let Up = {xiv = 1}, U, = {z:v = 2}. Since ¢ is exactly a function of f,
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S, € S;. To prove the converse, consider a fixed C' ¢ S;. There exists a set
B € U, and a B, € U, such that C = f(Byu B,). Let the perpendicular pro-
jections of By, Bz on U be 4,, A, , respectively. Then, by the definition of f,
C=EuFu(G where E = (AinA;) xV,F = (A1 — 4;) x M,and ¢ =
(A: — A1) x (V — M). Since C is a Borel set while M and V — M are not, it
follows ([6], p. 83) that F and G must be empty. Hence A; = A, = A say, and
C=A xV =g(4). It now follows ([6], p. 83) that 4 isin U, so that g~*(4) =
C is in g”'(U). Since C is arbitrary, we have S; € ¢ (U); but ¢"'(U) = S, ,
so that S; € S, . Thus Sy = §, .

To show that f is not a functional contraction of g, suppose to the contrary
that f C ¢ [S, u). Then f € ¢ [S, A], where S denotes the Lebesgue measurable
sets of X and A is (planar) Lebesgue measure on S. In other words, there exists
a function A on U into U, u U, and an S-X-null set N such that f(z) = h(g(x))
on X — N.Write ' (U)) = I, U xM = J,and I x V = K. Then J = f7(U)
and K = ¢ '(h"(U.)), and it follows exactly as in the proof of Lemma 7 that
the sets / — K and K — J are S-A-null. Hence L = (J — K)u (K — J) is
S-A-null.

For each u ¢ U, let E, be the set of all v ¢ V such that (u, v) ¢ L. Let A, , X,
denote linear measure on U, V, respectively. It follows from Fubini’s theorem
({6}, p. 81) that there exists a C € U with X\,(C) = 0 such that, foreach u ¢ U —
C, the set E, is X\,-measurable (and of \,-measure zero). Since u ¢ I implies E, =
V — M,and u ¢ U — [ implies E, = M, and since at least one of the sets I — (|
U — I — C must be nonempty (because \,(C) = 0), it follows that A is X.-
measurable, and this is a contradiction.

It can be shown by a slight elaboration of the preceding argument ihat® w
Example 2 we have S; € S, [S, &), but not f < ¢ [S, a]. This, together wi'h
Lemma 7, shows that by completing a given probability space (X, S, u) to
(X, §, i) the inconsistency between contraction and functional contraction is
reduced but not eliminated entirely.
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