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1. Summary. Let 21, %2, *++ , @u, T1, &3, -+ , Tnk be independent random
variables with a common continuous distribution F(z). Let z1, x2, -« + , z, have
o . . . . ’ ’ ’ o« . . .
the empiric distribution F,(x) and z1, 22, - - -, Z&. have the empiric distribu-

tion G..(x). The exact values of P(—y < F.(s) — Gu(s) < x for all s) and
P(—y < F(s) — F.(s) < z for all s) are obtained, as well as the first two terms
of the asymptotic series for large n.

2. Introduction. In a famous paper, Kolmogorov [10] showed that if F(x) is a
continuous distribution function, 21, 2z, + -, ., - - - are independent random
variables with distribution F(z), and F,(x) is the empirical distribution based
on the variables z;, x2, -+ , Z., then

1) lim P( sup |Fa(z) — F(x)| < 1/2> Z( 1)7g™5™2,

n->0 —0L2L

Since then other proofs [4], [3], [6] have been given, and Chung [2], using the
Kolmogorov method of proof, obtained an error term of the order of n e
which he then used to obtain a strong limit theorem.

Smirnov obtained a result related to (1) when he showed [13] that

@ lim P( sup Fa(z) — F(x) < —)1\72> =1 — ¢,
Nn->00 —00L L0

Actually Smirnov’s results are stronger, since he obtained an exact expression

for the probability in (1’) (for finite n) as well as the first two terms of the

asymptotic expansion. In an earlier paper, Smirnov showed also that

an lim P ( sup  |Fa,(s) — Guy(s)| = \/—> Z (—1)ke %"

n->0 ~-00L 2L 0 k=—00
under the condition X > 0, n = nmy/ (n1 + ny) and nz / ny = 7. (See [13] for
further references.)

More recently, Gnedenko, Korolyuk, Rvadeva, and Mihalevié [7], [8], [9],
[12] have developed a technique for treating problems of this sort by random-
walk methods and have obtained error terms for (1”) under the condition n; =
ny . We intend in this paper to develop their method further and apply it to
obtaining exact expressions for the probabilities appearing in (1) and in (1”)
under the condition that r is an integer. For completeness we are repeating
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some of the work appearing in the above-mentioned papers. Korolyuk has
recently published a lengthy paper [11] giving expressions for many of the
probabilities we wish to treat. His results, however, differ from ours and indeed
are not consistent with earlier-published work (Gnedenko, Doklady 82 (1952),
pp. 525-528; also Math. Nachr., Vol. 12 (1954), pp. 29-63).

Our principal results are the following two theorems.

THEOREM 1. Let &1, X3, +++ , Tn, X1, Tz, -+ , Tn be a sequence of n(k + 1)
independent random variables with a common continuous distribution. Let F.(z)
and Gu.(x) be empiric distributions based on the first n and second kn random
variables, respectively. Then

P(—2 < Guls) — Fuls) <yforalls) =1 — ((k -; l)n)‘l

[kn+8/a+B] [kn+a/atp]
(T Wniern-p+ L N ieto -
[kn/a+B8]

-2 > Nk, mn,ila + ﬁ))}

el

if—1= —2<y=1,wherea = —[—zkn), 8 = —[—ykn] and

e o & + 1) + a) ((k + )n - j) — a)
Nk,n,a) = J__X‘a m( i n—j .
THEOREM 2.

[14y/z4y]
[14z/z+y] [1/ztv]

- Z; ¢ — Dz + 1y) + 2 § daliz + 1y)

Jor — 1 2 2 <y = 1, where

" am (w4 2n)((n — j) — an)"
2 1 _ )
=0 j+an\J n

From these two theorems various limiting relations may be computed.

bn (x) =

3. Proofs and corollaries. Suppose given a collection of n(k 4+ 1) independent
random variables in two sequences:

xl’xz,.-.x”,
’ ’ U
X1,T2y°° Tak o

Let F.(x) be the empirical distribution function, continuous on the right, with
jumps 1/n at 21, 3, -« - Z., and let Gui(x) be the empirical distribution func-
tion, continuous on the right, with jumps 1/nk at 23 , 22, - - - Znx . We introduce
the following notation:

D* = sup(Gu(zx) — Fa(z)),
D™ = —inf(Gu(x) — Fu(z)) = sup.(Fu(z) — Gu(z)).
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The method used will involve finding the joint distribution of D* and D™ and
then taking the limit as k¥ — «. This will provide a proof of Theorem 1 and
Theorem 2.

Gnedenko and Korolyuk [7] introduced a technique for finding the joint dis-
tribution of D* and D™ by considering a related random-walk problem. Order
the z; and z; random variables in order of their numerical value and call the
new sequence

21,22, " 2nk+1) -
Let
. . ’ ’ ’
.. = +1 if z;is from 1, x2, *** Tni,
i —k if z;is from 1, 22, +** T,
and

» :
S, = D i for p=1,2,---.
1

Then it is not difficult to see that
2 PO <y D" <z)=P(—-8<8;<a, j=1,2 -+ L)n),

where o = —[—zkn] and 8 = —[—ykn]. This reduces the problem to one of
investigating a linear random walk with (k 4+ 1)n steps which starts at 0, moves
at each step either one unit to the right or k£ units to the left, and ends after
(k + 1)n steps at 0 again. In [7], [8] the investigation was carried out for &k =
1, although the authors were apparently unaware that the & = 1 case had been
treated extensively by Bachelier [1] in connection with certain gambler’s-ruin
problems. Some results in the k¥ > 1 case were obtained in [9]. Because of the
independence of 21, %z, *+* , Ts, 1, T3, * * + , Tin , each path is equally likely,
so that we essentially have only to count paths.
Divide the class of all paths 9 into the following nonintersecting sets:
Q®o: paths reaching neither —3 nor a.
@ : paths reaching « but not —g.
@, : paths first reaching « (i.e., before reaching —g), then reaching at
some subsequent step —p3, but not thereafter reaching a.
@s : paths first reaching «, then —p, then «, but not thereafter reaching
—B.
ete.
The classes ®;, ¢ = 1, 2, --- are defined in the same way with —3 and «
interchanged. For & and n fixed, the classes @; and ®; will be empty for ¢ suffi-
ciently large. Also,

M = Qo + 2:(@: + &)

The classes 4; are defined as follows:
4, : paths reaching a at least once, regardless of what happens at any
other step.
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A, : paths reaching & and —8 at least once in the order a,—p, regardless
of what happens at any other step.
Aj; : paths reaching o and —p8 at least once in the order a,—B,a, regard-
less of what happens at any other step.
ete.
The classes B; are defined in the same way with « and —p interchanged.
Because of the equalities

A1=@1+'Zz(@.'+03-'), Bl=031+22(@;+(5-'):

A, = Ga+§.;(a.-+<s.~), Bz=&z+_23(@.'+03;),
etc., we have for arbitrary ¢z = 1

Agiy + Boiy — Agi — By = Qgeq + ®oig + Ao + By,
so that

G = I — Zl (A2is + Baiy — Ag; + Byy).

Since Ag; ;3 — As; and Bs; 3y — B,; are diSjOillt, Ags 1D Ay ’ and B3, 1 D Bs; ,
we have

N(@) = NGO — 3 (V4w + N(Bud) — N(4sd — N(Bud),

where N(A) is the cardinality of A. This formula was obtained in both [1] and
[8], although the computation of the number of paths in the classes 4;, B; was
carried out only for £ = 1, in which case a reflection principle will work. Let
N(k, n, a) be the number of paths in the class A; . We now show that the num-
ber of paths in A, is N(k, n, « + B) by mapping the class 4 in a 1:1 manner
on the class of paths which cross a + 8 at least once. Note that if a path crosses
a, it actually reaches the point «, since all steps to the right have length one.
Also, if —p is crossed from the right, the path must reach —p on the subse-
quent crossing from the left for the same reason. Divide the steps in an A4,
path into four parts pi, p2, p3, ps. p1 consists of those steps from the first to
the first step reaching a. p consists of those steps from the first after p; to the
first step actually ending at —f. p; consists of those from the first after p; to
the first step ending at 0, and p, consists of the remainder. The path with steps
in the order p;, p3, p2, ps then crosses « + B. Moreover, this path reaches «
for the first time at the end of the p; steps, reaches a + B for the first time at
the end of the p; steps, and reaches 0 again for the first time at the end of the
p2 steps. From this we conclude that the original A, path can be reconstructed
from its image. Since the inverse mapping takes every path crossing o 4 B
into a path from A, , we find that the mapping is 1:1.



KOLMOGOROV DISTRIBUTION 517

Using the same idea, the class 4; can be put in 1:1 correspondence with the
class of paths crossing 2o + B at least once. In general,

= N(k, n, i(a + 8) — B) ifile+p8) — B = kn,
n{Azi-1}

=0 if i + B8) — B > kn.

= N, n,i(a + 8) — a) if i(la + B) — a < kn,
n{Bzi—1}

=0 if 2(a + B) — a > kn.

= n{By} = N(k, n, i(a + B)) if ¢(a + B8) = kn,
n{Az,-}

=0 if i(a + B8) > kn.

Since the total number of paths is <(k _; 1)n> , we therefore find

P(D- <y, D" <2)

—1( [(kntB)/(a+8)] [(knta)/(aif)]
-1- (’““)") > NUnia+p -8+ 2
(3) 7 im1 =1
[(kn) /[ a+8)]
NGk,n,5@+8) —a) =2 > N, n,ila + ﬁ))}.
7=1
if =1 £ —z2 <y =1wherea = —[—zkn], 3 = —[—ykn].

The computation for N (k, n, ) which follows is based on the work of Bache-
lier ([1], pp. 101-103). The author is indebted to Dr. Warren Hirsch for point-
ing out that the basic argument given for ¥ = 1 was to be found there and
could be extended to & > 1.

Observe that the paths cannot cross the point o before a steps, and that in
general a crossing can occur only after « 4 (k -+ 1)i steps where ¢ = 0, 1, 2,
-+« [n — a/k). The upper limit on ¢ is required by the fact that after the last
possible crossing the path must still have enough steps left to return to the
origin. Let M, be the total number of paths which cross at the « + (k + 1)z
step and let M; be the number of paths which cross at « 4+ (¢ 4 1)z, but. which
have crossed at some earlier step. In order to cross at the « + (& + 1)¢ step,
there must be a + ki positive steps to that point and ¢ negative ones. Let T';
denote the total number of ways of combining these a + k¢ positive and 7 nega-
tive steps in such a manner that the crossing at « + (¢ + 1) is the first cross-
ing. LeteM i denote the number of paths which at the « 4+ (¢ + 1)i — 1 step
are at a + k, and which at the o 4+ (& + 1)7 step cross the point .

In order for a path to be counted in either M; or M;, it must cross o for
the first time at one of the steps a + (¢ + 1)¢ for ¢ < j. Using this it is easy
to see that

=3 T,.((’“ +.1)_(j1— 1))((1c + D -5 - a)

i<g J n =7
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and
M= T.-<(’° +DG -1 - 1)<Uc + D -9 - a>.
i<i J—1—1 n—j

Since

. o . o -1

<(k +.l)(‘7. 1))((’c +.1)(‘7.— O 1) =k+41, we have
J— j—1—1
M;= (k+ 1)M;.

However, M; can be computed directly, since of the first (¢ + 1)j + « — 1
steps j — 1 must be negative, and of the remaining (k 4+ 1)(n — j) — «a steps

(after the negative step which takes the path to the point «) there must be
n — j negative:

o, =((k+ 1}3‘_+1a— 1)<(k+ 1)1fn_—jﬁ - a)’

Therefore, since

M, = <(k +1j+ a><(k + D —j) - ,,,)’

J n—17
M,-—M,-=[<(k+;)j+“>_(k+1)((k+1j)j_+1a—1>]
,((k + 1)7fn_—j - a)
_ (k+f§j+a<(k+ 11}j+a><(k+1)7fn_-}j) —a>.

Since M; — M is the number of paths which cross at the (k 4+ 1)j + « step
for the first time,

_ (n—a/k] a (](; + l)j + a (’C + 1)(’"’ - J) -«
v = % (PP T¢I ).

This proves Theorem 1.
. . . (k + D\ . .
We now investigate limy.e, n N(k, n, ia + pB). A straightforward
calculation shows that
lim ((k + 1)n>“‘((k + 1j + ia + pﬁ)((k + D — 5 — ia — p,s>
n J n—=j

_ <n> (5 + dzn + pyn)’((n — j) — d2n — pyn)™~?
J n* )

k»o0

Therefore,
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lim ((’“ + 1)")—IN(k, n, ia + pf)

k->00 n
(4) _ In=igasrvnl jon + pyn (n)
=0 7+ tan +pyn\J

n—j

(G + dzn + pyn)((n — ) — dzn — pyn,
nn

From (2), (3), and (4), using the fact that limi+» Gu(r) = F(z) uniformly
with probability one (Glivenko-Cantelli Theorem [5], p. 260), we see that

}‘im PD” <y,D" <2) = ’}im P(—y < Gu(s) — Fa(s) < zforalls)

= P(—y < F(s) — Fu(s) < zforalls)

(A+9) [(z49)] L(142) [(241)]
=1- 2 éaliz+ G — 1)y) —
T=1 t=1
(/@]

ou((i — Dz +dy) + 2 2, ¢aliz + 1p).

t=t

This completes the proof of Theorem 2.
It should be noted that

P(F(s) — Fu(s) < zforalls) =1 — ¢,(x),

and that this is exactly the result obtained by Smirnov [13]. In this paper Smir-
nov also outlines the technique whereby it may be shown that under the con-

ditions £ > zo > 0 and 2*//n = o(1),

()= (i1 o)

Combining this result with Theorem 2, we obtain the following corollary.
CorOLLARY 1. If 2 > 20 > 0,y > 4 >, 0 2°/4/n = o(1), and 4*/+/n =
0(1), then

P(—y/n'® < F(s) — Fn(s) < z/n'"for all s)

o0
olimt i1y 2 (i e olindimn2
=1— Z {6 2(iz+(i—1)y) + ¢ 2((i—Dz+iy)2 __ % 2(iz+1y) }
i=1

1

1 - y, . —2(iz+(i—1)y)?
+ o2 G+ G- Dy v
+ (G — Dz + gy)% 2 D=tw?
— 2(7/27 + iy)e—z(ixﬁy)’} _ 0[%’2 {(zx + (7/ . l)y)26—2(ix+(i—1),,)2

1

+ (G = Dz + @)’ — 20 + z'y>2e‘2""*""”}]
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Using similar techniques one may take the limit as n — « in the result of
Theorem 1. The computations become more complicated, and we will state
only a somewhat weaker version than can actually be obtained.

COROLLARY 2. For fixed x and y and k an integer,

P(—g%_%_—l < Qus) — F, (s) < g%z—lfor all s>

o1 3 (i Dn? | AG-Debi? _ o ~iatin? 1
1=t te % bt e on
.. . 2 1 _ 4 VEE + 1)z + (G — 1))

Gt Ol + (¢ — )z + 2y)

A2 - — 29VVEE+ DG = Ve + @) oot
21—k SETAN e
Vi + 1)
_ 49V nVk(e + 1) Gz + iy)“)> e.z(,-,+,~,,>z} n 0(;_)
V(E + 1) n/’
where the function Q(x) s defined by the equation
—[—z] = = + Q).
The special case k£ = 1 is treated in [7].
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