KEEPING MOMENT-LIKE SAMPLING COMPUTATIONS SIMPLE!
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1. Summary. This is an attempt to present as simply as possible the best tools
we know today for keeping computations simple when dealing with samples from
general populations. Such computations seem inevitably to be made in terms of
quantities related to moments. We develop here the formal structure and inter-
relations of the two systems of multi-index quantities which seem today to be
best adapted to statistical use. The occurrence of two systems is, at least in part,
related to the appearance in statistical problems of both multiplication and
addition of independent variables. Hence the existence of two systems, whose
limiting cases are moments (about a fixed point) and cumulants (or semiin-
variants).

We present interconversion formulas, developing definitions and proving the
pairing formulas without reference to any infinite populations, and sparing the
use of combinatorial techniques as much as we are able. A few multiplication
formulas are given, but for a more complete list the reader is referred to Wishart
[10]. It is hoped that this paper can be read on its own, with some reference to
applications of these techniques to elementary examples [6] and to the sampling
properties of estimated variance components in the analysis of variance [7],
[8], [9] as motivation.

The author’s best thanks go to N. R. Goodman for the checking of certain
calculations.

2. Introduction. The history of “moments of moments”, still the only way we
know to attack general sampling distributions, has been long and complicated.
Its outstanding feature has been the cutting away of pages and pages of algebra
by the introduction of new and sharper tools. The forging of these tools has
depended more and more on combinatorial ideas, and while the use of the tools
has become simpler, their understanding has become apparently more and more
complex. It is the purpose of this paper to show how we can keep almost every-
thing quite simple and still use what today seem to be the best tools. The only
useful aspects which we cannot completely handle simply are the actual calcu-
lation of certain multiplication formulas, an extensive table of which has been
provided by Wishart [10].

The two systems which we shall discuss correspond to moments about a fixed
point and to cumulants (semiinvariants). They do not correspond to moments
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about the mean, except insofar as the second and third moments about the mean,
happen to be cumulants. From the point of view of practical use, either numerical
or algebraic, I am convinced that higher moments about the mean are a vermiform
appendix of statistical evolution—an evolutionary remnant which will in-
evitably disappear, though all too slowly.

The two systems involve not a single index, but a set of one or more indices.
At first sight this may seem redundant and wasteful, since there are relations
which could be used to eliminate the multiple index symbols. But these relations:
involve sizes of samples or populations, and a great part of the simplicity of the
-use of the multiple index systems arises from a great reduction in the appearance
of these sizes.

We shall work entirely in terms of finite samples or populations, treating in-
finite populations as special limiting cases. Contrary to the usual view, this does
not make matters more complex.

3. The two systems. The first system of polynomial symmetric functions of 7
numbers z; , Z2, - - - , £, Which we shall use are the symmetric means (the mean
power products, in combinatorial terminology) which we will denote by angle
brackets, as (3), (134), etc. and will refer to as symmetric means or brackets.
They are defined as the means of products of powers of different x,’s, so that, for
example,

=~
_ 2 xiaf
(ab) = n(n — 1)

where the sum is over the n(n — 1) pairs (¢, ) with ¢ 5 j. The numerators are a.
kind of symmetric function of very respectable antiquity, the only modern
features being (i) the division by the number of cases to give a mean, which seems
natural to the statistician but perhaps not to the combinatorialist, and (ii)
the use of multiple subscripts, which the combinatorialist has always done but
which the statistician has seemed to resist. This resistance seems to have been
due to a feeling that only the simple moments

2 2

@ ==

could be easily calculated from numerical data, and that hence all formulas should
be written in terms of moments. This position is tempting rather than irrefutable,
and the simplicity of formulas involving the multiple subscripts shows its de-
ficiencies. It is easy to continue the numerical calculation, once the moments are
at hand, and find all the symmetric functions of either system. For all of weight
< 4 a simple computing form has been presented in [6].

The second, and even more important, system of polynomial symmetric func-
tions is most simply defined in terms of the first system through linear formulas
like these
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kr = (2) = (2) — (11),
ks = (113) = (113) — 3(1112) + 2(11111).

We shall obtain the general law of formation and supply a compact table of
formulas up to weight 8. We shall usually refer to these as “polykays” for
the sake of a short, simple term. (While the construction of this term, “kay”
for “k”” and “poly” for the multiple subscript, seems somewhat revolting to some
colleagues, the use of “generalized k-statistics’’ seems too unhandy to me. In
due course, perhaps, someone will find a good, short, terminology.) The polykays
with but a single subscript are, of course, Fisher’s famous k-statistics, whose
introduction was perhaps the largest step in clearing unnecessary algebra out
of this field. The multiple index analogs were introduced by Dressel [3] in 1940
in a combinatorial paper which seems to have escaped notice at the time of its
appearance. They were introduced independently by the author in 1950 [6]
as practical working tools.

4. Random pairing, additive and multiplicative. Let us next consider two sets
of n numbers, zf, x5, ---, z% and z*, z3* ..., 2%* whose brackets and
polykays we shall similarly distinguish with asterisks, as, for example, (2)*
and (2)**. We shall be concerned with the results of pairing these two sets
randomly, more specifically with the results of forming some function of each
of the pairs

[xf ) x::(*l)]; [13: ) 1?:’:2)], ) [27: ’ x:?ﬂ)]
where (1), #(2), ---, m(n) is a permutation of the integers 1, 2, --- , n, and

where we shall eventually wish to average over all permutations.

The simplest pairing operation is multiplicative pairing, where z; = zfzre; .
Let us calculate a moment of the resulting z;, say {(a), and then average over
all pairings [permutations]. We have

@ = T2 > ()t

and when we average, the product of ¥ and z}* appears equally often for ail

pairs © and j, so that
*\a *k%k\a
= 2L G ey

aver {{a)

where we have written “aver” for the average over random pairing, as we shall
continue to do, and where the denominator of 7’ is easily justified as equal
to the number of terms in the numerator when expanded (an average of a mean
is again a mean).

The same argument applies to (ab - - - ), as we see if we write
Yijorm = TS -+ Ton
Yijem = @)@ - (@)’

Yitem = @M)@Y o @n)
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and observe that
Yijooom = yi’}...my:fi),,(,) ..... x(m) -
Thus we have
aver {{ab --- e)} = (ab :-- e)* (@b - - e)**.

The brackets are ideally suited to multiplicative pairing.
The only other random pairing which we know how to handle at all well
statistically is the additive one, where

* sk
Ti =i + Tx(i) -

Because of the many statistical problems where additive pairing is taken as the
first approximation to reality (classical analysis of variance models, error propaga-
tion, etec.), this is the most important case.

The one-index (or as we would say in Section 11, one-part) brackets behave
in a manageable, but not simple way under additive random pairing. We hayve,
for example,

((3)) = aver {(3)} = aver Z@_nﬂ_o)
Z ( i) + 3 aver _Z_(% + 3 aver > (x?)(xw(;)

Z (f"r(c))a

= aver =————

+ aver &= ——"—
= @)* 4+ 3@2)*(L)** + 3(L)*(2)** + (3)**

and, in general,

(i = aver (430} = G+ (4 )¢ = 1y

+ (%) (G = 2@ + -+ + (O**

where we have introduced a doubling of the brackets to indicate averaging over

an additive random pairing.
Since the general formula is of binomial type, we can represent it in terms
of generating functions. If we define

Muvelt) = 14 () + <<2>>% + B S

3

M*@) =1+ (1)* + (2>* + (3>* T

3

M**(f) = 14 (1)**t + (2)** (3)** e



MOMENT-LIKE SAMPLING COMPUTATIONS 41

then the general formula becomes
Moves(f) = M*@)M**(2).

We shall use this relation in Section 11 to obtain general expressions defining
the second system of quantities in relation to the brackets.

5. The polykays. This second system will be denoted either by k..., or by
(ab --- €) as may be convenient. We shall use the same double parenthesis
convention, so that

((ab --- €)) = aver {(ab --- e)}

where the averaging is over additive random pairing.

Two examples of the second system, beyond the trivial (1) = (1), are (2) =
(2) — (11) and (12) = (12) — (111). Let us examine the behavior of these
quantities under random pairing, using unproven, but formally reasonable,
facts about the behavior of multipart brackets. We find

(2) = (@) — (11)) = @)* + (AP + @)% — (11)* — 2(1)*(L)** — (11)**
= [@)* — (1L + [@2)** — Q1)) = (2)* + (2)**
((12)) = ((12)) — ((111))
= (12)* 4+ @Y + (1LY + (LX) 4 2(1)*ALY** + (12)**
— (111)* — 3QALYAY* — (Ly*(ALY** — (111)**
= [(12)* — (111)%] + [@)* — AL + H@y** — (11)*4]
+ [(A2)** — (111)*¥]
= (12)* + @2)*(1)** + ()*@)** + (12)**
It should now be clear both what the pairing law is likely to be, and that we
need some slick trick both to discover the definitions and to prove the result.
Since the trick the author prefers involves symbolic multiplication, we shall
postpone its treatment to the last section. We announce here the pairing formula

we desire and leave definitions and proofs to Sections 11 and 12. The pairing
formula is illustrated by

ave (ko) = ((abe)) = (abe)* + (ab)*(e)*™* + (ac)*(b)™* + (be)*(a)**
+ (@)*(be)** + (B)*(ac)** + (c)*(ab)** + (abe)**

In general, we separate the indices into two sets (one of which may be empty) in
all possible ways, assigning one set to * and the other to **, and adding up the
resulting products. We know that we have the desired definitions when the
pairing formula is an identity with ((ab - - - ¢)) the same function of the ((fg - - - 7))
as (ab --- e)*is of the (fg --- j)* and as (ab - - - €)** is of the (fg - - j)**.

One special case is worthy of notice. If all the z7* are identically equal to 8,
then, (cp. [7])
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(@* = 8% (aby** = 8" (abey* = TG (M = 5
(a)** =0, for a>1; 0 = (ab)** = (abc)** = (abed)** = -

So that the effect of pairing with this population, which is independent of the
randomization and exactly equivalent to increasing all the z¥ by 8, is given
by such relations as

M=@0*+s @=@@, G =0)

..........................................

(11) = (A)* + 28(1)* + &,

(12) = (12)* + &(2)%,
(111) = (111)* 4 35(111)* + 38°(1)* + &
(112) = (112)* + 28(12)* + §(2)*,

(22) = (22)*.

-------------------------------------------

Thus the effects of increasing all the z7 by & are easily found. We notice for
future use that the highest power of 8 is the number of 1’s in the polykay; which
appears with a coefficient found by dropping the 1’s from within the parentheses.

6. Inheritance and representation. If 2, #5, --+ , %, is a sample from 2,
!’ . .
T3, -+, Zx, and if “ave” means a simple average over all samples, then sym-
metry implies that

S aver fafad oo 3} > @)@’ - (@)’

number of terms above  number of terms above
= {ab - e).

ave {(ab - )} =

Since the polykays are expressible linearly in the brackets with integer coefficients
the same relation

ave {Kap...o} = Kape..c

must hold for polykays. We refer to this as inheritance on the average. Some
would prefer to say unbiasedness (but there are now so many kinds of un-
biasedness!).

Since any polynomial symmetric function can be expressed linearly in terms
of the brackets, and since, as we shall see, brackets and polykays can be expressed
linearly in terms of one another, every polynomial symmetric function can also
be expressed linearly in terms of polykays.

7. Unit parts. Each index “1" which appears in a bracket or a polykay will be
called a unit part. These indices play an especially simple role. If we have a
linear identity connecting polykays and brackets, we can obtain a new one
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by adding unit parts to all the terms. Thus from k3 = (3) = (3) — 3(12) +
2(111) we derive k;; = (13) = (13) — 3(112) + 2(1111), ky; = (113) =
(113) — 3(1112) + 2(11111) and so on, while from (2) = (2) + (11) we derive
<12> = (12) + (111) = klz + ’Cul, (112) = (112) + (1111) = kuz + kuu and
so on. This fact will be proven in Section 12.

Thus it would be convenient to write these formulas in a single shorthand
form, such as (—3) = (—38)—3(—2) + 2(—), (—=2) = (—2) + (—) where
the dashes stand for the number of 1’s. This number is usually different in
the different appearances in one formula, but these numbers are to be chosen
so as to make all terms of the same degree.

Fur further abbreviation, we may drop the dashes themselves (except in (—)
and (—) where they seem helpful). If we do this, then we can give a single table
which presents the coefficients for all the identities connecting brackets and
polykays through degree 8. This is done in a compact form (pioneered by David
and Kendall [2]) in Table 1, where brackets are expressed in terms of polykays
by the coefficients below and on the main diagonal, while polykays are expressed
in terms of brackets by the coefficients above and on the main diagonal. (A
less convenient table, extending through weight 12, has recently been provided
by Abdel-Aty [1].)

More specifically, to express (1134) in terms of polykays, we proceed as fol-
lows:

(a) look for (34), which identifies a row, and start with the heavy 1 on the

diagonal of that row,

(b) move along that row from the diagonal 1 toward the beginning, writing

down the coefficients times the corresponding polykays, (This yields:

(34)y = (34) + 3(223) + 4(33) + 3(24) + 9(222) + 18(23)
+ (4) + 21(22) + 5(3) + 9(2) + (=)

in shorthand notation.)
(c) note that 1 + 1 + 3 + 4 = 9 and add 1’s to every term to bring the
degree of every term up to 9. (This yields:

(1134) = (1134) + 3(11223) + 4(11133) + 3(11124) + 9(111222)
+ 18(111123) + (111114) 4+ 21(1111122)
+ 5(1111113) + 9(11111112) 4 (111111111)

which is the desired result.)
To expand a polykay in brackets we merely interchange rows and columns,
moving upward from the diagonal.

8. Computation modulo unit parts. We see easily, either from the general re-
lations of Sections 11 and 12, or from the nature of the reduced formulas, that
when a bracket with g unit parts is written in terms of polykays, only polykays
with at least g unit parts appear and vice versa. It is then unequivocal if we write
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0(1°) for an arbitrary set of terms each of which, when expanded linearly in
brackets or polykays contains at least g unit parts.
If we have an identity which is a polynomial in the polykays, as for example

1 1
kY — kaky +7—1k3+ ka = ;ﬁka'l-%kzl'l‘ ku

each term has a certain total number of unit parts. In the example, these numuers
are 3, 1, 0 and 1 on the left-hand side and 0, 1 and 3 on the right-hand side.
The highest total appearing on either side is the unit weight of that side. In the
example, the unit weight of each side is 3. If we shift all the z; by pairing them
with a set of values all equal to &, each term will be replaced by a number of
terms involving various powers of § up to and including a power equal to the
number of unit parts. The total coefficients of each power of & must also give an
identity. Thus any identity gives rise to a number of associated identities.

If one side of the initial identity was linear in the polykays, and all obvious
cancellations had been made initially (as is the case on the right-hand side of
the example), then the coefficient of the highest power of § appearing on that
side after pairing would be linear in the polykays, would have no obvious cancel-
lations, and hence would not vanish identically. The coefficient of the same
power of § on the other side, which is identically equal to this, cannot vanish,
and hence

(Unit weight on other side) = (Unit weight on linear side)

Since any polynomial in the polykays is a symmetric polynomial in the z’s, it
can be written linearly in the polykays. The unit weight will not be increased
in this process. In particular, a polynomial in polykays without unit part (and
hence of unit weight zero) when written linearly in the polykays involves no
polykay with unit part. If we know the linear representation to terms O(1), we
know it exactly. Similarly, the unit weight of the left-hand side in the example
is 3. If we know the linear representation (the right-hand side) to O(1%), we
know it exactly.

In table 1 we have both heavy and light coefficients. Only the heavy ones
need to be used if we adjoin 4+0(1). Thus, for example,

(34) = (34) + 3(223) + 0(1)
(34) = (34) — 3(223) + 0(1)
(223) = (223) + 0(1)
As this example shows, the formulas are often much simplified by this process.

9. Multiplication of brackets. Both brackets and polykays are chosen so as to
remove the inevitable combinatorial difficulfies from as many formulas as pos-
sible. As a result, combinatorial considerations have been restricted to the
formulas for multiplication. For brackets, the resulting formulas are relatively
simple. Thus
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(a)<b>=—zwtzx:
= -7%2 [E giah + 2 wz‘:”“]

Il

= [nta = 1) (@b) + n(a + b)

I

"= 1 ab) + 1 (o + D)

in a similar way we find

(abe) (@) = L= D0 =8 (o) 4 7 iw+¢m>
+nzz 1)<«:»+e,bcal>+? gy © + o ace)
o Daw+%aw>+ ? 1)<c-+azbce>
+nz; y e+ e abd) + - )<a+db+e,c>
+ o L )<a+dc+e,b>+ )<b+dc+e,a>
+7-2—(n—_—1)<b+d,a+e,c>+mi_—1—)<c+d,a+e,b>
+ﬁ(71_—1)<6+d,b+e,a)-

In general, we obtain all brackets which can be obtained by matching some
(including none) of the letters in one bracket with letters in the other and then
replacing matched letters by their sum. The coefficient is a simple function
of the number of parts in the factors and the result, with a simple denominator.
It is often convenient to expand coefficients as integer coefficient combinations of

P=2 1T am—1 Tan— D0 —2)°
1

='n'n—-1)(n—2)(n—-3)’

These expansions are given for certain products in Table 2. With the aid of this
table, multiplication of brackets is merely a matter of exerting moderate patience
to be sure that you have all the terms.

10. Multiplication of polykays. The multiplication formulas for polykays are
more complex. They can be obtained symbolically (cp. Wishart [10], Kendall
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TABLE 2
Ezxpansions of factors for bracket multiplication

P : Parts in bracket whose coefficient is sought
fiﬁf,fs'

1 2 3 4 5 6
1X1 p [1—0»p — — — —
1X2 | — P 1—-2p — — —
1X3 | — — P 1—-3p - —
1X4 | — — — P 1—4p —
2X2| — g |p—¢q¢ | 1—-4p+2 — -
2X3 | — — q p — 29 1 —6p + 6q —
2X4| — — — q p — 3¢ 1—8p+12¢
3X3 | — — r q—r p—4q+2r |1 — 9p + 18¢ — 6r
3 X4 | — — — q—2r p — 6q + 6r
4X4| — — — r—38 q—4r+2s

[5]) or by direct calculation. One way to carry out direct calculation is to express
each polykay in brackets, multiply out the brackets and then reconvert the
resulting brackets to polykays. For example

kek, = (12)(2) = [(12) — (111)][{2) — (11)]
= (12)2) — (111)2) — (12){11) + (111X11)
= [1 — 2pK122) + p(23) + p(14) — [1 — 3p[(1112)
— 3p(113) — [1 — 4p + 29(1112) — 2[p — ¢|(122)
— 2[p — ¢(113) — 2¢(23) + [1 — 6p + 6¢](11111)
+ 6lp — 2¢(1112) + 6¢(122)
= [p — 2¢K23) + p(14) + [1 — 4p + 8¢[(122)
+ [=5p + 2¢](113) + [—2 + 13p — 14¢|(1112)
+ [1 — 6p + 6g](11111)
= [p — 2¢][(23) + 3(122) + (113) + 4(1112) + (11111)]
+ pl(14) + 3(122) + 4(113) + 6(1112) + (111111)]
+ [1 — 4p + 84J[(122) + 2(1112) + (11111)]
+ [—5p + 24][(113) + 3(1112) + (11111)]
+ [—2 + 13p — 14¢][(1112) + (11111)] + [1 — 6p + 6¢](11111)
= [p — 29]1(23) + p(14) + [1 + 2p + 2¢](122) + O(113) — O(1112)
+ 0(11111)

= _n__?’_k23+%]c14+

s § 48
nimn — 1)

n—1
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Even for this case, some care in computation is advisable. Clearly direct com-
putation should be avoided to the greatest extent possible.

In some cases, it is possible to obtain a substantial saving in computation
by calculating modulo unit parts in a suitable sense. Thus in the example just
given we may neglect terms O(1?). Thus we could have written the products of
the brackets as

[1 — 2p)(122) + p(23) + p(14) — 2(p — ¢){122) — 2¢(23) + 6¢(122) 4 O(1")
= [1 — 4p + 8ql[(122) + O(1})] + [p — 2q][(23) + 3(122) + O(1")]
+ p[(14) + 3(122) + 0(1%)] + 0(1%),

which avoids a certain amount of algebra.
As a more complex example, let us take

Fadkess = (22)(22) = ((22) — 2(112) + (1111))({22 — 2(112) + (1111))
= (22X(22) — 4(22)(112) + 4(112){112) — 4(112)(1111)
+ 2(22)(1111) + (1111)(1111)
where
(22)(22) = [1 — 4p + 2¢1(2222) + 4[p — q)(224) + 2¢(44),
(22X112) = 2¢(233) + O(1),
(112)(112) = 2[q — r](2222) + 2r(224) + 4r(233) + O(1),
(22)(1111) = 0(1),
(112)(1111) = O(1),
(1111){(1111) = 24s(2222) + 0(1),
so that
Kakas = [1 — 4p + 10g — 8r + 24s](2222) + [p — 4q + 8r(224)
+ [—8¢ + 16r)(233) + 2¢(44) + OQ1).
But
(44) = (44) + 6(224) + 9(2222) + 0(1),
(224) = (224) + 3(2222) + 0Q1),
(233) = (233) + O(1),
(2222) = (2222) + 0(1),
so that



MOMENT-LIKE SAMPLING COMPUTATIONS ' 49

Kasksr = [1 + 8p + 16¢ + 16r + 245](2222) + [4p + 8¢ + 8r](224)
+ [—8¢ + 167](233) + 2¢(44)

~ 8 % 4
“[1"'n—2"'n(n—1)(n—2)(n—3)]’“’“”‘""n—zk224

8(n — 4) 2
T aln — D(n — 2) Feass + n(n — 1) Fous

This result agrees with kskss as obtained from Wishart’s formulas in the form

_(n—=1, =n-1_Y

knk”_<n+1k2 n(n+1)k4>
_”"—124_ (n—1)" . (n —1)° 5
"<m>" R S i e

and thus provides an additional check on Wishart’s result.

Many of Wishart’s formulas were independently obtained by the writer before
their publication by Wishart. In most cases agreement was good, and in the
others the writer’s algebra proved at fault.

A few of the simplest are now given for easy reference:

1 2
Bo= bt D Ty
kiks =k +1k
1/va = Nla ;ba+1’

1 1
Icllc,,b = kabl + ﬁ ka—f—l,b + 7& kb+1,a’

6

n—lk”'

kzka=k23+;lik5+

For others the reader is referred to Wishart [10]. If products of weights greater
than 8 are ever needed, it is very probably that terms in 1/n, or perhaps through
1/n* will suffice. In such cases, an extension of Table 2, neglecting r, s, ¢, - - -
(and g if terms in 1/n will suffice) forms the basis of a simple method of calcula-
tion.

11. The o-multiplication and one-part &’s. We know (cp. Section 4) that the
generating functions {{{(a)) = aver (a)}, {{a)*} and {(a)**} satisfy the relation

Maver(t) = M*(t)M**(t)

where the ((a)) are the averages over all pairings of the (a) which are defined
for all pairings of the sets defining the (a)* and (a)**. To obtain the one-part
k’s without reference to the theory of infinite populations, and to prepare the
ground work for the introduction of the multipart &’s, we introduce a symbolic
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multiplication among the following quantities: real numbers, all {{(ab --- e)),
all (@b - -- e), all (ab - - - e)*, all (ab - - - e)**, the integer powers of an indetermi-
nate £, and all linear combinations of the above. This multiplication is written
“0” and is defined to satisfy:

(1) except when a bracket is multiplied by a bracket of the same family,
o-multiplication of the elementary quantities is ordinary multiplication,

(2) o-multiplication is distributive with respect to addition, subtraction and
multiplication by real numbers,

(3) o-multiplication of brackets from the same family is accomplished by
combining indices, as in (23)0 (14) = (2314) = (1234). As examples
of rule 3 we have

(11)* 0 (34)* = (1134)*,

@Yo ((@)** — (11y*) = (22)** — (112)**,

where rule 2 was used in the latter case, while rule 1 shows that

((2)) o (1)* = (2)N1)%,

()0 (24)** = (3)(24)**.

In terms of this symbolic multiplication we have a commutative ring with formal
power series in /. We can form formal o-exponentials and o-logarithms of ap-
propriate expressions, and these functions will have the usual formal properties.
Thus

£

3
o-exp (tX) = 1+tX+§(XoX) +% XoXoX) +§§(XOXOXOX)t“',

2 3
o-log(1+tX)=tX—t§(XoX)+;(XoXoX)—g(XoXoXoX)+ cee,

and, in particular
o-log[(1 4 tX1) o (1 + tX,)] = o-log (1 + tX1) + o-log (1 + tX5).

Now M*(t) involves brackets with one asterisk, and M**(f) involves brackets
with two. Hence

M*() o M** () = M*(E)M**(}) = Mouve(?)
and, taking o-logarithms on both sides
o-log M*(¢) + o-log M**(¢) = o-log Mave:(£).

If we write
2 3
W) = (Ut + (2) % + (3) % + .- = o-log M)

and define Yave:(£), ¥*(¢) and ¢**(¢) similarly, we have
'[’aver(t) = ¢’*(t) + '//**(t)
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and, comparing coefficients

@) = G* + G
where ((5)) is the same function of the {{a)) as (5)* is of the (a)* and (j)** is
of the (a)**. Thus we have defined (j) = k; so as to have the right property.

We have only to calculate the relations explicitly.
To do this, we have only to write out

¥(®) = o-log M(?)
remembering to use o-multiplication on the right We find

thy + kz + kz + - =H1) + <2> + <3> + -

——<t<1>+ @+ - )o(t<1> Fh@+ )
I + oD + )0 (D )

- t<1>+2,<2>+ @)+ -

—3(1) + £2) + )
AU 4 o)

—t<1>+ (<2> <11>)+ (<3> 3(12) 4+ 2(111) + -+ 4,

so that ky = (1), ks = (2) — (11), ks = (3) — 3(12) 4 2(111), - - - . In case the
population is infinite, the symmetric means become moment products, the &’s
become cumulants and the o-multiplication becomes ordinary multiplication.
These formulas become the well-known relations connecting cumulants and
moments.

’

ky = pr,
ky = ps — ut’,
ks = ps — Buour + 2ui’,

and the coeflicients up to order 12 are given in Kendall ([4], section 3.13).

12. Commutativity. We now wish to show why o-multiplication is commuta-
tive with additive pairing. We recall (from Section 4) that

aver ()] = (% = (1) = e = () 6 - w0 e

and proceed to find the corresponding formula for a two-part bracket. We have
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. 1 2 ®k \gr % *k N5
97) = wn =) 20 @F + 278 &f + 235

- e =2 (0) (D ehman eyt

and when we average over a random pairing, we may split the z* from the z**,
just as for one-part brackets, obtaining

@i = aver 160 = S (4) (1) 6 = b = ko

Now
) =@oli), {@—hj—k*={g—h*o(j—k)*
R = (BY** o kY™,

and this becomes

(@oin=2x(Y (j (g — B)*o (hY** 0 (j — k)* o (k)**
n)\k

=[2 (@) 0= mromm]o[=(]) v - prom]
= (@0 (-

Thus averaging over random pairing commutes with o-multiplication for two-
part brackets.

An entirely analogous proof holds for brackets with more than two parts,
and, since the o-multiplication was defined for brackets and extended by linearity,
we have commutativity in general. In particular, we have commutativity for
polykays, so that

(1) 0 (2)) = aver {(1)o (2)} = ((1))o ((2))
(@0 () = aver (@) o ()} = (@) 0 ()

a result we will use almost at once.

13. The multipart k’s. We shall now define the multipart k’s by symbolic
multiplication, putting

(12) = ki = (1)0(2)-"—'-]010’02,
(abc -+-e) =(@)o®)o(c)o--- o),

this means, of course, that we may find the expressions for the multipart &’s
by writing out the corresponding single-part k’s in terms of brackets and sym-
bolically multiplying out. Thus

(22) = (2) 0 (2) = [(2) — (1] o [(2) — (11)] = (22) — 2(112) + (1111).
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We notice that, for the case of additive random pairing
((12)) = (1)) 0 ((2)) = [(A)* + ()™ o [(2)* + (2)*]
= (1)*o (2)* + (I)*o 2)** 4+ (1)** 0 (2)* + (1)** 0 (2)**
= (12)* + (1)*@)** + (1)**(@2)* + (12)**

and that the formula for ((ab)) is entirely analogous to this. Indeed, more
complex expressions of similar form hold for the more-than-two-part %’s and
we immediately see that all the multipart &’s satisfy the previously announced
pairing formulas.

To complete our transformation formulas, we need to express brackets in
terms of polykays. To this end, we write out

M(t) = o-exp W(9),
we find

LU+ L@+ 5@+ Lkt ot Lk bk oo

1 ¢ tz
+§(tk1+§ikz+ ---)o(tlc1+2_1k,+ )
+ 3tk + - )o(thy+ ) o (thy + ++-)

4 oeee

1+tkl+ ]C2+ ]C3+
+%(t2k10k1+tklolcz+ ces)
+%(t3klolclok1+ ...)+
1+tkl+ k2+ k3+
+%(t2]011+tk12—|— eel)
+'(1;<t3k111+ )-I-

=14 th + i (k2 + k) + (ka + 3k + k) + -

and comparing coefficients,
1) =k, 2) =k + ku, () = ks + 3kie + o - -+ .

For an infinite population, these reduce the familiar formulas expressing
moments in terms of cumulants, namely

m = K, pe = Ky + Ky, us = K3 + 3Ky + Kiny -+



54 JOHN W. TUKEY

and again these can be found up to order'12 in Kendall ([4], section 3.13). This
time, however, the nature of the exponential function makes it easy to write
down the coefficient of

Eaaveeapesgerss 1IN {aa + Bb + <« §d).
It is
(ea + Bb + -+ + 8d)! 1
(aheBhe -« (D¢ alb! --- d!
For example, the coefficient of kyz in (3) is

3!
121111l

3.

Thus individual coefficients are easily checked.
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