JOINT DISTRIBUTIONS OF TIME INTERVALS FOR THE OCCURRENCE
OF SUCCESSIVE ACCIDENTS IN A GENERALIZED
POLYA SCHEME!

By Grace E. BaTEs
Mount Holyoke College and University of California

0. Summary. The main body of this paper has two rather distinct parts, the
first part (Section 2) containing the derivation of an explicit representation for
the joint distribution of accident times in quite a general situation, and the re-
mainder of the paper dealing with a very special case which leads to a discussion
of testing the hypothesis that a distribution is uniform over (0, 1) against alter-
natives which are exponential truncated to (0, 1). The second part may be read
profitably with little reference to the probabilistic arguments of Section 2.

1. Introduction. In [1] a comparison was made between two models often used
in studies of accident proneness. The first model, due to Greenwood, Yule, and
Newbold [2], [3], postulates variability among the individuals of a population
with respect to accident proneness, assumes that previous accidents do not
change the probabilities of future accidents and that experience gained in the
particular occupation giving rise to the risk of these accidents does not modify
these probabilities. The combined term ‘“mixture-no contagion-no time effect”
model was used to symbolize this first scheme. The second model, due to Polya
[4], postulates identity of the individuals with respect to accident proneness, pos-
sible presence of contagion, and possible effect of experience gained since enter-
ing the particular occupation.

Using in [1] the scheme of Polya in a slightly more generalized form, it was
shown that the multivariate distribution of the number of accidents incurred in
several successive periods of observation, as soon as two or more periods of ob-
servation were used, was distinguishable from the corresponding distribution
implied by the mixture-no contagion-no time effect scheme, barring an excep-
tional particular case.

The last section of [1] considered the same problem of distinguishing between
the two models when the random variables used were the time intervals be-
tween successive accidents incurred by an individual in one period of observa-
tion. In formulating this scheme it was found possible to liberalize a little the
scheme of Polya by not insisting that the contagion be a linear type. This ap-
proach was applied only to the case of individuals who, during the period of
observation, sustain exactly one accident.
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706 GRACE E. BATES

The present paper applies the outline given in Section 10 of [1] to the general
case in which one makes use of data relating to several groups, say G;, 7 = 1,
2, « -+, k, of individuals, each group composed of individuals who sustain the
same number, 7, , of accidents in the period of observation.

Section 2 of the present paper establishes, for an individual who sustains n
successive accidents in the period of observation, the joint distribution of the
time intervals measured from the beginning of the period to the occurrence of
each accident. Some interesting special cases of this distribution are enumerated
and the remainder of the paper is concerned with a comparison of one of these
special cases with the case of no mixture-no contagion-no time effect. The spe-
cial case selected is one implying that there is no mixture-no time effect and
that contagion, when present, is of the linear type. One advantage of dealing
with the case of linear contagion is that it is not necessary in this case to assume
that all the individuals under consideration have sustained the same number of
accidents prior to the period of observation.

In section 3, preparatory to constructing tests of the hypothesis of no-mix-
ture-no contagion-no time effect versus alternatives of no mixture-linear conta-
gion-no time effect, the distribution of the mean of the random variables 7.,
representing the length of the time interval from the start of a unit period of ob-
servation to the occurrence of the ¢-th accident, is determined under the hypoth-
esis tested and under the alternative hypotheses. The distribution of the mean
of the 7;’s under the hypothesis tested is the well-known distribution of the mean
of » completely independent random variables, each uniformly distributed on
0, 1).

Section 4 considers the construction of these tests. It is found that there are
uniformly most powerful tests of the hypothesis of no mixture-no time effect-no
contagion against each of the classes of one-sided alternatives (termed “positive
linear contagion” and ‘negative linear contagion”, respectively) and a uni-
formly most powerful unbiased test of the original hypothesis versus the set of
alternatives, no mixture-no time effect-linear contagion. Given accident data,
including times of occurrence of the accidents relating to several groups of indi-
viduals, each group containing individuals who sustain the same number of
accidents in the period of observation, the statistic required for the tests is the
grand mean of all the time intervals for all the individuals.

In the last section we treat the problem of computing the power of the uni-
formly most powerful unbiased test. The exact power function is obtained ex-
plicitly from the distributions of Section 2. However, since actual computation
of this power is very tedious, an approximation to the power function is de-
sirable. This approximation is effected in two stages: first, the critical region
boundaries for a specified test level are approximated by using the normal
approximation to the distribution of the mean of the time intervals under the
hypothesis of no mixture-no time effect-no contagion—i.e., to Laplace’s dis-
tribution of the mean of n completely independent random variables uniform in
(0, 1). Then the Central Limit Theorem is applied to the distribution of the mean
in the set of alternative hypotheses to find the approximate power of this test.



JOINT DISTRIBUTIONS OF TIME INTERVALS 707

2. Joint distribution of time intervals for n successive accidents sustained by
an individual in one period of observation. As in section 10 of [1] we consider an
individual I who, from the moment ¢ = 0 on, is exposed to the risk of nonfatal
accidents of a particular kind. For this individual we shall consider probabilities
P, .(T1, T.) defined as follows, for 0 < T4 < Te: Py (11, T:) is the conditional
probability that, during the time interval (71, T%.), the individual I will incur
exactly n accidents, given that at time 7'y or before he had sustained exactly m
accidents. We impose on the probabilities P, (71, T.) the three postulates given
below. The totality of these three postulates we shall describe as the Polya con-
tagious scheme.

Posturate 1. If Ty — 11, then all the probabilities P,,,(T1, T2) converge to
limits Py (T, Th). More specifically,

(1) Puo(Ty, Th) = 1 for every m,
and consequently,
(2) Pon(Ty, Th) = 0 for every m, and for n = 1.

PosturaTe 2. The probabilities Py, .(T1 , T'2) depend on the number m of accidents
sustained up to and including the moment Ty and also on the value of T, but not
on the moments at which these previous accidents occurred.

PosturaTe 3. At least at T» = T, the probabilities P, ,(Ty , Ts) are differenti-
able with respect to Ty , and spectfically,

[ —Am .
h__‘_l T V,I,'I ifn=0
i}
(3) A Pm,n T ) T) = Am .
T, (71, T, TomT) - ifn=1
0 ifn>1
where v Z 0and Mo, A1, +++ , A, « -+ are arbitrary positive numbers, with possibly

Amite = 0, &k = M, for some positive integer M.

In applying the probabilistic scheme formulated above, one may consider the
probability space as the accident histories of a large population of individuals.
Then, at the outset, the conditions above require that the A,’s and »’s be the
same for all individuals. It will be pointed out later, however, that the tests of
the hypothesis of no mixture-no time effect-no contagion in the special set of
alternatives of no mixture-no time effect-linear contagion derived in this paper,
imply only that » be zero for each individual and that each individual have the
same constant increment ¢ = Anir41 — Amsx In the sequence of his \,’s.

Following the usual procedure ([5], Chapter 17) one obtains the differential
equations

d —Am
(4) m Pm.O(Tl , T2) = 1—-{——_1/—’[72 Pm,O(Tl , TZ),
(5) o Pm n(Tl To) = _:_)\_"'_"i Pm (Tl To) + )\m+n—-1 Pm (Tl Tz)
c?Tg ' L 1 + qu2 " s 12 .-———1 + Vj—'g n ,

forn = 1.
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Under initial conditions given by Postulate 1, the solution of (4) is
1 + VTI)X"I v
1 + lsz

and the solution (Cf., [6] pp. 406—407 where the general solution of a similar set
of differential equationsis given) of (5) when all the \’s are unequal and » 0 is

]. + VTl )‘"H'kly —1
1 + lsz ko

’

®) ProlTy, T = (

(D) Pma(Ty, To) = (—1)"\mAmi1 *** Amgnt Z(
forn = 1 with

(8) Dk,n = H (>\m+k - xm-{-j)-
!

Since the set of equations (4) and (5) may be solved recursively for the P,
(T1, T,), the solutions (6) and (7) are unique. From the familiar formulas for
solving linear differential equations of this type it is easily seen that the solutions,
P...(T,, T;) are non-negative. Furthermore, it is easily verified that

9) 2 Pun(ThTo) S 1

If the system of equations (4), (5), is finite (i.e., Amyx = O for &k = M) then

Ppo(Ty, Ty) = 0forn > M and the equality holds in (9) so that the solutions
(6) and (7) for 0 < n < M, form a proper probability distribution.

In the case of an infinite set of equations (4), (5), it may happen that (9) is
a true inequality. This type of situation has been discussed by Feller ([5], p
369-371) as implying nonzero probability of the occurrence of an infinite number
of events in the finite period. Feller derives a necessary and sufficient condition
for the equality in (9) to hold. Using equations (4) and (5), Feller’s argument
goes through almost verbatim to yield the same result—mamely, a necessary
and sufficient condition for the equality in (9) to hold is that the series) ., V.
diverges.

In the application of the distribution of P,,,’s made in the remainder of this
paper, it will be seen that we have either a finite set of equations (4) and (5), or,
in the. infinite case, the divergence condition on the A,.,’s is fulfilled.

Forms obtained from solutions (6) and (7) by a passage to the limit as » — 0
and/or as some or all of the A’s become equal, may be shown by direct verifica-
tion also to satisfy (4) and (5), a fact which will be used later in this paper.

It is clear that P, o(T:, Ts) is a decreasing function of A, . Furthermore, if
all the A’s have the same value, the model implies the absence of contagion in
the accidents. As in [1], if the A’s form an increasing sequence \p < A; < -+ <
Am < -+, we use the term “regular positive contagion’’, meaning that the more
accidents the individual had in the past, the more intense his risk of accidents
in the future. If the A’s form a monotonic decreasing sequence, we speak of “regu-
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lar negative contagion”—past accidents “teach” the individual how better to
avoid accidents in the future. We use the term “irregular contagion’ for a non-
monotone sequence of A’s. The constant v in the probabilities P, ,(T1, Tb) is
termed ‘“‘time effect’”’ in the model and may be attributed to the effect of pre-
vious experience gained by the individual in the occupation which gives rise to
the risks of these particular accidents. From (3) it may be seen that with in-
creasing T and A, > 0 the rate of increase of the probabilities of further ac-
cidents in (T, T) is slowed down by the presence of » > 0. When » = 0 there
is an absence of time effect.

‘We now assume that an individual 7 is observed for a unit of time from 7' to
T: + 1. The first problem considered is that of finding the joint distribution of
random variables 7; defined as follows: 7; is the time from 7 to the occurrence
of the ¢-th accident for the individual I. We are concerned with the joint dis-
tribution of r; < 73 < --- < 7, conditional on the occurrence of n accidents in
the period of observation and m accidents previous to this period.

In order to solve the problem under consideration, we now compute the prob-
ability of the following two events, each of which is to be understood as condi-
tioned by the occurrence of exactly m accidents at or before T, :

(i) I incurs exactly n accidents in (T, T+ 1).

(ii) I incurs n accidents in (71, T1 + 1) and the random variables r; satisfy
conditions 7; < £;,7=1,2,--- ,nwith0 < f, < fp < --- < ¢, < 1.

The probability of (i) is Pp.(T:1, Ti + 1), and from (7) we have

n a 7\m+k/" L
(10) Pon(Ty, T+ 1) = (=1 mhos <+~ Amsns 5 (——) Dl
k—o \a + v

where, for convenience,
(11) a=1 + VT1 .

The probability of (ii) is

(12) 2 P ne(Ts + t, To 4 tign)

{7k} k=0

with ¢ = 0 and ¢,4+1 = 1, and where the sum is over all sequences {J;} such that
Jo=0,J, = Ju11 = n, with {J} a non-decreasing sequence of integers, each
Jy = kfork=0,1,---,mn.

The joint density function of the 7;’s conditioned by the occurrence of m pre-
vious accidents and n accidents in (T, T: + 1) will be the n-th partial deriva-
tive with respect to ¢, &2, ---, t, of the expression in (12), divided by P,..
(T1, T:1 + 1) given in (10). Of the terms in the sum in (12), the only term which
does not contribute zero to this density is

n—1

(13) lIIO Pk a(Ty + by T1 4 t131) Pmino(Th + o, Th + 1),



710 GRACE E. BATES

Le., the term involving the sequence of Ji’s with J, = k, 0 < k < n. This may
be seen as follows:

Consider the term in the sum in (12) for any one of the possible sequences of
Ji’s for which J,_; = n. Then the first difference with respect to ¢, of this term
is identically zero, since, for 0 < ¢ < 1 — ¢, we have for this difference:

n—2

(14) ,,I_Io Prisisryri(T1 4t , Ty + tiy)

° {Pm-i-n,O(Tl + tn—-l ) Tl + tn + e)Pm+n,0(711 + t,, + €, Tl + 1)
_Pm+n,0(Tl + tn—l ] Tl + tn)Pm+n,0(Tl + tn ) Tl + 1)}

where the expression in the braces is certainly zero. Hence only terms of the sum
in (12) for which the sequence of Ji’s has J,_; = n — 1 will contribute to the
density function.

Next, considering sequences of Ji’s with J,_1 = n — 1, we take the class of
those for which J,» = n — 1. But for each such J; the corresponding term in
the sum in (12) will have second difference with respect to ¢, , £,_, identically
zero and hence in order for a sequence of Ji’s to contribute non-zero density,
we must have also J,_» = n — 2. Continuing inductively, we find that unless
the particular sequence of J’s is chosen for which J; = k, 0 < k < n, the n-th
partial derivative in (12) with respect to ¢, , tp_1, -+, £ is 0.

Differentiating (13) with respect to #, , tn1, - - -, & and dividing by (10), we
have the density function

(15) p71’72"":7ﬂ(t1 ) 123 y T, tn I'l/m ) 1pm-‘H y Ty ¢m+n—l y V)

H (1 + ytk/a)(x0m+k—1)/r-l
- k=1 , 0<th< - <t <1,

an i (_l)k (1 + v/a)(lll,,,+k+...+q,9,,.+n_1)/v R]:]n
k=0

with

(16) Rip = {@n +¥mn+ - +¥mit)@mir + -+ + Ymir)
wo Wmiet  YmieWmth- Wik @mir + Ymiiia)
ot Wmar F ¥marr + o A Ymipaen)

and

(17) Ymtk = Amikt1 — Amik k=0,1,---,n — 1.

The following special cases are of interest and were obtained by considering
the limiting forms of the density function (15). The equivalence of these results
to those obtained by a passage to the limit before differentiation may be verified
directly.



JOINT DISTRIBUTIONS OF TIME INTERVALS 711

Case (i) No mixture-possible time effect-no contagion:

(18) p"l-72»"'y"n(t1 ) t2y Tty tn l'llt = "I/ = Oy V)

= nl I:—————a loge (1 T V/a)] g (1 =+ Vtk/l)/)-l.

Case (ii) No mixture-no time effect-possible contagion:

(19) p71y72y"'tfn(tl ) t27 Tty tn I‘/’m, Tty ¢m+n—1 YV = 0)

exp <i Ymgk—1 tk>

k=1

> (1" exp Wmia + + + Yinea RS

Case (iii) No mixture-possible time-effect-linear contagion:

(20) p‘rl,‘rg,-n,‘r,,(tl y t2 y ", tn I‘l/m = ‘l/m+l = e = ‘l/m+n—l = ‘l/; V)

= nly" n it
T @l F Ga)) — 1]nkII=l (1 + Gti/a))*" .

Case (iv) No mixture-no time effect-linear contagion:

(21) p‘rl,rg,--',‘rn(tly {’27 ] tn I ll/i = \l/: vV = 0) = n! ( v ﬁ 1> €xp ¢ Z t
€ k=1

Case (v) No mixture-no time-effect-no contagion:
(22) pfhm,..._fn(tl , 173 y Tty tu l¢¢ = ¢ = 0, Vv = 0) = n/.

We not that the joint density function (15) takes the form of that in (22) also
when all the ¢; are equal toy andy = v, whether or not = 0. In this case then,
the presence or absence of contagion is unidentifiable.

For the remainder of the present paper we shall be concerned with a com-
parison of the models implied by (21) and (22), so that contagion is absent if
and only if ¢y = 0. We first note some of the implications arising from the model
implied by (21).

It is clear from the model that for ¢; = ¢, the contagion is of the regular posi-
tive type for ¢ > 0 and is regular negative contagion for ¢y < 0. Furthermore, it
is obvious that this condition on the y; implies that the contagion is linear; specifi-
cally,

(23) >\m+k = >\m + k‘l/-

To see the effect of this linearity more clearly, we return to (6) and see that
for» = 0,

(24) Pm.O(Tl, T‘l) = e"‘m(Tz—Tl)
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so that, in the unit time interval, (T, T + 1), we have

v Puiiro(Ti, T, + 1)
25 ¥ — m+k+1,0\L1, L1,
(@5) ¢ Prona(T5, Ty, T 1)

E=01,---,n—1.

That is, ¢”¥ is the factor by which the probability of avoiding accidents in a
unit time interval, for an individual I who had previously sustained m + k ac-
cidents, must be multiplied in order to find the probability of his avoiding ac-
cidents in this time interval had he sustained m 4+ k + 1 previous accidents.
Thus, for example, a value of ¢ of about —0.7 means that an increase of 1 in
the number of previous accidents would double his chances of avoiding further
accidents in this period, while a ¢ of 0.7 means that a similar increase in the
number of previous accidents would halve his chances of avoiding further ac-
cidents in the period. The actual number of previous accidents sustained by the
individual, of course, still determines his probability of avoiding accidents in
the period of observation, but the condition that all the y; be equal implies that
the relative increase or decrease of this probability depends only on the increase
in the number of previous accidents. One important consequence of the condi-
tion that all the ¢’s be equal (that is, that the contagion be linear) is that in
testing the hypothesis of no contagion versus contagion of this type it is not neces-
sary to assume that all the individuals under observation have incurred the
same number of accidents previously or that A,, is the same for each individual.

We now examine the probability distribution given by the Pn.(Ty, Ts) in
the case under consideration of no mixture-no time effect-linear contagion.
Returning to the differential equations (4) and (5), with » = 0 and Az = A +
ky, we see that in the case of positive linear contagion (¢ > 0) the system of
equations may be infinite. In this case, however, the series of N’s clearly diverges
so that equality in (9) holds. In the case of negative linear contagion (¢ < 0)
it is evident that the condition that the A,..’s be non-negative places a restriction
on 7, namely

Thus the system of differential equations in (4), (5) must be finite when ¢ < 0
and the P, ,’s form a proper probability distribution.

In the case of negative linear contagion, if one knew A, (or could conjecture an
upper bound for A,), it would be possible to reject at the outset certain alterna-
tive values of y—those such that » > —\,/¢. Thus the particular model of
linear contagion may be criticized in that it places this added restriction on the
degree of negative contagion permissible in the model. In the tests of the next
sections it is assumed that one has at hand only the accident data in the period
of observation, with no knowledge of the number of previous accidents or of the
An’s. Subject to the limitations of the model, we are then testing the hypothesis
of no contagion versus linear contagion.
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3. Joint density functions for the means of the n random variables r;, having
density functions (21) and (22). In Section 4 we construct tests of the hypothesis
of no contagion in the class of admissible hypotheses each implying no mixture-no
time effect-linear contagion. The statistic needed for these tests is found to be
the mean of the time intervals, and it is for this reason that the present section
is needed.

We rewrite formulas (22) and (21) here for convenience:

(27) pfh,—z_...,,n(tl, tz, crey, tn Il//, = ll/ =y = 0) =n!
(28) p"l-"2-“'-"n(tl yley oy ta l\bt = ¢; v = 0)

=n!<¢¢ )exp‘pztk, O0<h<tlh< -+ <, <1
e — 1 k=1

From the sampling theory of order statistics (cf. [7] p. 90) we note that the
unordered 7; in (27) are distributed as a random sample from the uniform dis-
tribution on (0, 1), which we shall denote by p(t |¢ = 0), and that the unordered
7; in (28) are distributed as a random sample from the distribution with density
on (0, 1) given by

ye’
(29 p(t l ¥) = 7 -1
The density in (29) is equal to that of the exponential function, f(t) = —ye*’,
¥ < 0, truncated to (0, 1).

The distribution of the mean of » independent random variables, each with
uniform distribution on (0, 1), is well known. Laplace [8] derived this distribu-
tion in his Mémoire on the mean inclination of the orbits of comets. (For a more
accessible reference, see [9], Vol. 1, p. 244). Writing (7 |¢ = 0) for the mean of
the 7; corresponding to (27) and ¢;(u |¢ = 0) for the characteristic function,
we have

e — 1\*
(30) oty =0 = (T2
(31) E(#ly =0) =% o(Fly =0) =1/(12n),
@  lv=0 =T T 0 (N e-imm osis
As 7 increases, the distribution function of the standardized variable
(33) z=+12n (7 — }),

when ¢ = 0, rapidly approaches (cf. [10] p. 245) that of the standardized normal
variable.
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If we now write (7 |¢) for the mean of the 7; corresponding to (28), with
¢i(u | ¢) for the characteristic function, we have

e () (e
@)  Belp =S EL gy < 1O A
w19 = (743) 5 [ (Gamrs)

& - () & L (S
- (<) meiv = 0.

4, Tests of the hypothesis of no contagion in the set of admissible hypothe-
ses each implying no mixture-no time effect-linear contagion. We suppose that
we have observations on several groups of individuals, the r-th group being
determined by the integer », »r = 1, 2, 3, - -+, of accidents sustained by each
individual of that group in a unit time interval (71, T1 + 1). Suppose further
that we have N, individuals in the r-th group. In this set of observations, if for
some integer 7, there are no individuals who have sustained exactly 7 accidents,
then N ; is zero for this integer j. We define random variables 74, in the following
way:

Tie 15 the time from T to the 7-th accident for the s-th individual in the r-th
group; ¢ =1, -, rmr=123,---;8=12 .-+, N,.

Let
@7 N = > rN,.

r
That is, let N be the total number of accidents.

We now make the following assumption : From individual to individual, among
the Y_N, individuals, the accident times are independent.

Under this assumption, the unordered random variables 74, act like N in-
dependent observations from a parent population that is either uniform on (0, 1)
if no contagion is present, or has density that of (29) if contagion is present.
Denoting by {7;} the unordered set of 7..’s, we have

(38) pp({ti} [¢ = 0) = 1
and

N N iy \N
(39) Pt} [¥) = <(77‘é—1> exp ¥ ]; t = (e—fi_—i> ’

where I = (1/N) 21 at;.
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We note that 7 is a sufficient statistic for the distribution of r,’s, where
N
(40) = /N) 2,
j=1

that is, the grand mean of all the time intervals for all the individuals.

Clearly, then, under the present conditions of no mixture-no time effect-linear
contagion, we have a uniforinly most powerful test of the hypothesis ¢y = 0
against either (but not both) of the one-sided alternativesy < 0 ory > 0, with
critical regions of type 7 < f, or 7 > {, respectively, where ¢, is determined by
the level of significance a.

Furthermore, letting

i} 1 < Pid
(41) © = wlogc p{rj)({tj} IKL) =N <¢ + t— Z‘F___—1>
, __Op t e¢_>
we have
(43) ¢ = A + Be,
with
; -1 ¢ __

That is, [11], we have a uniformly most powerful unbiased (U.M.P.U.) test
of the hypothesis = 0 versus alternatives ¢ 0, having critical region

(45) 7<3+e¢ and 7> 3% +4e

wherc

(46) f: Py =0)dt =1 —«a

and, since the test is U.M.P.U.,

(47) f: (t = Dp:@ly =0)dt = 0.

From (32), we see that
(48) pit|y =0) =p:(1 =ty = 0)

so that condition (47) requires that the test be one with “equal tails”.

The writer is grateful to the referee for pointing out that results in a recent
paper by Lehmann [12] applied to the distribution of time intervals here con-
sidered, enable one to conclude further that the above uniformly most powerful
unbiased test is also a uniformly most powerful of all most stringent tests (as
defined by Wald [13]).
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Note that the statistic needed for these testsis the grand mean of all the time
intervals between T and the occurrence of each accident for each of the indi-
viduals observed. Since N is the total number of accidents, it is clear that an
N of, say 12, may be obtained by observing 12 individuals, each of whom incurs
1 accident in the period of observation; or 6 individuals, each of whom incurs 2
accidents, etc. Consider, for example, one of the sets of data used in Part I of
the paper [1]. This set of data was taken from the publication [14] of Farmers
and Chambers and was concerned with the accident records of 166 London bus
drivers during five successive years of service. The total number of accidents sus-
tained by these 166 individuals in the five-year period was 1297. Thus, if the
times of occurrence of these accidents were available, tests of the hypothesis of
no contagion under the present conditions would have an N of 1297. It is true,
however, in this example, that the underlying assumption of the independence of
accident times among the individuals seems unrealistic.

Note that the manner of construction of the tests of this section require that
N be fixed, since we are using the distribution of the +’s, given the total number
of accidents N. Since N is itself a random variable, the question may be raised
as to whether we are not losing some of the information in defining our test
(choosing the critical region) conditioned by the value of N. Furthermore, since
the N, , the number of individuals having exactly r accidents, may still vary with
fixed N, subject only to the condition that _,#N, = N, one may wonder about
possible loss of information in making tests independent of the particular set of
values of the observed random variables N, . We shall show that in the class of
tests satisfying the requirement that the critical regions defining the tests be
similar with respect to the parameters involved, the tests of this section have the
property, roughly speaking, of using all of the information provided by the data.
This fact is a consequence of the special form of the frequency function, under
the null hypothesisy = 0, of the number of accidents sustained by an individual.

Let X be the random variable which equals the number of accidents sustained
by an individual in a unit period of observation. Returning to Section 2 of this
paper and letting A = Apny1 = -+ = Amyn = A, (or by considering the limiting
form of solutions (6) and (7) with T, = T; + 1) we see that the probability of
an individual sustaining exactly n accidents in a unit time interval when y = 0,
is given by

e

ol n=012-.-..

(49) px(n) =

Now consider the accident data for which the tests of this section were devised.
We have a set of N accident times in a unit period of observation, with N =
>N, , involving > ,N, = K, say, individuals. For convenience we define
variables M ; as follows:

M; = the number of accidents sustained by the 7-th individual in the unit
time interval, ¢ = 1,2, --- , K. Then N = » 5.M; and each M; when ¢ = 0
has a Poisson distribution with unknown mean X; , where \; is the parameter per-
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taining to the Poisson frequency function for the ¢-th individual’s number of
accidents.

Hence, under the assumptions of this section, N is a sum of K independent
Poisson variates and is again a Poisson variate. Then the distribution of N is
complete (cf. [15]). Furthermore, N is also sufficient for the distribution of 7
when ¢ = 0, since the unordered 7,’s are known to act, conditionally on N, like
independent random variables uniformly distributed on (0, 1) so that the dis-
tribution of r is then independent of the parameters Ai, Az, -- -, Ax . It follows
from the Lehmann-Scheffé results, [15], that the only similar regions are those of
Neyman structure with respect to N, i.e., roughly speaking, those for which the
conditional probability of a point falling therein is equal to «, whatever the value
of N.

Furthermore, considering the joint distribution of the M,,7 =1, 2, -+ , K,
we note that it is the product distribution of K independent Poisson variates,
the s-th variate having unknown mean X\, . The set (M,, M,, - -+, Mx) being
sufficient for the distribution of 7’s when ¢ = 0, we need only show the (bounded)
completeness of the joint distribution of the M; to apply the Lehmann-Schefté
results. Given that

(50) 2 f(ml,mz,---,mx)(exp }:x)II =0
my,me,* 1=l =1 (mt !

for every choice of A1, Az, - -+, Ax (and hence in particular, for the case in which
all the \/’s are different), thls 1mp11es that f(mi, ma, - -+, mg) = 0, since f(m, ,
my, -+ ,mg) is the coefficient of AT*A%? - - - Ax¥ in the expansion of 0 in powers
of A1, Az, -+, Ak . That is, the joint distribution of the M; is complete. By the
Lehmann-Scheffé results, we need then only work conditionally on the M.’s.
But since N, = the number of individuals sustaining r accidents, the N,’s are
then fixed, which shows that the critical regions selected in our tests are in-
dependent of the particular set of N,’s used subject to the condition >N, = N.

The writer is indebted to the referee for pointing out the above analysis of the
implications of the tests of this section.

Finally, it should be noted that the tests of this section apply to accident data
in which each individual has the same length of time of exposure to accidents,
which (clearly without loss of generality) we took to be a unit period of observa-
tion. It may be worthwhile to mention the fact that these tests may be generalized
to use accident data involving periods of exposure to accidents which vary with
the individual.

Given, say, K individuals, the i-th individual incurring n; accidents in an ex-
posure period of length L;, and given the times 7;; of occurrence of the j-th ac-
cident for the 7-th individual (the times measured from the start of the indi-
vidual’s period of exposure), we may consider norma.lized random variables o;;
defined by o;; = 7:;/L:;, © =1, ,K;j=1,--- . Then if N is the total
number of accidents, it may easﬂy be shown that ZZQJ/N has exactly the
same distribution under the null hypothesis¢ = 0 as > 2 7;;/N in the body of
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the paper. Hence a test of the hypothesis ¢ = 0 in this case having desired size
may be obtained just as described in this paper. However, 2.2 0:;/N is now
not sufficient and the test will not have the optimum properties of the tests of
this paper. If the L/s do not differ too much, it is probable that using the
ZZ@;;/ N will result in not too great a loss of power.

Actually a sufficient test statistic for the case of varying times of exposure to
accidents is the weighted mean > Y Lio;;/N of the o;; (or, the grand mean of
all the actual accident times, 7;;) and the distribution of this statistic under the
null hypothesis is that of the mean of K independent sets of random variables,
the i-th set consisting of n; independent identical variables uniform on (0, L.).
This distribution (in the case of n; = 1,7 = 1, -+ - |, K) has been studied recently
by Olds [16].

Further discussion of the more general situation of varying times of exposure
will be left for a later paper. In the following section we return again to the case
of one period of observation for the accident times.

6. Power function for the UMPU test of the hypothesis of no contagion in
the set of admissible hypotheses implying no mixture-no time effect-linear
contagion. Since we shall be interested in detecting the presence of contagion of
either kind (positive or negative) we shall consider in this section the problem of
computing the power function for the UMPU test of Section 4.

Using (32) and (36), the exact power function P(y) for a given test size «, is
given by

e
(51) P =1= [ palw @
with
(52) of2 = [Tty = 0) d1
0

where the notation cy is used to emphasize the dependence of this value on N.
It is obvious from the form of the density functions (32) and (36), that the
computation of the exact power is a tedious procedure, even for N relatively
small. Indeed, just the determination of the critical region boundaries by the
numerical solution of the polynomial equation obtained from (32) is time-con-
suming. Since the variable 7 with density function (32) is asymptotically normal
&, 1/4/12N), a first step in obtaining the approximate power consists in ap-
proximating for a given level of significance «, the critical region boundaries.

(53) T = _13 + N Cy = (‘/’\/EV

where

(54) f (/V2m)e P de =1 — a.
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Table I below gives a comparison of this approximation to ¢y with the true
values of ¢y, for N = 3,6, 9, 12 and « = .05.

TABLE I
Comparison of cy and e\/12N for N = 3,0, 9, 12 and = .05.
N N ¢/ 12N
~ e |-
3 . 32289 . 32667
6 .22931 ’ .23099
9 .18769 ! .18860
12 .16275 ; .16333

Secondly, by the Central Limit Theorem, the variable 7 with density function
(36) is asymptotically normal (u, o) with

ye' — e + 1 1 [(* = 1) — ¢
(55) b= 0= e .
Y(e¥ — 1) VN (e -0
We obtain, then, as an approximation, say P;({), to the power function,
ug . 20
(56) PW) =1— [ 1/vEm " de
with

)

(57) w =

— p —c¢/V12N w2=-}—u+6/\/12N
bl o .

[0

Using the above approximation, Table IT shows values of N needed for the
power (as approximated) to exceed .90 for various values of ¢ in the case of the
UMPU test at the 5 per cent level of significance. The particular values of y
used in this table were selected because of the significance of the factor ¢™¥ dis-
cussed in section 2. Thus, the detection of a ¥ such that ¢ = 2 (or %) would
seem to imply a rather high order of contagion in that the occurrence of each
additional accident tends to double (or halve) the previous probability of avoid-
ing accidents in a unit period.

TABLE II

Values of N required for power to be at least .90 for 5 per cent UMPU test, when
¢ has specified values of lable.

14 | 15 | 1.6 I 1.8 ’ 20
| ! ! .
S

1120 | 70 55 | 310 ‘ 265

e—y 1.2

{
|
|

N.ooooooo. 3825 |

In view of the fact that N here is the total number of accidents, rather than the
number of individuals, it would scemn that the power of this test is fairly good.
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