ROTATION SAMPLING

By AiBeRrT RoOSs EckLEr!

Princeton University

1. Summary. This paper shows how to find minimum-variance estimates
of the mean a(t;) of a time-dependent population, assuming that one is restricted
to the class of linear unbiased estimates. Each minimum-variance estimate is
based on a specified sample pattern (a set of sample values drawn from the popu-
lation at one or more distinct times). Let the random variable X;; denote the
value of element j of the population at time ¢ . The correlation between Xy
and X j is assumed to be p'*™!; the correlation between X;; and X is assumed
to be zero; the variance of X;; is assumed to be ¢° independent of time. Iterative
methods are developed; the estimate of the populatlon mean «a(f;—;) is used in
determining the population mean a(%;).

The paper discusses two important methods of sampling: in one-level rotation
sampling, the statistician can add to the sample pattern only sample values that
have been drawn from the population at the current time; in two-level (and
higher-level) rotation sampling, the statistician can add earlier sample values
as well as current ones to the pattern. Schematic sample patterns associated with
these two methods are illustrated in (3.1) and (4.1).

The optimum structure of a sample pattern is considered from two viewpoints:
the variance of a pattern consisting of n sample values drawn at each time ¢; is
minimized; the number of sample values drawn at time ¢; is minimized while the
variance of the minimum-variance estimate is held constant.

Finally, the estimation problem is generalized to include minimum-variance
estimates of linear functions of two or more population means at different times.

In order to maintain continuity, this paper presents published results along
with new results; the latter are summarized below. The paper clarifies Patter-
son’s fundamental method for finding minimum-variance linear unbiased esti-
mates (Sections 2, 3) and extends his methods to two-level and three-level rota-
tion sampling (Sections 4, 6, 8, 10, 13). The paper compares three methods of
rotation sampling on a cost basis (Section 11) and shows how the one-level rota-
tion sampling estimate of greatest practical interest can be derived from the two-
level estimate (Sections 5, 14). Finally, the paper extends Cochran’s work in
determining optimum patterns for the one-level rotation sampling estimate
(Section 9).

2. Introduction to rotation sampling. In survey sampling, the statistician
sometimes must estimate at regular intervals of time a population parameter
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which varies with time. If there exists a relationship between the value of an
element in the population at time ¢ and the changed value of the same element
at the succeeding time ¢ + Atf, then it is possible to use the information con-
tained in earlier samples to improve the current estimate of the population
parameter. In order to use the earlier sample information, one must carry out
the sampling in such a way that the two samples drawn at successive times ¢
and { 4+ Af have some elements in common.

The name “rotation sampling” (suggested by Wilks) refers to the process of
eliminating some of the old elements from the sample and adding new elements
to the sample each time a new sample is drawn. This method of sampling is
also called sampling on successive occasions with partial replacement of units
(Patterson, Yates) and sampling for a time series (Hansen, Hurwitz and Madow).
Double sampling can be regarded mathematically as rotation sampling involving
a present sample and one overlapping earlier sample.

We assume that we have a population 7 and a set of times (41, ta, - - , tm)-
Bach element of the population has a set of m values associated with it, one for
each time #; . A sample pattern P consists of a set of sample values x;;, where ¢
identifies the time ¢; when the element was sampled, and j identifies the popula-
tion element. The sample pattern P can be visualized as an incomplete matrix
with m rows and the number of columns equal to the number of distinct elements
with values represented in P. More definite sample patterns are discussed later.

We assume that the population 7 has an infinite number of elements (eliminat-
ing any correlation between the sample values z;; and z.). Let X; be the random
variable representing the population values at time ¢; . We assume that E(X,) =
a(t;) and that var(X;) = ¢* independent of the time. We specify the rest of the
second moments of the joint distribution of (X, X3, -+, X) by means of the
exponential correlation assumption: the correlation p(X;, X;) is equal to o'/,
This assumption implies that all partial correlation coefficients p;;., are zero if
1<s<jorz>s>j.

We restrict ourselves to estimating the mean of the population = at a given
time ¢;, or more generally to estimating a linear combination of the means at
several different times (such as @ = cia(t;) + c:a(fz) + cza(fs)). The difference
between two successive means is the linear function of greatest practical in-
terest. We restrict ourselves to unbiased linear estimates L(a) = D wii; of
the population mean; the summation is taken over the values in P. Throughout
the paper, we use the term unbiased in a stronger sense than usual. We require
not only that E(L(a)) = a, but also that E(Q_; wixs;) = ci(t;) for all 4.

Our goal is to determine the minimum-variance estimate of the population
mean in the class of linear unbiased estimates based on the sample values in a
specified sample pattern. We denote a minimum-variance estimate by the sym-
bol M(e).

Patterson [5] derives a necessary and sufficient condition for a linear unbiased
estimate to be a minimum-variance estimate. In view of the importance of his
result in deriving minimum-variance estimates, we state it as a theorem but
omit the proof.
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THEOREM 1. Assume that we have a sample pattern P of values drawn at times
ti, &2, -+, tm from a population w. Assume that the joint distribution of (X,
Xa, +++, Xu) has finite first and second moments. Let ¢1, €2, + -+ , ¢m be m con-
stants (not all zero), and let L(a) be a linear unbiased estimate of

a = call) + calty) + -+ + ema(tn).

L(a) is the minimum-variance estimate M (a) if and only if cov(zi;, L(a)) = kia
for all combinations of ¢ and j vn P. The theorem does not have to be restricted
to an infinite population size, a constant variance ¢°, or the exponential correla-
tion assumption.

Two corollaries of Theorem 1 are frequently useful. The proofs are quite simple
so they are omitted.

CoroLLARY 1.1. Let %; be a linear unbiased estimate of a(i;) based on the sample
pattern P, and let the assumptions of Theorem 1 hold. Then cov(Z,, M(a)) =
kia,for1 =17 = m.

COROLLARY 1.2. Let M ; be the minimum-variance estimate of a(t;) in the class
of linear unbiased estimates based on the sample patiern P, and let the assumptions
of Theorem 1 hold. Then var(M;) = cov(zi;, M;), for 1 = i < m. Corollary 1.2
is useful in calculating the variance of complicated minimum-variance estimates.

Frequently many covariance-conditions must be checked in order to deter-
mine whether or not an estimate L(«) is minimum-variance. In order to reduce
this number, we derive a simplified form of the unbiased linear estimate that
still contains the minimum-variance estimate. If the number of different ele-
ments in the sample pattern is finite, it is evident that the pattern can be split
up into a certain minimum number of subpatterns, each one of which is rec-
tangular (a complete matrix of z;; values).

TuEOREM 2. Assume that the conditions of Theorem 1 hold. Assume that the
sample pattern P has been broken up into a finite number of rectangular subpat-
terns; let us consider subpattern P; which forms a complete matrix of :; values with
r rows and ¢ columns. Then the ¢ weights w;; associated with the values of x;; in
any one of the r rows are all equal: wy = Wy = +++ = Wie, Wy = Ws = +++ =
Woey, *** ) Wrp = W = ++° = Wre

Proor. According to Theorem 1, the covariance-condition must hold for this
subpattern. Consider the identity cov(zu, M(a)) — cov(zi, M(a)) = 0. Ex-
panding this identity, we obtain an expression of the form

a(wn — wie) + aa(wan — wew) + -+ + a(wn — wr) = 0.

The coefficients a; depend only on the correlation model and the population
size. In order that this expression be identically zero, w; must be equal to wi, ,
for 1 £ ¢ £ r. The theorem is proved by iterating this argument ¢ — 2 times.
As a consequence of Theorem 2, we can express the minimum-variance estimate
M(a) as a linear combination of means of sample values; each mean value is
formed from the sample values in a row of a rectangular subpattern. In the rest
of this paper, we regard the mean value estimate as the canonical form of the
linear unbiased estimate.
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3. One-level rotation sampling. In this section we summarize for future refer-
ence a basic result from Patterson [5]: the determination of M}, the minimum-
variance linear unbiased estimate of «(t;) based on a sample pattern of the type

TLITTTLL h
TXLTXLX t,
(3.1)
TLLLXXX tia
TTLTTIXX t; .
—— A
3 2 1

More precisely, the sample pattern is assumed to have n sample values in it at
each time #,, 1 £ k < 4. (1 — w)n of the elements in the sample at time #_,
are retained in the sample drawn at time ¢, , and the remaining un elements are
replaced with the same number of new ones. The lines indicate how the sample
pattern is built up; at time #; the kth row of sample values is added to the (k — 1)
rows of earlier values. Since each enlargement of the pattern consists of a set of
sample values associated with a single time, we call this one-level rotation
sampling on the above pattern.

Patterson shows that the minimum-variance estimate M; of «a(t;) based on
pattern (3.1) can be written in the iterative form

(82) Mi=A&1+ 1 — A)Eis— (Bi + Ci)Zicra + CiFin s + BM i,

where A, , B; and C; are unknown coefficients to be determined, and M_, is
the minimum-variance linear unbiased estimate of a(t;_;) based on the pattern
above the line in (3.1). The first subscript of a sample average denotes the time
that the sample values were drawn, and the second subscript identifies the
elements represented in the sample average (see bottom of (3.1)). The iteration
reflects the way in which the sample pattern is built up row by row.

Patterson shows that the iterative estimate is minimum-variance by means of
the sufficiency of the covariance-condition (Theorem 1); the four possible co-
variance-conditions (determined by Theorem 2) can be reduced to three inde-
pendent equations which can be solved for 4;, B, and C; in terms of earlier
coeflicients:

B; = p(1 — {L‘): C; =0,
(3.3) 4= 1—np
Tl = @2e—1)p = (1 — w1 — A’

Given 4; (equal to x), any minimum-variance estimate M can be determined by
a repeated application of equations (8.3). The variance of M| is determined with
the aid of Corollary 1.2,

2

(3.4) var(Mi) = cov(Mi, ;1) = a—n A,
I
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It is easy to show that the sequence of A; converges. Var(M;_;) is greater
than or equal to var(M;) because the sample pattern associated with M},
is contained in the pattern associated with M; . Since the sequence of variances
is bounded from below by zero, we conclude that the sequence of variances (and
therefore the sequence of A;) converges. The limiting value is

35) lmd, = 4 = — 1 =0+ VI - AU = F0 = 40— W)
i 2(1 — we? :

Most of the above formulas simplify considerably when u is equal to one-half,
which will subsequently be shown to be the case of greatest practical interest.
For example,

(36)

R ¢ Bl e Y4 s
o’ ’

We tabulate A; for several values of p in Table 3.1.

TABLE 3.1
Values of the weights A; as a function of p for a replacement rate p of one-half
(one-level sampling)

A A2 As As As As A As Ao Ao A

0 | .5000 .5000
.1 | .5000 | .4987 .4987
.2 | .5000 | ,4949 .4949
.3 | .5000 | .4885 .4885
.4 | .5000 | .4791 | .4783 .4781
.5 | .5000 | .4667 | .4643 .4641
;6 | .5000 | .4505 | .4451 .4444
.7 | .5000 | .4302 | .4189 | .4169 .4166
.75 | .5000 | .4182 | .4022 | .3989 .3980
.8 | .5000 | .4048 | .3824 | .3768 .3750
.85| .5000 | .3898 | .3586 | .3492 | .3463 .3450
.9 | .5000 | .3730 | .3298 | .3137 | .3075 | .3051 | .3042 .3036
.95| .5000 | .3543 | .2944 | .2664 | .2526 | .2456 | .2420 | .2401 | .2391 .2380
.00

.5000 | .3333 | .2500 | .2000 | .1667 :1427 .1250 | .1111 | .1000 | .0909 | .0000

2
Variance of the minimum-variance estimate = var(M’) = — 4
n

If we examine Table 3.1, we find that the reduction in variance achieved by
rotation sampling is quite small for most values of p and A, ; the variance of the
estimate M is not reduced by one-half until the correlation reaches the very
high value of .95. It seems quite likely that rotation sampling will be of most
value when (a) the correlation is high, and (b) it is so difficult to draw a sample
that the sample size must be kept as small as possible. If it costs no more to
carry out rotation sampling than independent random sampling, then even a
modest reduction of five to ten per cent in variance will be worthwhile.
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One-level rotation sampling has been investigated by several authors. The
most important work was done by Patterson {5]; Yates [6] presents many results
from Patterson’s paper without giving any derivations. Jessen [4] considered the
special case in which p was equal to one-half and the sample values were re-
stricted to times ¢; and ¢, .

4. Two-level rotation sampling. In the preceding section, we assumed that
the sample pattern (3.1) was increased at time ¢, by adding sample values of the
form z;; . Relaxing this assumption, we now permit sample values of the forms
Z—1; and z;; to be added to the sample pattern at time ¢, . Clearly, this is pos-
sible only if we have records of the earlier values of the elements in the popula-
tion. We call this two-level rotation sampling to emphasize that both present
values and immediately preceding values can be added to the pattern; the gen-
eralization to three-level or multi-level sampling is obvious.

Since it is frequently cheaper in a sampling survey to obtain the sample values
ZTg-1p; and x; simultaneously instead of at two separate times, we assume a
sample pattern of the type

TTTTT y
TXTITT 0
(4.1)
XXX |- lis
TXTXT | TXTTX tia
TTTTT t;
L —
2 1

The lines indicate how the sample pattern is built up; at time # a new set of n
elements is drawn from the population and the associated sample values for the
times % and #_, are recorded. In rotation sampling, it is not sufficient to specify
a sample pattern; the method by which the pattern is built up in time determines
the most suitable iterative form of the minimum-variance estimate.

We now show by means of the covariance-condition (Theorem 1) that the
minimum-variance estimate of a(f;) based on the pattern (4.1) can be written
in the iterative form

(4.2) M! = %y — affiag + aMi,
where a; is to be determined, M;’, is the minimum-variance linear unbiased
estimate based on the sample pattern above the line, and the subscripts of the

sample averages are defined as in the preceding section.
Using Theorem 2, we conclude that the only possible covariance-condition is

2
cov (Fi1q, Mi) = %— (p — ay),

2
leov (&1, M :,) = a; cov (L1, , M :'-1) = :7 a;(1 — a;_1p).
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In other words, we have the solution

(43) a; = P , a = 0,
2 —aip
2
(4.4) var (M7) = :—L (1 — a.p).

It can be shown by an argument similar to the one in the preceding section
that the sequence of a; converges. The limiting value is

(4.5) . ]jma‘.=a=l_:__}_/~1_:£3,
1—s00 P
o
(4.6) lim var (M) = - 1 — p?.

We tabulate a; for several values of p in Table 4.1, and list the first five terms
helow.

a = 0, o = P(4 _ p2)
a = 3p, 42 - o)’
2
az = ____2p as = 4P(2 2p) 4
1= 16 — 12p* + p
TABLE 4.1

Values of the weights a; as a function of p
(two-level sampling)

') a1 a as as as as @ as a an an a 1—ap
0 | .0000 .0000]1.0000
.1 | .0000| .0500] .0501 .0501] .9950
.2 | .0000{ .1000 .1010 .1010| .9798
.3 | .0000{ .1500{ .1535) .1535( .9539
.4 | .0000{ .2000; .2083 .2087( .9165
.5 | .0000] .2500| .2667 .2679 .2679| .8660
.6 | .0000| .3000] .3297| .3329 .3333| .8000
.7 | .0000] .3500| .3989| .4068| .4081 .4084| 7141
.75 .0000| .3750| .4364; .4484| .4508| .4513| .6614
.8 | .0000| .4000| .4762| .4941| .4985| .4996 .5000| .6000
.85 | .0000| .4250| .5187| .5452| .5532| .5556| .5564 .5567| .5268
.9 | .0000| .4500 .5643| .6032| .6176| .6232| .6254|.6262 .6268| .4359
.95 | .0000| .4750] .6133| .6703| .6969| .7100! .7167|.7202|.7220(.7229(.7234| .7239| .3123
1.00| .0000| .5000| .6667| .7500 .8000| .8333; .8573;.8750|.8889|.9000|.9091 1.0000| .0000

:
. . . 0 . d
Variance of the minimum-variance estimate = var(M”) =—n—(1 — ap)

The two-level rotation sampling problem was first solved by Bershad [1].
Using straightforward minimization methods, he determined the unknown coeffi-



ROTATION SAMPLING 671

cients in the general (non-iterative) linear unbiased estimate of «(t;). The key to
his solution is a method of evaluating certain types of large determinants by
means of continued fractions. A similar two-level sampling problem is dis-
cussed in [3].

b. Relationship between one-level and two-level rotation sampling. We
preface this section with a lemma which is a generalization of the well-known
method used to find the minimum-variance linear combination of two un-
correlated estimates of the same parameter. The proof is simple and therefore
1s omitted.

LemMa 1. We assume that we have a finite sample pattern P which can be par-
titioned tnto two uncorrelated subpatterns P, and Py , the first consisting of sample
values all drawn at time &, or earlier, and the second consisting of sample values all
drawn at time t;, or later (1 < k < 7). Let M, M, , and M, denote the minimum-
variance unbiased linear estimates of «a(ix) based on the patterns P, P, and P,
respectively. Then M = (M, var (M;) + M, var (M,))/(var (M,) + var (My)),
and var (M) = var (M,) var (My)/(var (M,) + var (My)).

Using this lemma, we can easily show how the minimum-variance linear un-
biased estimate M based on the sample pattern (3.1) with u equal to one-half
can be determined if we know the minimum-variance linear unbiased estimate
M based on the two-level sample pattern (4.1). Consider the following partition
of the one-level pattern with u equal to one-half:

TXXTTTLXX t
TXLLLTXTL ‘ tia
TrIT | TTTX t .

To the left of the vertical line, the pattern is a two-level sampling pattern with a
sample size of n/2 instead of n (the sample values drawn at time # in the two-
level pattern (4.1) have a weight of zero in the minimum-variance estimate and
can be ignored). Therefore the minimum-variance estimate of a(z;) based on the
sample values to the left of the line is M7. The minimum-variance estimate of
a(t:;) based on the n/2 sample values to the right of the line is the mean of these
values. Applying Lemma 1, we find that

1
2—a,p

M + —-—— a‘p:E, var(M;) = 20 L= aip
a;p n 2—a,p

M; =

We compare the second equation with equation (3.4) and conclude that

1 —a;p 1 —24;
5.1 A, = —F or a; = — 1
( ) P(l - ‘4,')

2 —aip
We have solved the one-level problem by means of the two-level problem by ex-
pressing A; as a function of a, . The identity (5.1) can also be proved by induc-
tion.
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6. Three-level rotation sampling. We now assume that sample values of the
form Z¢-2;, Te-1; and zx; can be added to the sample pattern at time £, . In
analogy with the two-level pattern, we assume a sample pattern of the type

TXTTT ta
TTTTT
TTTIT
) | TaTIT
6.1) TTTTTTXTXXL tis
TLTLTXLXLL | TXLXL tis
TTTTT | TTTTT tia
TXTTT t; .
3 2 1

The lines indicate how the sampling pattern is built up by columns; at time #
a new set of n elements is drawn from the population and the last three sample
values are recorded. We let M ;"' denote the minimum-variance estimate of a(t;)
based on pattern (6.1).

The problem of finding an iterative estimate which contains the minimum-
variance estimate is twofold: (a) we must find an iterative estimate such that
the number of unknown coefficients is equal to the number of independent co-
variance-conditions, and (b) we must ascertain that the set of simultaneous
equations has a non-trivial solution (the unknown coefficients must not all be
zero). Condition (a) becomes non-trivial for the first time in three-level sampling.
It can be shown that if we restrict ourselves to an iterative estimate involving
sample averages and M: ), we always have one too many independent covari-
ance-conditions.

Consider the estimate

MY = %1 — afiaa + My — biEiaq — (¢ + fi)Fis

+ (b; + €)Fios — diFize — eFiss + (di + €)Fiss + fMils.

This estimate contains both M;'; and Mi,; a little consideration shows that
condition (a) is now satisfied. In order to simplify the algebra in evaluating the
unknown coefficients, we express equation (6.2) in an equivalent form by sub-
stituting the term a.&:_1 s for a;M: ;.

According to Theorem 2, there are six independent covariance-conditions
which can be expressed in terms of the six unknown coefficients. If we can find a
non-trivial solution to these equations, we conclude (Theorem 1) that we have
found the minimum-variance estimate of a(f;) based on pattern (6.1). The co-
variance-conditions are

(6.2)

coV(Eigs, M) = fi cov(Ziys, Mils)

(6'3) 77 244 0'2
cov(Ziga, M) = fi cov(Fiuu, Mis2) + oy (d; + esp
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2

cov(Fi g4, M) = fi cov(Zia, M%) + % (di + e2)
(6.4) 2
1 cov(Zis,3, M) = fi cov(Zis3, M%) + % [—e; + (b; + ciol

2
(6.5) cov(E; sz, M:”) = % [—di — (ci + fodo + P2 ail

2

(COV(f.'—z.a y M) = fivar(MiL) + :7 [b; + ¢ — ped
(6.6) .

{cov(Figs,Mi") = :7 [—pd; + pa; — (ci + f9)]

2
(6.7) cov(Fig1, M) = %‘[_bi — pa; + p’]
. .
cov(Ziz, M) = % [—p"ds — ple: + f2) + ad

(6.8)

2
- g
cov(Fia1, Mi') = o — ai — bu]

If we compare equation (6.7) with (6.8), we find that by setting a; equal to p/2
we can reduce these two equations to one independent equation. Furthermore,
we conclude from equation (6.3) that d; is equal to —e; . If we make these sub-
stitutions, we have left four equations in four unknowns which can be solved by
straightforward algebra. The only term which needs special attention is the
cov (Fi_s3, Mi’s) in equation (6.5). Starting with the equation

- 1244 - - 1244 -
pcov (Tiss, Miss — Tigg) = coV (Fizz, Mils — Tisa)

we conclude that

B} ’ 1 ? 1 ?
cov(Eiss, Mils) = = var(Mils) + = (p - —) = ‘L<B — bisg p>-
p n p n\2

The solution to the four equations is

2 2 ,
.=p[(3+P)_2b;_2(l—p)] .
e (s B TR ) fori = 4,
S
(6.9) 3 — 2bi
C; = b'_(l__i_’f);f’
K] 1 — p2 ,

di = —(b: + c)e.
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As indicated by this solution, we regard b; as the fundamental variable; it is the
only unknown coefficient to appear in the variance of M}’

(6.10) var(M;{") = = [1 - Z — b p2:|.

The values by, b; and b; must be determined by an independent method. It is
quite easy to evaluate these coefficients by a straightforward minimization of
var (M;"") through var (M3'"). The first five values are

b =0, b ”_@i P)
by =0, Y209 — )
b_p‘f b5=p2(9+2p +p4)‘
2T 8 209+ 0B — 0

The b; converge to the limiting value

lim by = 5 = B =) — \/(1 ~,,)(9_,,)

T

and the limiting variance is

I A (e =] |

Unless p is close to unity, var (M’”’) is not much less than o*/x.

The method used in solving the three-level rotation sampling problem can be
extended without any conceptual difficulty to higher-level sampling. However,
the smaller variance obtained by multi-level procedures over single-level proce-
dures (discussed in a later section) is probably not worth the very great increase
in algebraic complexity. For example, the four-level rotation sampling problem
requires the solution of at least eight simultancous linear equations with alge-
braic coefficients.

7. Truncated patterns. The one-level and multi-level rotation sampling cs-
timates discussed in the previous sections were based on sample patterns that
extended over any number of distinet time-levels. However, there are several
practical reasons for truncating these patterns—that is, ignm'ing all sample
values except those associated with the N most recent times ; , f,_1, -+, ti_yys .

Most of the reduction in variance accomplished by rotatlon samphng is at-
tributable to the sample values that were drawn most recently. For example,
suppose we want the variance of the minimum-variance estimate based on a
truncated pattern to be no more than ten per cent larger than the variance of the
corresponding minimum-variance estimate based on an infinitely long pattern.
If we are carrying out one-level sampling, and if p is equal to .5, .7, .9 or .95, we
should use a pattern with sample values restricted to 2, 3, 4 or 5 time-levels,
respectively. These and other variance comparisons can be easily obtained from
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Tables 3.1 and 4.1. It seems pointless to continue using older sample values
which make virtually no contribution to the estimate.

A more important reason for using truncated patterns is the possibility that the
exponential correlation model may describe the behavior of the parent population
only locally; it may be adequate for sample values associated with nearby times,
but not for sample values farther apart in time. For example, in economic popu-
lations with month-to-month correlation p, the year-to-year correlation often
is much larger than p”. In other words, an underlying cyclic behavior of the
population may upset the exponential correlation model unless the pattern
length is a small part of the period.

Finally, a truncated pattern is easier to handle computationally than an ever-
increasing pattern. After deciding how far back to truncate, we compute a set
of coefficients to be multiplied into the sample averages. At each time ¢;, we
use the same set of coefficients but apply them to a different set of sample aver-
ages.

8. Generalization of the sample pattern. In this section and the next two sec-
tions, we consider what happens when we allow more freedom in the choice of a
sample pattern. We first describe the modifications necessary when the number
of sample values added to the pattern varies with time.

To be specific, we assume a sample pattern of the type shown in (3.1), but with
n;, sample values associated with time #,, 1 < k < 7. These n; values can be
divided into two classes: n;, are associated with popualtion elements represented
in the sample pattern at time #_;, and the remaining nx are associated with
elements entering the pattern for the first time. We assume one-level rotation
sampling; the pattern is built up row by row.

The minimum-variance estimate M, based on this sample pattern can be found
by the same methods as before. We quote Patterson’s results; equation (3.3)
generalizes to

’ n
’ Ni N1

(81) 1- Ai = 7 2 W, 7 7 7
NN — p Ny (ni—] — A 'ni)

and the variance of the estimate is

L Al itni £ 0,ni, %0
(8.2) var(M}) =
2| 1 — p2 pZAI' 1 o " ”
ch'[ + =5 i‘, ifn; = 0,151 #% 0.

ng nil

Analogously, we assume a sample pattern of the type shown in (4.1). At
time ¢ we add to this pattern by drawing a new set of n; elements from the
population and recording the associated sample values for times ¢, and #_; (two-
level rotation sampling).

The minimum-variance estimate M based on this sample pattern can be
found by the same methods as before. We omit details and give the results.
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Equation (4.3) generalizes to
_ PN
nica + ni(1 — ai_ip)

(8.3) a;
and the variance of the estimate is

2
(8.4) var(M?) = ;’7 (1 — aip).

9. Optimum choice of u in one-level rotation sampling. We have shown in
Section 3 how to find M for any preassigned value of w; we now determine that
value of p which corresponds to the minimum value of the function var (M (x)).
The solution to this problem depends only on the point at which the pattern is
truncated.

If we wish to find the optimum p for infinitely long patterns, the problem is
easy to solve: we differentiate the variable 4/u of equation (3.5) with respect to
u, set the result equal to zero, and solve for u. If p is less than unity, a little calcu-
lation leads to the result u = };if p is equal to unity, it is intuitively clear that the
optimum value of u is unity.

If we adopt the practical viewpoint of Section 7 and decide to use truncated
patterns, the problem of finding a minimum-variance u is conceptually simple but
computationally tedious. If we have a pattern consisting of sample values asso-
ciated with the time-levels #; and ¢;_; only, we differentiate A;/u with respect to
u, set the result equal to zero, and solve a quadratic equation in . The optimum
value of p is

— _— 2
== VIi=g

2

9.1)
P

Similarly, we can determine the optimum u for patterns consisting of sample
values associated with three or four time-levels. The algebra is laborious; for
example, when the pattern is four time-levels long, one must solve a sixth-degree
equation in p with coefficients that are fourth-degree polynomials in p*. Omitting
these equations, we tabulate optimum values of x for selected values of p:

Pattern 4
Length
0 4 .6 .8 .9 .95 1.00
2 .500 .522 .556 ©.625 .698 762 1.000
3 .500 — 517 .552 .612 .670 1.000
4 .500 — — — .563 .623 1.000
© .500 .500 .500 .500 .500 .500 1.000

The corresponding variances are given in Table 9.1 at the end of this section.
We now consider the problem of choosing an optimum set of u for the one-
level rotation sampling pattern when p is not restricted to a constant value in
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time, as it is in the sampling pattern (3.1). This problem has two parts: one
must determine the set (1, u2, pz, ++ - , #;) which corresponds to the minimum-
variance estimate M7 , and one must calculate the variance of this estimate.

This problem was first solved by Cochran [2]; we summarize his results for
the purpose of comparison. The solution is simplified by the fact that the op-
timum set (1, pg, 43, *** , ux) contains the optimum set (1, p2, ua, * -, i),
2 < k < ¢; therefore the solution can be obtained in an iterative form. If we
define G; by the equation var (M¥) = (¢*/n)G; , then the variance can be calcu-
lated from the iterative equation

2
9.2) 114 0EVI= oy g=1
G; PGy
and the optimum values of u; , 1 < k < <, are given by
2
93) =142 = VI g
Pt Gr

The limiting values of G; and u; are

S
(9.4) lim G, = G = 2(vV1 = pp2 1= e))
9.5) Im pe = p = 3.

We tabulate uz, pz and uy for selected values of p; the corresponding variances
are presented in Table 9.1 at the end of this section. When p is equal to zero, it
does not matter what replacement rate is used.

p 0 4 .6 .8 .9 .95 1.00

He .500 .522 .556 .625 .698 .762 1.000
M3 .500 .502 .506 .531 .579 .637 1.000
4 .500 .500 .501 .508 .533 572 1.000
" .500 .500 .500 .500 .500 .500 1.000

Since the successive values of u; are different, the optimum patterns cannot be
conveniently truncated. The truncated patterns gradually change in form from
the optimum pattern with u; given by equation (9.3) to the limiting pattern in
which all u; are equal to one-half. ,

Table 9.1 gives the variances of the estimates that have been discussed in this
section. For comparison, we include the variance of the minimum-variance
estimate based on the sample pattern (3.1) with u equal to one-half. The most
striking characteristic of this table is the small difference in variance between the
two kinds of optimum estimates and the one-half replacement rate estimate. In
practical applications of rotation sampling, one might as well use the latter pat-
tern, since it is much simpler to apply and can be conveniently truncated.
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TABLE 9.1

Comparison of the variances of three minimum-variance estimates based on different
restrictions on the replacement rates p;

(one-level sampling)

L;:tgtil;:f Restriction on u-values p=0 .2 4 6 .8 .9 : .95 i 1.00
| | ’
2 No restriction 1.000 | .990 | .958 | .900 : .800 | .718 ; .656 | .500
All u; are equal 1.000 | .990 | .958 , .900 , .800 | .718 | .656 .500
All y; equal 1/2 1.000 | .990 | .958 ; .901 | .810 | .746 i .709 | .667
- i H
3 No restriction 1.000 | .990 | .956 | .890 ! .762 | .646 , .556 | .333
All u; are equal 1.000 | .990 | .956 | .890 . .763 | .649 .560 | .333
All u; equal 1/2 1.000 | .990 | .956 | .890 . .765 | .660 . .589 | .500
4 No restriction 1.000 | .990 | .956 | .889 ’ .753 | .622 ; 515 | .250
All u; are equal 1.000 | .990 | .956 | .889 | 753 | .624 ' 518 | .250
All p; equal 1/2 1.000 | .990 | .956 | .889 i 754 | 628 .533 | .400
| i
) All three methods are | 1.000 | .990 | .956 | .889 ' .750 .607 . .476 | .000
equivalent ( | !

All entries should be multiplied by ¢2/n to obtain variances

10. Minimizing the sample size while holding the variance constant in time.
In this section we consider the problem of minimizing the sample size of the
pattern at each time ¢; while holding constant in time the variance of M., the
minimum-variance linear unbiased estimate of «(¢;) based on the sample pattern.
The solution can be obtained for one-level or two-level rotation sampling.

‘We consider the two-level sampling problem first because its solution is simpler.
We assume a sample pattern of the type illustrated by (4.1); at time ¢, we add to
the pattern by drawing a new set of n; elements from the population and re-
cording the associated sample values for times # and #;—;, 1 = k = 7. We as-
sume that var (M7) is equal to ¢°/N for all values of 7. Obviously, n; is equal to
N. If var (M3) is to be equal to ¢*/N, then

1 Ly 1
7—1; (1 — Q2 P) = W
We substitute equation (8.3) for a; and solve for n, .
—_ A / —_—
n2=N-\/1_p2’ a';:l___l__._ﬂ.

p

We can similarly evaluate 73 , nq, ete.; we find by induction that all succeeding
n; and a! are equal to n, and a; , respectively. In other words, we should draw
a sample of N elements at time ¢, and a sample of N/1 — p* elements at all
succeeding times. It is rather surprising to find that the minimum value of n;
is attained by time ¢ ; when we considered in Section 4 the inverse problem of
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minimizing the variance while keeping the sample size constant, we found that
the variance approached the limiting value (¢*/n)\/1 — p? as< approached in-
finity.

Patterson [5] has solved the problem of minimizing the sample size while hold-
ing the variance constant using a one-level rotation sampling pattern; we sum-
marize his results for the sake of comparison. The problem was first considered
by Jessen [4]; he gave an incorrect solution for a pattern consisting of sample
values from times # and ¢, only.

The solution to the problem is carried out by induction. Using the terminology
of Section 8, we seek to minimize the sample size n;, = ni + n;. By means of
equation (8.1) and the restriction that A;_;/n;_; be equal to 1 /N (the induction
hypothesis), we can express n; as a function of n; alone and carry out the minimi-
zation with respect to this variable. We find that

ol — N[~<1 - p2)p—2+ \/1—_—,,2]

and that ny is equal to n for k greater than or equal to two. In other words, from
time ¢ onward one should draw a sample of 2n; elements and use a replacement
rate of one-half.

For both one-level and two-level rotation sampling, the behavior of the mini-
mum-sample-size problem can be summarized by the relation

minimum variance at time #

— - - using the constant sample size method
minimum variance at time ¢,

__ minimum sample size at time &
minimum sample size at time

using the constant variance method.

If one wishes to carry out rotation sampling on a truncated pattern, then one
is restricted to minimum-variance estimates, since patterns with constant sample
sizes and constant replacement rates are the only ones that can be conveniently
truncated.

11. One-level versus multi-level rotation sampling. In this section we derive
a criterion for deciding when to use multi-level sampling instead of one-level
sampling. The criterion is given in the form of a graph in which the correlation
p is plotted against a parameter k which compares the cost of sampling several
different values of an element at one time with the cost of sampling only one
value at a time. .

We assume that it costs ¢ to obtain a single sample value at time ¢;, and
¢(1 + k) to obtain both sample values z;; and z(;_1); at time ¢; , where 0 < &k < 1.
In other words, we allow for the fact that it may cost less to obtain two sample
values at a single time than it does to obtain them at two separate times. The
three-level sampling cost is assumed to be ¢(1 + 2k) per element.

Suppose that we have a fixed amount 7' to spend on our sample at time ¢; ; how
many sample values can we draw, using each of the three methods of sampling? If



680 ALBERT ROSS ECKLER

we restrict ourselves to patterns of constant sample size n, then for one-level
sampling the sample size n’ is equal to T'/c, for two-level sampling n'’ is equal to
T/e(1 4 k), and for three-level sampling n’”’ is equal to T/c(1 + 2k).

We begin by assuming that we have patterns of infinite length. Equating the
variance of the one-level estimate for u equal to one-half with the variance of
the two-level estimate, we have

gr_"’[—(l — )+ \/1"172] TR

n’ p n”

nl/

Substituting in the values of »’ and n” and solving for k, we find the curve on
which var (M’) is equal to var (M”):

k= [Er:_l]

p

In order to decide when to use a three-level estimate instead of a two-level one,
we equate the variance of the two-level estimate with the variance of the three-
level estimate, and solve for k. Both of these curves are plotted in Graph 11.1;
the one-level versus two-level curve is labeled (1) and the two-level versus three-
level curve is labeled (2). The two curves partition the (k, p) unit square into
three areas: in the large area at the upper left, var (M’) is less than var (M")
or var (M’"); in the central area var (M”) is the minimum; in the small area
area at the lower right var (M’") is the minimum.

If we have very short truncated patterns, the preceding analysis no longer
holds. In order to see what happens, we solve the equations var (M;) = var (M7)
and var (M7) = var (M) for 7 equal to two and three. In comparing the
variances of M, and M3, we have two possibilities to consider: we can use the
simple one-level pattern in which u is equal to one-half, or we can use the opti-
mum one-level pattern in which u is equal to (1 — v/1 — 2?)/p’. We summarize
all of these results in the table below and in Graph 11.1.

Variance of p= .0 .2 4 .6 .8 .9 95 1.00
QM =M k= .000 .010 .044 .111 .250 .393 .524 1.000
@ M' =M" .000 .000 .001 .008 .036 .085 .151 .707
@) My= M, u=4% k= .000 .010 .042 .099 .191 .254 .201 .333
(4) My = M:, u = opt .000 .010 .042 .098 .177 .207 .196 .000
6G) M) = M) .000 .000 .000 .000 .000 .000 .000 .000
6) My = My, u =1 k= .000 .010 .044 .110 .235 .340 .411 .500
" Mi = M, 000 .000 .001 .005 .012 .014 .011 .000

Graph 11.1 clearly shows that the higher-level sampling patterns are optimum
over a very restricted area; it is advantageous to undertake four-level or higher-
level rotation sampling only for very low I, very high p, and relatively long pat-
terns.
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(

—_— one—lwevel versys two-level sampling

—-==-1- two-ljevel versus three-|level sotppling

7 (2)
.6 / .
. (6)

use [one-level gampling / /(3)

3
%use two-le
N
/ ’,/”uso three-
| LT tevet fsameling (4
________ zzosloss —=2d(7)
N 3 4 5 6 P 7 8 9 1.0
Grara 11.1

Comparison of one-level rotation sampling with multi-level rotation sampling

12. Estimation of a linear function of the population means. We have dis-
cussed at some length the problem of finding minimum-variance linear unbiased
estimates M ; of the population mean «(t;) based on several different sample pat-
terns. In the next two sections, we consider the more general problem of finding
M (e), the minimum-variance linear unbiased estimate of a linear function of the
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population means at several different times:
a = cia(ti) + Cja(tj) 4+ - 4+ Cka(tk),

where the letter ¢ denotes a constant.

The problem of finding minimum-variance estimates M («) contains the prob-
lem of improving the minimum-variance estimate M; of a(t;) by using observa-
tions drawn at times ¢;41 or later. (Previously, we assumed that these later ob-
servations were not available.) The connection between these problems is pre-
sented in Theorem 3 below, which can easily be proved using Theorem 1 in both
directions. Following Patterson’s notation, we denote the minimum-variance
linear unbiased estimate of «(¢;) based on a sample pattern containing values
drawn at times ¢, --- , &, -+ , t; by the symbol ;M;. When j is equal to 7,
we write M; as before.

TurEOREM 3. Assume the conditions of Theorem 1. Assume also that we know the
estimates mM;, i1 = 1,2, -+- , m, based on the sample pattern P. Then the mini-
mum-variance estimate M(a) of a = cia(t) + ca(ts) + -+ + cma(tn) in the
class of linear unbiased esttmates based on the sample pattern P is

M(e) = ci(mMr) + co(mMe) + -+ + cn(Mm).

Using this theorem and the results derived in the next section, it is a straight-
forward but tedious job to write down minimum-variance estimates of any linear
function of the population means; therefore we omit specific details or examples.
It is equally simple to calculate the variances of these estimates. The linear func-
tion of greatest practical interest and most frequently discussed in the literature
is the difference between two successive means a(f;) — a(f;—1). Other functions of
potential interest are higher-order differences and moving averages.

13. Improvement of minimum-variance estimates of the mean. Patterson
[5] has solved the problem of finding improved minimum-variance linear un-
biased estimates ;M ; of a(t;) based on one-level rotation sampling of patterns of
the type illustrated by (3.1). He shows how to solve for the estimates iteratively.
For example:

(13.1) Mig = Miy — pAiaMi+ pAisEin,
(13.2) Mie = i aMiy — pPAs (1 — A )M+ P Aol — Ai1)Ein

Patterson also derives variances and covariances based on the improved es-
timates. However, when j becomes much larger than ¢ in the estimate ;M , these
expressions become quite cumbersome; consequently Patterson derives non-
minimum-variance linear unbiased estimates of «(f;) that have a somewhat
simpler form.

The problem of finding ;M 1 using two-level rotation sampling can be solved
rather completely; it is not necessary to resort to non-minimum-variance esti-
mates in order to obtain manageable expressions for the estimates and the
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variances and covariances between them. In fact, it is possible to obtain vari-
ances and covariances of improved estimates based on infinitely long patterns.

We assume that we know M7, M3, --- , M 7, and wish to obtain M), when
k is greater than or equal to one. We can partition the sample pattern illustrated
In (4.1) into two statistically independent parts, the left-hand one a two-level
sampling pattern running from time ¢, throngh time #,_; , and the right-hand one
a two-level sampling pattern running from time #,_; through time ¢; . Each part
can be used to obtain a minimum-variance linear unbiased estimate of altis);
the estimate based on the right-hand pattern is M7 (with inverted time), and
the estimate based on the left-hand pattern is M7, . Applying Lemma, 1 of Sec-
tion 5, we conclude that the minimum-variance linear unbiased estimate of
a(t;—x) based on the entire pattern is

” a ” b ”
M, = _ 1. i
M a—+b M + a+b M ¥
where a is equal to var (M7_;) and b is equal to var (M7). Furthermore, the
variance of this estimate is

2
Vall'(izl/.{:',_/;) — a (l = O P)(l — O P)

n (L —aiup) + (1 —arp)’

The first three terms can be written down in an equivalent form:

Val‘(«'Mg—]) = o ; ai(l = Qi IJ),

2 2
a2 —
Val‘(iM i‘/—z) = ;{ **p-g-p< a; a;1(1 — Qi P),
2 2

V&r(iﬂf ;'/—3)

3
—~-—g—& a;ia;i1a; (1 — ai_3p).
p
If we let 7 equal 2k, then the variance becomes
2
var(yMy) = - = %P o 1 var(M7)
n 2
which could have been predicted at once from (4.1). The variance of this estimate
is less than that of any other estimate of,a single mean based on a pattern of the
same length.

The covariance terms are equally easy to derive. Using Corollary 1.1 and the
iterative form of the two-level estimate, we obtain

2
(133) COV(J‘{«IL',—I: s ﬂﬁ/) = :‘ a; iy - - ai—k—H(l — Qi—k P)-
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The following covariance-equation contains all the preceding results:

@ (1= a;p)(1 — aixp) a N
n (1= ajp) + (1 — ai_jp) hii i

We require that 0 < j < k < ; the second inequality is not a restriction. The
derivation of equation (13.4) is straightforward:

” ” ” ”
COV(iMi-k , ,'M,'..j) = COV(M,‘_L- , ,']”,'._i

(13.4) COV( Mt—-k y 1 ”—-j)

© Qg1 .

1 - a;p ) ” ”
cov(Mi_y, Mi_;).
T U=+ 0= a0 S

If we substitute equation (13.3) into the above expression, we obtain (13.4) at
once. When & equals j, we assume that a;_; - - - a;_x,1 is equal to one.
It is easy to derive limiting results from equation (13.4). For example:

lim cov(y M7 , ;i Mi) = E a- ap)a )
i—e0 n 2

14. A further relationship between one-level and two-level rotation sampling.
If we restrict ourselves to a replacement rate u of one-half while using one-level
rotation sampling, then it is not necessary to use the cumbersome formulas de-
veloped by Patterson in [5]; we can write down the estimates ;M ; and the asso-
ciated variances and covariances in terms of the two-level estimates ;M. This
section extends the results of Section 5, which showed how to write M: as a
function of M. The simplified results derived below can be quite useful in prac-
tice, since a replacement rate of one-half was shown to be nearly optimum in
Section 9.

Consider the minimum-variance estimate ;.M 7, which is based on the sample
pattern (4.1) extending from time ¢ to time ¢4, . The estimate ;,, M7 is also a
minimum-variance linear unbiased estimate bhased on the sample values ex-
tending from time ¢, to time ¢; ; the sample values associated with time ¢, and
time ¢;, are assigned zero weights in the minimum-variance estimate and can be
disregarded. In other words, ., M7 is the minimum-variance estimate based on
pattern (3.1) with u equal to one-half and a sample size of 2n instead of n;
M7 is 1dent1cally equal to M . Using a similar argument, one can easﬂy show
that ;..M (based on a sample size of n) is identically equal to M/_, (with u
equal to 14 and a sample size of 2n). The variance-covariance formulas are sum-
marized by the general expression

COV(,‘M,{_J' y ,]‘{,’_L) = 2(30V(,'+1M:',__j , ,'_,.1]”:{_],).
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