THE TREATMENT OF TIES IN SOME NONPARAMETRIC TESTS!

By JosEpH PuTTER

Unaversity of California, Berkeley

1. Introduction. Most of nonparametric testing theory is usually presented
under the assumption that all the samples involved are drawn from continuous
distributions, and that tied observations can therefore be ignored or treated in
any convenient way, without affecting the performance characteristic of the
test. In practice, however, this assumption is not a realistic one, and the dis-
tributions involved are in general to be regarded as discontinuous, either because
of intrinsic reasons (integer-valued or otherwise discrete random variables)
or because of limitations on the precision of measurements. Therefore, usually,
ties will occur with positive probability, and the way they are treated does affect
the performance characteristic of the test. The problem of ties has therefore to
be considered, in particular with a view to preserving the nonparametric charac-
ter of the test, and to making sure of setting it up on the desired level of signifi-
cance.

The usual practice in attacking the problem has been to consider the condi-
tional distributions of the statistics concerned given that the number of observa-
tions in each tied group is a fixed constant. This, however, was never explicitly
made clear, and these conditional distributions, as well as their variances and
other characteristics, are referred to as distributions (or variances, etc.) “when
ties are present.” In this category belong Kendall’s work on ties in rank correla-
tion theory, and Kruskal’s theorem concerning a generalized Wilcoxon test (see
Section 8).

In this paper, we attack the problem from the standpoint of the ties being
random variables. Our main concern is the comparison between the ‘“‘ran-
domized” and the ‘“nonrandomized” way of treating the ties. In Sections 3 and
4 we consider the one-sided sign test, and show that randomization reduces
both the exact power and the asymptotic efficiency of the test. In Sections 5-8
we consider the Wilcoxon test. For small samples the nonrandomized treatment
of ties presents practical difficulties, but the asymptotic (large sample) problem
can be handled. Again, it is shown that randomization results in reduced effi-
ciency.

2. Notation and theorems used. We shall use the notation 9(a, b) for normal
random variables (with mean a and variance b), and ®(n, p) for binomials. The

symbol —£+ will denote convergence in probability, and —L> convergence in
law (convergence of distributions).
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To compare the asymptotic performances of two consistent tests, we shall
use Pitman’s concept of asymptotic relative efficiency. The concept is presented
in Pitman’s lecture notes and also by Noether [11]. In particular, we shall use
the following theorem.

TureoreM A (Pitman, as quoted in Noether [11], pp. 241-242). Let H be a
hypothesis specifying the value 6, of a population parameter 0, and A the one-sided
alternative > 6. Let {7}, ©=1,2;n = 1,2, .-, be two sequences of tests
of H against A, on the same level of significance . Let 74, consist of rejecting H
when Sin > kin , where S, are statistics and k, appropriate constants. Let :,(6)
and ¢;,(0) be functions such that ¥;,(0) exists in the neighborhood of 6y, and let
the following conditions be satisfied as n — o :

(2.1) ,’Vi" (6.) — 1, 0, = 6, + —(11,'2, a a positive constant;

\01‘"(00) n
o'in(an)
. < 1

(2.2) ol —1;

(2.3) E@ 5, H(n) = Yin(60) , ;@ positive constant;
ni2 Oin (00)

and etther

(2.4) Sin = ¥anl0) L, 0 1y

ain(0)
uniformly in 0 in the neighborhood of 6, , or

Siu - \bin(an) L
O'm(an)

Then the asymptotic relative cfficiency of {72.} with respect to {71n} s limp... Hs(n)/
Hi(n).

(Noether defines y:.(0) = E(S:, | 60) and ¢:,(8) = o(Sin | 6), but it is easily
seen from Pitman’s proof of the theorem that this specification is not neces-
sary.)

To handle the uniform convergence required in condition (2.4), we shall use
the following theorem.

TuroreM B (Parzen [12], p. 35). A necessary and sufficient condition for a se-
quence of distributions F, = F' to converge to a distribution F uniformly in 6
18 that

(2.6) @) — f@t) uniformly in 6,

(2.5) s> 91(0, 1).

where f P and f denote the respective characteristic functions. The convergence
(2.6) s then jointly uniform in 0 and t for every finite t-interval.
(Theorem B is a particular case of Parzen’s Theorem 7c.)

THE SIGN TEST

3. Randomized and nonrandomized test. Let Z;, ---, Z, be independent
and identically distributed random variables. Denote the number of positive
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Zy'’s by N, , of negative Z;’s by N_, and of zeros among the Z;’s by No. The
sign test consists of rejecting the hypothesis

H: P(Z, > 0) = P(Z; < 0),
against the alternative

A: P(Z, > 0) > P(Z, < 0),

say, whenever N, is too large.

In practice Z; frequently is of the form X, — Y, , where X, and Y, are inde-
pendent. If the distribution functions of X and Y, are continuous, then P(Z; =
0) = 0. In this case, under the hypothesis, N, is B(n, 1), which gives us the cut-
off point.

In the general (discontinuous) case, denote

P(Zk>OIH)=I7+, P(Zy = O|H) = po,
P(Z,>O0|A) =qg+, PZi=0l4)=q, PZ<0[4) =q-.

Consider the conditional distribution of N, given that Ny = no. Under H,

P(N, = x| ny) = pulx) = (n ; no) @,

under 4,
_ n—ng F
Py =z ln) = = (" 5" (7 5.) (&)
x=20,1,---,n — no. Thence
Pa() _ () <g¢) ,
pu(x) q-

which is a strictly increasing function of x. Therefore, by the Neyman-Pearson
lemma, the unique most powerful test based on N and N, is given by

(3.1) Ny > Ek(No),

where the cutoff point k(no) is, of course, the one corresponding to B(n — ne , }).
It is obvious that k(N,) is not a linear function of Ny . Thence the test (3.1)
does not coincide with the test

32) N, + 3No > &k,

which was proposed, e.g., by Dixon and Mood [3]. In fact, the distribution of
N, 4+ 3N, under H depends on the unknown parameter p,, so that the cutoff
point k cannot be well defined. The usual practice seems to be to take for & the
cutoff point corresponding to ®(n, %). This, as was shown by Hemelrijk [4],
results in lowering the level of significance and consequently also the power of
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the test. However, the difficulty caused by the dependence of k on p, can be ob-
viated when asymptotic properties are considered, and we shall return to the
matter in the next section.

The test (3.1), which amounts to “omitting the ties from the observations”
and which was suggested, e.g., by Dixon and Massey [2], is, as we have seen,
the unique most powerful test based on N and N, . However, another customary
procedure is one based on ‘“randomization”: after ‘'observing the Z,’s, we perform
Ny independent random experiments, assigning each of the N, zeros among the
Z\’s a positive or negative sign with equal probabilities (= 1). We thus get, say,
N% additional positives. The random variable Nf = N, + N% is, under H,
®(n, 3), and we can apply the test

(3.3) Ni>k

without worrying about the unknown p, .

Consider, again, the conditional situation given that Ny = no. Denote by
p(y) the frequency distribution of ®(ny, ). The joint (conditional) frequency
distribution of Ny and N% is px(2)p(y) under H, and p.(z)p(y) under A. The
ratio of the two expressions is p4(z)/px(z), so that (3.1) is also the unique most
powerful test based on N, No, and Ni. We have thus proved the following
theorem. :

TureoREM 1. The nonrandomized test (3.1) vs uniformly more powerful (against
the one-sided alternative A) than the randomized test (3.3).

As a numerical example, we give in Table I the powers of the two tests for n =
10, against the alternative ¢,/g_ = 2. Since the power of either test depends on
g0 , we tabulate the conditional power given Ny = ny, for all values of n, . The
tests are considered on the .05 level. To keep this level exact (and to get a valid
comparison between the tests), we modify the tests in the usual way. For ex-
ample, the test (3.3) is now formulated as follows: Reject H with probability 1
if N¥ > k; reject H with probability ¢ if Nf = k; accept H otherwise. In our
particular case, ¥ = 8 and ¢ = .893.

TABLE I
PO 0o | 1 ‘ 2 |3 | 4|56 ‘ 7] 8| 9 |10
Power of randomized test (3.3)....... .278|.241|.208|.177|.150|.127|.106/|.089|.074|.061|.050
Power of nonrandomized test (3.1)....|.278|.244|.232|.216/.184(.171{.158|.119/.088|.067|.050

In particular, against the alternative ¢go = ¢— = %, ¢+ = %, the power of (3.3)
is .195, while that of (3.1) is .221.

4. Asymptotic properties. For large sample sizes n, it is convenient to use the
normal approximation to the binomial, and we shall now compare the per-
formances of the randomized and nonrandomized tests when this approximation
is used.
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For the randomized test statistic N we have, under H,

ONY —n L

(41) V) — 31(0, 1)7

which gives us the usual normal approximation to (3.3). Under A, N¥ is
(B(n, a+ + %qo)y

and hence

Ni — nlgs + 3q0) L
(n(g+ + 390)(g- + 290)]'"?
It is easily seen from (4.1) and (4.2) that the test (3.3) is consistent against the
one-sided alternative A.

It is more difficult to derive the normal approximation to (3.1). Since in any
case the normal approximation of a test is not an obviously definable concept,

we shall derive a nonrandomized asymptotic test by starting from (3.2). The
joint distribution of N, , Ny, and N_ is trinomial; hence the test statistic

N-,+=N++%No

> (0, 1).

(4.2)

is asymptotically normal. More precisely, under H,

st~ U0, ).
Since No/n —1:-» Po, we have
“3) e Lo,
which gives us an asymptotic test independent of p, . Under A4,
(44) N3 — nlgr + 3q0) L, 50, 1),

(nl(g+ + 20)(g- + 3¢0) — kgo)'

and, again, the nonrandomized test corresponding to (4.3) is consistent against 4.

We now compare the asymptotic performances of the two tests in terms of
Pitman’s concept of asymptotic relative efficiency. In the notation of Theorem
A, put

0 =q++ 30, 6=3

THEOREM 2. Let {Ag, 6 > 3} be a family of alternatives for which go = po .
Then the asymptotic relative efficiency of the randomized test (3.3) with respect to
the (nonrandomized) test based on the statistic

T, = 2N, — n

(n — N 0)”2

181 — po.



TIES IN NONPARAMETRIC TESTS 373

Proor. Put
Sl" = T.(1 — p0)1/2’ SZn = Ni’

V() = (20 — 1)n'’®,  $u,(6) = n8,
o1a(0) = 40(1 — 8) — po)'%,  0u(6) = (nB(1 — 6))""%.

Conditions (2.1)-(2.3) obviously hold, and we proceed to verify (2.4) and/or
(2.5).

For ¢ = 2, the convergence (2.4) holds by (4.2). From the usual proof of bi-
nomial convergence to the normal, it is easily seen that the corresponding con-
vergence of characteristic functions is uniform in 6 in the neighborhood of 6, ,
and hence, by Theorem B, so is (4.2), and condition (2.4) holds. For 7 = 1, we
have

Sin = Y0 _ 2Ny — 0n) (n(l - m))‘”
OR M6 — 6) — p)'2\ n = N,
_ n(l _ po) l/2< n 1/2 _ 1
0= (40(1 ) po> (= No> = pow?)'
Now,
2Wy —bn) L g )

(n[46(1 — 6) — po])*?

by (4.4), and this convergence, as before, can easily be shown to be uniform in 6
in the neighborhood of 6, . We have

n(l — po)>‘” P ( n )"2 _ 1 P
<'n =N, 1 and —A = p0)1/2~——> 0
independently of 8, and

n(l — Po) 1/2
e =0 (g s)

Hence condition (2.5) holds. Our result now follows from Theorem A.

THE WILCOXON TEST

b. Notation and known results. We shall use the following notation in con-
nection with the Wilcoxon test. (X;, - -+, X,) is a sample of n independent ob-
servations from a distribution F(z), and (Y1, ---, Y.,.) is a sample of m inde-
pendent observations from a distribution G(z). If all the m 4 n observations in
the pooled sample are different, we rank them in ascending order of magnitude,
assigning the rank 1 to the smallest observation. We denote by S, the sum of
the ranks assigned to the X’s. The Wilcoxon test of the hypothesis F = G con-
sists of rejecting the hypothesis when S... is too large.

The mean, variance, and asymptotic distribution of S, , in the case when F
and @ are continuous (and therefore the probability of getting two or more
equal observations is 0), are known, and are summarized below.
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When F = G, every possible ordering of the pooled sample occurs with the
same probability 1/(n 4 m)!, and the distribution of S,.,, can be derived from
this fact alone. We shall denote any statistic with this probability distribution
by S%. . From Mann-Whitney [10] we have

(5.1) ESS, = W;;ntl_) T
(5.2) A8, = ’_’M‘Fmﬂﬂ — o, say:
0
(53) 79, =Sm —#m L g0 asliloo
Onm n m

In general, when F and G are any two (continuous) distributions, we have,
from Mann-Whitney [10],

(54) ES.mn = pam + nmé,
(5.5) 0=0F,G =PX,>Y)—4%= f G(2) dF(2) — 3,

az(Snm) = o'im + nm[(a - )\1)(” — 1)
(5.6) ,

+ (0 —N)(m —1) — 6(n +m— 1)],
(52) M= NG =4 — [ P ),
(58) N =M(F,G) == [ 11 - GEI aFG).
When n — « while m/n = ¢ is held constant, we have, from Lehmann [9],
Snm - ESnm L

(5.9) R — (0, 1).

(That o(S.m) is the correct norming factor can be seen from Hoeffding [6],
Theorem 5.2.)

For the case of discontinuous F and G, which we shall consider in the following
sections, we adopt the following notation. We assume the common discon-
tinuities of F' and G (which are the only ones that matter) to be finite in number,
and denote them by &, &k =1, ---, K. Their locations are not assumed known,
and are irrelevant to our considerations. We define

e = P(Xi = &), @ = P(Y1 = &);

U, = the number of X’s which are equal to & ;
Vi = the number of Y’s which are equal to & ;
Wi = U+ Vi;
U= (U, -, Uz, V=(V,--, V), W= (Wi, -, Wk).

We shall write Y . for D ;.
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6. The treatment of ties. When F and G are continuous, the probability of
getting tied (equal) observations is 0, so that this event may be ignored. In the
discontinuous case, however, ties occur with positive probability, and when
they do occur, the pooled sample can no longer be uniquely ordered. The prob-
lem arises, therefore, of how the Wilcoxon test is to be defined in such a case.

An obvious solution to the problem, proposed by many writers on the subject,
is, again, “randomization”: each group of equal observations is ordered at ran-
dom, giving every possible ordering (within the group) the same probability.
This results in an ordering of the pooled sample, and the sum of the ranks of the
X’s can now be defined. The only difference from the continuous case is that this
new random variable is defined over a different sample space, because its value
depends not only on the observed X’s and Y’s but also on the outcome of the
randomization procedure. We shall denote this sum of the ‘“randomized” ranks
of the X’s also by S, .

Again, if F = G, every possible (randomized) ordering of the pooled sample is
equally probable, and hence S,,, is distributed as S5, . The Wilcoxon test can
therefore be applied using S.. , with the same cutoff point as in the continuous
case. The main objection to this procedure seems to be that the outcome of the
test (rejection or acceptance of the hypothesis) is thus made to depend not only
on the observations but also on an additional, and more or less irrelevant, ran-
dom experiment. We are thus led to look for a test which is

(i) distribution-free under the hypothesis;
(ii) dependent on the observations only; and

(iii) as close as possible to the original Wilcoxon test.

We leave the precise meaning of this last requirement unspecified for the mo-
ment, and shall elaborate the point later on.

For the remainder of this section, we shall need to consider only the case when
F = @, and it will be convenient to assume that F is purely discontinuous.
In this case, the ordering of the pooled sample is given by the nonzero com-
ponent of the two vectors U and V, as long as the observations alone are consid-
ered. Hence any rank (order) statistic which depends on the observations only
can be expressed in terms of U and V. Requirement (ii) means, therefore, that
the rejection region R of the test will be a region in the 2K-dimensional sample

space of the random vector (Uy, ---, Uk, Vi, ---, Vi).
In this sample space, the vector W is a sufficient statistic for the vector param-
eter (p1, - -, Px), i.e., the conditional probability
Pu|w) =PU=u,V=w—u|W=uw)
_ n! ) m! (m + n)!
upl oo ug! (W — w)! - (wx — ux)!/ wil - wg!

is independent of the p,’s. Hence, if the size « of R, that is,
P(R) = > P(W = w) P(R| W = w)

_y AW e e S P w),

w wll tee wK! (u,w—u)eR
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is to be independent of the pi’s (requirement (i)), we must have P(R | W = w) =
a for every w, which is the usual condition on distribution-free tests when a
sufficient statistic with a complete family is involved. But since for every fixed
w we have only a finite set of probabilities P(u | w), and these sets vary with w,
it will in general be impossible to find a region R with exact size . However,
this difficulty can be obviated, e.g., by considering regions which include some
sample points not definitely but with certain given probabilities. Thus it appears
that some random element outside the observations is unavoidable, unless we
do not insist on the exact size a. But in practice this consideration is unimportant,
because one is usually quite content to stop just short of the given size a.

Suppose that various regions R of the required type and of exact size o (pro-
duced by the above, or any other, device) are available. Denote by R, the re-
jection region [S,» > a, of the same size «, given by the “randomized” Wilcoxon
test. Then R, is defined in a different sample space, which can be described as
the result of splitting each point of the (u, v)-space into several points corre-
sponding to the possible outcomes of the randomization procedure. We shall view
the sets R as sets in this “extended” sample space, too.

We have P(R) = P(Ry) = a, or P(R n Ry) = P(R n R,), where the notation
A stands for the complement of A. Now, one possible interpretation of require-
ment (iii) above is to choose R so as to minimize P(R n R,). This may be justi-
fied as follows. Suppose F is really continuous, and the ties occur only because
of insufficient precision of measurement. The randomized test is, in a sense, ap-
proximately equivalent to the (Wilcoxon) test which we would use if our meas-
urements were precise, because the effect of the randomization procedure is
similar to the effect of replacing each discontinuity by an interval of uniform
distribution (cf. Section 7). It is therefore reasonable to try to minimize the
probability of getting a result (rejection or acceptance of the hypothesis) dif-
ferent from the result of the randomized test. But this probability, when the
hypothesis is true, is P(R n B,) + P(R n Ry) = 2P(R n Ry).

We thus want to minimize P(R n [S.» =< a]), which will be achieved if we
minimize
PRO[Swm Z al|W = w) = Z)RP(u|w)P(S a|U=uV=w-—u)

for every w. This is to be done under the condition
(6.1) > Pu|w) =PR|W=uw) =

(u,w—u)eR

In a manner analogous to the proof of the Neyman-Pearson lemma, it is easily
seen that the “optimum” region is obtained by the following procedure. For
every vector w, we order all the possible vectors (u, v) = (u, w — u) by the mag-
nitude of P(S < a|U = u, V = w — u). We take that vector (u, w — u) for
which this probability is smallest, then that vector for which it is the next
smallest, etc., until the (conditional) size «, as in (6.1), is reached. Doing this
for all w, we get the desired R.
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Unfortunately, the tabulations required for this test are much too extensive.
We can approximate the test if, instead of rejecting the hypothesis when P(S,. <
a|U = u, V =w— u)is too small, we reject it when E(S,m | U = u, V =
w — u) is too large. The two tests will probably not differ too much.

The statistic

(62) S:nm = r(Smnl U’ V)’

where E, denotes expected value under randomization, is the sum of the mid-
ranks of the X’s, where the midrank of an observation is defined as the mean
rank of all the observations equal to that observation, or, more precisely,

midrank (X) = ]_\’Li-__lz\f_zi_} ,

where N, is the number of observations smaller than X, and N, is the number
of observations (including X) not larger than X. The statistic S,. has been
proposed by many writers as a test statistic to replace S, when ties are present.
However, by the preceding considerations, the cutoff point has to depend on W,
and the tabulation involved is prohibitive. A few cases have been tabulated in
[13], but they can merely serve as an indication of the task involved in more
exhaustive tabulation.

Kruskal [7] derived the conditional asymptotic distribution of S,, given
fixed W = w(n, m) which fulfill a certain convergence condition (cf. Section 8)
for the case F = (. In the next two sections we shall derive the (unconditional)
asymptotic distribution of S, in general, and discuss some consequences.

7. The asymptotic distribution of S,.,.. We now drop the assumption that F
and @ are purely discontinuous. Consider the conditional distribution of S,
given a fixed pooled sample of X’s and Y’s. For this fixed sample, let U = u,
V = v. Denote by r the sum of the ranks of those X’s which are not equal to
any & (and which are therefore, with probability 1, untied), and by r; the num-
ber of those observations (X’s and ¥’s) which are smaller than &, .

Under the randomization procedure which generates S, , those observations
which are equal to & are assigned the ranks r, + 1,7 + 2, - -+, 7 + w + vy at
random, with every ordering equally probable. Hence the sum of the ranks of
those X’s which are equal to & is urx 4+ S% v, and

Sum =7 4+ 2k (e + Supn)-
Therefore, by (6.2) and (5.1),
Sum =1 4 2k (Wit + ),
Sam = Sum + 2ok (Susms = Hupm),
where the K + 1 terms on the right are (conditionally) independent. Since this
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holds for every fixed sample, we can write
(71) Sam = Som + Zk (S{t)lk,l’k - I-‘Uk.Vk):

where the terms on the right are conditionally independent given U and V.
Obviously, we have

ESum = EE(Sun| U, V) = ESpm.
To calculate ¢°(S.=), We note that, by (7.1),
" (Sam) = E(Sum — ESpm)’
= EE[(Sun — ESun)'| U, V)
= EE{[Sun — ESun + 224 (Stavi — wow))’ | U, V)
= ¢’ (Sam) + 22 EUV(Us + Vi 4+ 1)

7 (Som) + T 2 pegel(n — Dpe + (m = Dge + 3],
or

(72)  @(Sun) = ¢'(Sun) = T3 2 peael(n — Dpe + (m = Dgs + 31,
In particular, when F = G,

(7.3) 7*(Sum) = Tnm — % Zk: pil(n + m — 2)p: + 3].

Of some interest, when F = G, is also the conditional variance o°(S,. | W).
Since the conditional distribution of S, given W is still that of S%,, this vari-
ance can be computed in a manner similar to the preceding argument, giving

(when F = @)

20 Q’ _ 2 nm 2
(7-4) ag (Snm I W) = Onm 12(” + m)(n + m — 1) ; Wk(Wk 1)-

This is the variance given by Kruskal [7], and in a more cumbersome form by
Hemelrijk [5].

Since ES,» and ¢°(S,) as given by (5.4) and (5.6) refer to the continuous case,
we shall touch on the modifications required for discontinuous F and G. By
Lemma 5.1 of Lehmann [9], there exist two continuous distributions F* and G*
under which the distribution of S, is the same as under F and G. These continu-
ous distributions are obtained, essentially, by replacing the discontinuities by
intervals of uniform distribution. We define

0*(F, G) = 6(F*, G*),
)‘7(F! G) = )‘i(F*y G*):

0*
N

1’ 2’

<.
Il



TIES IN NONPARAMETRIC TESTS 379

referring to the definitions (5.5), (5.7), and (5.8). From (5.4) and (5.6), we now
have
(7.5) ESum = tnm + 0*nm,
7.6) " (Sum) = onm + nm[(6* — N)(n — 1)
+ (6* — M)(m — 1) — 6¥(n + m — 1)].

For later use, we compute 6* in terms of F and G. Denote by B the real line with
the points £ excluded. We have

0* + 3 = [ - G*(2) dF*(z) = fB G(z) dF(2) + ; fo (G — 0) + tgulp: dt

- f 6(:) dP@) + T pu Gl — 0 + 3 X pua = P(Xa > 1)

+ %P(Xl = Yl))
or

(7.7) ¢ =P(X:> V) + P(Xi=Y) — 3

We now give a theorem connecting the asymptotic distribution of S, with
that of S.m . Note that the symbol o%,,v, will stand for & UiVi(Usr + Vi + 1),
as in (5.2), and will have nothing to do with the variances of U, and V. This
refers, of course, to all the symbols with U, and V. as subscripts.

TurEOREM 3. If, for a pair of distributions (F, G), and possibly under some re-
strictions concerning the relation between n and m, we have

(7.8) Sum : ESwm L, 50,0,
2
7.9) 7o T,y

as 1/n + 1/m — 0, then, under the same conditions,

Snm - Esnm _L_) S.L(O 52)’

Onm
where
b= b — Db

Proor. Subtracting ES,. from both sides of (7.1) and dividing by onm, We
have

(7.10) Snm - ESnm — Snm - ESnm + Z OUk, Vi T%k,vk ,

Onm O nm k Onm
where 7" is defined by (5.3). The U and V; are ®(n, p:) and ®(m, g:), respec-
tively.
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Let d > 0 be a fixed number which we shall specify later, and define

Rum =l:l%f—pk < d, I%— @l <d, [T by < d, allk]
We have, by (7.9),
(7.11) PR..) 1 as 1/n+ 1/m —0.
Define
ORI
hum(t) = the characteristic function of T%..;
fam(t) = the characteristic function of Sam = ESum ;
T nm
fam(®) = the conditional characteristic function of Sum = ESum given U = u,
T nm
V =
gnm(t) = the characteristic function of S—"”i——ﬂ'ﬁ‘;
Onm
gam(t) = the conditional characteristic function of Sam = BSum given U = u,
Tnm
V = v
A =1 rby), @ = T2
k Onm

All integrals will be taken in the (u, v)-space, with respect to the probability
measure in that space.
By (7.10), we have

wr _ Sl
nm(t) = ch huk,vk(tak> ’
or
gam(t) — h(th) = = [f n(t) — h(th))
A gnm(t) [H h(tbk) - H huk vk(tak)]
Hence

|gnm(t) — R(tD)| = ‘ f lgnm(®) — h(tf))]’
< [ oo - wdl+ 5| 1o - ww)

1
+ :4— jl;”m l I’:I h(tbk) - I’:I hukwk(tak)l .
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Using the definition of R, , the property (7.11), the condition (7.8), and the
fact that, by (5.3), ham(t) — h(¢), each of the three expressions involved can be
shown to converge to 0 as 1/n 4 1/m — 0, and the theorem is proved.

8. Consequences of Theorem 3. Since the asymptotic distribution of Sm
is known, Theorem 3 enables us to investigate the asymptotic behavior of Sum
and to compare the tests based on the two statistics.

TueoREM 4. If F = @G, then

S;m — HMnm L 3 1 1
T——)W(O,l ;pk)’as:,‘?"l""—l’_)o-
Therefore, if Snm = 8.m(U, V) is any sequence of posttive statistics satisfying
Snm
—1 - Z pk:

o'nm

then
S:;m — Hnm L
—nm mm_ -,

nm

T, = 70,1) as L + L 0.
n m

Proor. By (5.9), we know that (7.8) holds with b = 1. We also have

ngk,vk Uka(Wk + 1)
oam  nm(n +m + 1)

=%Y_k< W, n+m— W )P‘a
nm\n+m @n+mm+m+l) > P

Hence the theorem follows from Theorem 3.

Theorem 4 gives us test statistics whose asymptotic distributions, under the
hypothesis F = G, are independent of F, and which can therefore be used to
obtain asymptotically distribution-free tests. The rejection region of such a test
will be [Tnm > a], where a is given by

e [ it =

We shall refer to tests of this type as “the nonrandomized tests,” and to the
Wilcoxon test, based on the randomized S, , as ‘“the randomized test.”
Convenient choices for the norming factor s, are given, e.g., by

(81) snm = Unm - Tﬂ'z:k Uka(Wk + 1)’
or

2 - 2 _ nm 2 _
(8~2) Sam = Onm 12(n + m)(n + m — l) Zk: Wk(Wk 1) .

The norming factor given by (8.2), which is, by (7.4), the conditional standard
deviation ¢(S,n| W) under the hypothesis, was suggested by Kruskal and
Wallis [8]. In this case, Kruskal [7] proved that the conditional distribution of
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Tnm (given W) tends to 91(0, 1) if the W’s are fixed vectors such that s,m/gnm
converges to a positive limit.

We now turn to the case F = G (the alternative of the test). In the continu-
ous case, it has been shown by Mann-Whitney [10], van Dantzig [1], and Leh-
mann [9] that if m/n is held constant, then the Wilcoxon test is consistent (i.e.,
its power tends to 1 as n — «) against all alternatives under which P(X; >
Y1) > }. We proceed to derive the analogous consistency property for the dis-
continuous case.

THEOREM 5. Let m/n = c be fixed, and

(8.3) PX:> YY)+ 3PXyi=Y) > i
Then the randomized test is consistent. If, moreover, the norming factor s,. satisfies
(84) s P gs o,

Tnm

then the nonrandomaized test is also conststent.
REMARK. The condition (8.4) isalways satisfied if s, is defined by either
(8.1) or (8.2). For (8.1), we have

1
B=1- T czk:pqu(pk + cqr)
and for (8.2),
2 _ __1__ 3
K =1 (l+c)32k2(pk+ch) :

and both quantities are positive, unless F and G are both degenerate and identical,
which is obviously impossible under (8.3).

Proor oF TueoreM. By (5.9) and Lemma 5.1 of [9], we have
Snm - ESnm L

O nm

(8.5) > (0, b%),

where b = liM,sew 0(Snm)/0am 18, by (7.6), a function of ¢ and of the parameters
6*, AY , and S . The rejection region of the randomized test is [T, > a], where
Tom = (Sum — Ham)/dnm . But, by (7.5), we have

_ *
T, = Sum — ESum _ 6 nm’

Tnm O nm

and, by (5.2), nm/on, — © as n — «. Hence, by (7.7), the randomized test is

consistent.
Also, from (8.5) it follows, by Theorem 3, that

S:nm - Esmn L

Onm

> 3(0, 52) ,
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where

b =0 — l_-i:_ 2 2eqe(Pe + cqr) .

Hence

’ 2
Snm SMESM. L.g <0 ’ %2 )
and the consistency of the nonrandomized test follows by the same argument as
above, which completes the proof of the theorem.

9. Asymptotic efficiency. We shall now compare the randomized and the
nonrandomized tests in terms of Pitman’s concept of asymptotic relative ef-
ficiency. We shall restrict ourselves to the case of purely discontinuous distribu-
tions. Under a host of conditions (necessary to insure that the conditions of
Theorem A are satisfied), it will be shown that the nonrandomized test is asymp-
totically more efficient than the randomized test, and that its asymptotic ef-
ficiency does not depend on the choice of the norming factor s,., . The parameter
6 will be 6%(F, @) = P(X; > Y;) + 3P(X, = Y1) — %, and hence 6, = 0.

LemMa. Let Z; (1 = 1,2, --- ,r) be ®B(na;, p:), and put Z; = Z; — na.p; .
Then

ﬁZ‘=nr—1[n+i

=1 i=1 Q;P;

] H ap; + o0,(n" ™).

=1

Here the notation f, = 0,(g.) stands, as usual, for f,./g —P—> 0. The proof of the

lemma consists of expanding the product [[Z; = I1(Z: + na.p:) and noting that

Z:/n'* converges in law (to a normal).

THEOREM 6. Let m/n = c be fixed, and F be a purely discontinuous distribution.
Let {Gy,0 < 0 < 61} be a family of purely discontinuous distributions having the
same discontinuities & as F, with jumps q.(0). Let {Gy} have the following proper-
ties:

(1) Go = F;

(2) q(6) > ¢ > 0;

(3) 6*(F, Go) = 6;

(4) the convergence (S.m — ES,‘,,.)/U,‘,,.—L—>9'L(0, b°(0)), given by (8.5), is

uniform in 0,

(5) the functions q.(8) are continuous at 6 = 0.

Let $pm = 8am(U, V) be continuous functions of U and V, having, under (F, Gs),
finite variances and satisf: ying the following conditions:

(6) sum/n"* = 3k a(0)Ux + 2k Be(0)Vi + v(6)n + o0,(n'"*), where

U= Us —npe, Vi — mqu(6);
() ¥(0) = (c(1 + ¢)/12)(1 — X pb):
(8) v(6) s differentiable, and v'(6) ts continuous at 6 = 0;
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(9) at least one of the 2K inequalities cfoy(8) = v(6)ax(6), c0B:(0) = v(0)Bs
holds, where (arranging the &’s so that & < Exy1)
&(0) = 14 c[25ce qi(0) + 3a(0)], B = e psi + 3me .
Under these conditions, the asymptotic relative efficiency of the randomized test
with respect to the nonrandomized test is 1 — Zk Di .
REMarks. (i) Conditions (6) and (9) are satisfied if s, is given either by (8.1) or
by (8.2). For (8.1), for example, using the lemma in this section, we have

2o o1t o~ a0l + en®] — T 0.0, + o) 2

c nd

- Xk: Pelpe + 20g4(0)] %‘ + 0,(n 7,
and using the Taylor expansion for (a + bz)?
works for (8.2).

(ii) Condition (7) is necessary, by Theorem 4, to make s,» an admissible
norming factor. It is satisfied for the choices (8.1) and (8.2) if

[La-Tam ] =0,

0==0

we get (6). The same method

which is analogous to the condition ¢ = p, in Theorem 2.
Proor oF THEOREM. In terms of Theorem A, put

_ , =
Sln = Tnm, S2n = Snm — Mnm,

cd e

‘l/ln(o) = 7(0) n -, #’21&(0) =6nm ’
_cl+0 r
a'ln(o) = W@' U([Snm ‘llln(a)smn] | 0) )
0'210(0) = G(Smn I 0)-
We have then
2 12¢n 2 n'm’
H1 = ) Hz = 3 .

The verification of (2.1)—(2.3) is routine, and we proceed to verify (2.4). The
convergences involved are all uniform in 8; except for the one required by condi-
tion (4), this follows from condition (2) and Theorem B. (All the usual binomial
convergences, when put in terms of characteristic functions, are seen to be uni-
form as long as the probability parameters are bounded away from 0 and 1.)

We have

S-zn - ‘l/2n(0) = Smn - E‘Smn
o24(0) o(Snm)
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which, by (5.9), verifies (24) for ¢ = 2. Also, we have

Sln - ‘l’ln(o) — S:xm — Mnm — ‘l/ln(o)snm
0'1,,(9) Uln(o)snm ’

Arranging the &’s in ascending order of magnitude, we have
Snm = EU,,(ZWj+W’°—"'1>
k i<k 2

It follows, by the lemma in this section, that

S 3 a@®U+ T AT+ 170 + o),
where
7(0) = 2k pef 2oick [ps + ¢q;(8)] + 3pe + g ()]}

Hence

£ (S = som = ¥a0soa] = T [0 = 2 00| 0

7 nm MKnm 1n nm. = k ’7(0) k k

e co i7 1/2
+ (5= 2 60 |7+ 0.

Because of (9), this expression is asymptotically normal, and it is easily shown
that (2.4) holds for ¢ = 1. Hence, by Theorem A, the asymptotic relative ef-
ficiency of the randomized test with respect to the nonrandomized test is

. Hin) 3
lim =1- ,
ne Hi(n) %7

and the theorem is proved.
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