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1. Summary. This paper studies the large-sample power of certain rank order
tests against one-parameter alternatives in the two-sample problem.

The first m of N independent random variables are supposed identically dis-
tributed, each with a density function fi(z, 8), the remaining N — m with a
density function fo(z, 6). When 8 = 0 both density functions are the same.
Let am, -+ - , any be a set of constants defined by (3.2) below; let byy, -« , byx
be another set of constants; and let R;, - -+, Ry be the ranks of the N random
variables. A statistic of the type D i~ anbyr, is called an L statistic.

Part I of this paper characterizes the locally best rank order statistic for
testing Ho:6 = 0 against the alternative that 6 is positive and “close” to zero.
This turns out to be any one of an equivalent class of L statistics. Under certain
regularity conditions it is possible to determine the large-sample power of L
statistics. Of particular interest is the large-sample power of the locally best L
statistic.

For arbitrary by;, -+, byy it is usually difficult to determine whether the
regularity conditions hold. Hence, in Part II a special class of L statistics, the
L, statistics, are studied. For these, the regularity conditions are easier to
verify and the large-sample power is determined. The best L statistic can, in a
certain sense, be approximated by L, statistics.

Parr I

2. Large-sample power. Suppose it is known that for every positive integer N,
the joint ¢.d.f. of the random vector Xy = (Xm, -+, Xww) is 2 member of the
one-parameter class of ¢.d.f.’s, {Fys,0 < 6 < «}. That is, the distribution of
X~ depends on a nonnegative parameter 6.

Consider

(a) the hypotheses, Hy:0 = 0, H;:0 > 0,

(b) a statistic, ty = tv(X), and

(c) a decision procedure:

Accept Hy ifty < Cy,
Reject H, if ity > Cy.

Let Po( ) be the probability of the event in parentheses when 6 is the true
parameter. Then the power function of (2.1) is Pe{ty = Cx}, 0 = 0 £ . If
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ty is asymptotically normal and certain regularity conditions hold, then it is
easy to approximate this power for large N. This is done in Theorem 2.1, below.

The following notation is used: E,Y, Vary ¥ are the expectation and variance
of a random variable ¥ when 6 is the true parameter;

E'yy = al;;t";
{6(V)} is the sequence of parameter values,
0(N) = N2, §>0,N=1,2 .-,
&(z) is the normal (0, 1) c.d.f.; and Ay is defined by
A = (Cx — Eoltn))(Varo tn) ™

Tureorem 2.1. (Pitman)

ASSUMPTIONS.

(@) Poon{(ty — Eoanitn) Varsanty) ™ < s} = &(s) as N — » for any s and
any positive 8.

() Ey . exists for all 0 in a half-closed interval [0, a), where a does not depend
on N.

(¢) Exsan/Exo— 1, Varymiy/Vardy — 1, as N = w, for any positive 3.

(d) ExoN Vardy)™ — cas N = .

() Ay — N\, a8 N — o, where®(\) = 1 — a.

ConcrusioN. Choose any positive e and positive 8. Then there is an N’ = N'(e, 8)
such that

(2.2) | Pofty = Cx} — (1 — ®(\ — ON"%)) | < e.

for 6N'? = 5, and ol N = N'.

Proor. See [13].

REeMARKs ABoUT THEOREM 2.1:

(a) As justified by this theorem, 1 — ®(\ — dc) is called the large-sample power
of the test described by (2.1).

(b) The following is a slight extension that is useful later: The statistics ¢y
and ty are called asympiotically equivalent if (ty — Esanty) / (Varsmin)™?) —
(tx — Esanty) / (Varsanty)'®) converges in probability to zero, as N — « . Evi-
dently the large-sample power is the same using either ¢y or tx .

(c) Let iy, Iy be two competing statistics, the first based on sample size N,
the second based on sample size N. If

—Z =g, (¢ defined analogously to ¢),

as N, N — «, then the two large-sample powers will be the same. The number
e is called the asymptotic efficiency of Iy relative to iy .

3. Rank order tests. The remainder of this paper deals with rank order tests
in the two-sample prohlem. What this means is now made specific.
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AssumMpTIONA. Xy = (X1, *++ , X, Xmi1, ***  Xmin) consistsof m +n =N
independent random variables. The first m are identically distributed, each with
density function fi(z, 6); the remaining n are identically distributed, each with
density function fi(x, 8). These are density functions with respect to Lebesgue
measure on the real line, which satisfy the conditions

@3.1) filz, 0) = fulz, 0) = f(»), (—o <z < ).

Alsom/N - K, (0 < K <1),as N — o,
Assumption 4 holds throughout this paper even when not explicitly men-
tioned. The hypotheses considered are always

Hoy:0 =0, Hy:0>0.

DermTION 3.1. Let R; = the number of X, - -+, Xy that are less than or
equal to X; ; R;is called therank of X;,(z =1, -+ ,N).Let R = (R1, -+, Rx).

Assumption A implies that when 6§ = 0, the random vector R takes on for its
values each of the N! permutations of (1, - -+, N) with equal probability 1/N!.
(The assumption about density functions implies that X;, -+, X» have con-
tinuous c.d.f.’s, and hence ties among them occur with probability zero.)

Let the N! permutations of (1, - -+ , N) be ordered in some fixed way. Denote
these permutations by p1, P2, + -+ , par . Let S; be the set in N-space where the
random vector R equals p;.

Let S be any set of points in N-space which does not depend on 6. Let

(xy 6) = Hfl(xt ,0) H fo(5, 6),
d:c = H d:c,-,

Lo = [ 70 d.

By the carrier of a density function f(z) is meant the closure of the set of points
on the real line where f(x) > 0. The following assumption is stated for later

reference.
AssumptioN B. The carriers of fi(z, 8), fo(x, 8) do not depend on 6 and the
following differentiation under the integral sign is permissible:

Lo = [ Y&

dz.
[

Also I;(6) is a continuous function of 8 in some half-closed interval [0, a), @ > 0.

DerFINITION 3.2. A rank order test is a set W in N-space which is a union of
some of the sets Sy, --+, Syt . Ho is accepted if and only if the observed value
of Xxisin W. (In other words, the acceptance of H, depends only on the ranks.)
ty is called a rank order statistic if it is constant on each set S; . (In other words,
¢ty depends on Xy only through the ranks.)
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Theorem 3.1, below, states some obvious but useful facts about rank order
tests. The following notation is needed for Theorem 3.1: Let

' _0Py(8) .
Po(Sz)"TO=0 (Z-—l,"',N).
Let ¢’ be positive and let the two sets of integers (31, -+, %), (1, -+, j-) be
determined by the requirements that

Py(Syy) = +++ Z Per(S;,) 2 -+ Z Por(Siyy).

and
Py(8;) = ++- = Pu(S;,) = --- = Po(Siy)-

Let « = /N1
TreorEM 3.1. Assumptions A and B imply that
(a) A most powerful, size a, rank order test of Hy against the specific alternative

that @ = @' is given by
W=28,u---uls;,.

(b) There is a number §” = 6”(N) > 0 such that a uniformly most powerful
stze a, rank order test of Ho against the alternative, 0 < 6 < 6", is given by

W = 8,u--+ufj.

The proof is an immediate consequence of the definition of the sets (5, - - , 4,),
(jl, te ,jr)-

DermviTioN 3.3. Two statistics #v, tv are called equivalent (ty:ty) if
tx = aty + b, where a, (@ > 0), and b are constants which may depend on N. (It
is easy to verify that “:” is a bona fide equivalence relationship.)

Dermirion 3.4. A test W is said to be derived from a statistic ¢y if W is the
set of points in N-space for which ¢ty = C for some constant C.

If W is derived from ¢y and ty:ty , then W is also derived from #y . (This follows
immediately from the definitions.)

Theorem 3.2, below, gives the structure of a rank order test which is uniformly
most powerful for 8 close to 0. The following notation is introduced: Let Zy, <
Zys £ +++ < Zyn be the ordered values of X;, ---., Xy. Let

@ = LESwD| g - me) - me).

Let
N), =1, 00, m,

32) s = (n/m. )l 2 ) m
— (m/nN)"", i=m+1,--+,N.

(The facts that Zay; = 0, Za¥; = 1 are used later.) (2, without display of in-
dices, hereafter means ) i, .)
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THEOREM 3.2. Assumptions A and B imply that the test W’ of Theorem 3.1 s
derived from

(33) Iy = zaN.'EoH(Zg‘).

Proor. By differentiating and using Assumption B,
N

NIP(S;) = E EH\(Zwy) + 2. EoHx(Zwy,),
=l femmt1

where [y, - - - , Iy is the value of R on the set S;.

Set tn(X~) = N!Py(S;) for Xy in Sj, ({ = 1, -+, N!I). Next notice that
2E0H1(ZN,') = EEon(ZN.) = 0. This is because EEoHl(ZN,) = onHl(Xl)
and

69 Emx) = [ moa =5 [“reoa] =2 -

(Similarly for Hs.) Hence,
m N
te = 2 EoH(Zyz) = — 2, EH(Zxz),
fe=l fumm4-1 .
and

(3.5) tn = amt),v - aN,,...Ht‘,v = (N /mn)mtfv )

or ty:ty . This completes the proof.

ReEMARks oN THEOREM 3.2.

(a) Suppose fi(z, 9) is the density function of a normal (m; , ¢) random variable
(z = 1, 2) and that 8 = (my — m;)/o. Then the statistic ¢y of Theorem 3.2 is
equivalent to Zay;EZyz; , where the Zy; are the ordered values of N independent
normal (0, 1)- random variables. This was established differently by Hoeffding
in [4].

(b) This is an example that will be used later. Let f(x) be a density function
that does not depend on 8. Let F(z) = [Z_f(t)dt. Let

fl(x) 0) = f(x))
fi(z, 0) = 20F (2)f(z) + (1 — 6)f(x) 0=6=1)

(f: = d[6F* 4+ (1 — 6)F)). Then for 8 close to zero, Theorem 3.2 says the most
powerful test is derived from ty = Zay:EZxg, where Zy; < --- £ Zyy are the
ordered values of N independent random variables, uniformly distributed on
(0, 1). Since EZy; = i/N + 1, ty is equivalent to Zay:R;, which is equivalent
to the Wilcoxon-Mann-Whitney statistic. This result was found by Lehmann
by examining the probabilities Py(S;) (see [10]).

(c) It would be interesting to know when a test that is most powerful for
6 close to zero is uniformly most powerful for all 8 in a wider interval. Teichroew
[16] has presented some empirical evidence that this may be so in the normal case
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discussed in Remark (a). This writer has computational evidence of this in some
special cases. This is presumably an open problem.

DerFniTION 3.5. The statistic (3.3) is called the locally best rank order statistic
and the derived test is called the locally best rank order test.

4. The large-sample power of L tests.

DermviTiON 4.1. Let by, -+ -, byw be a set of constants given for every N.
Let am, - -+, ayx be defined by (3.2). The rank order statistic
4.1) tv = Zandyr;

is called an L statistic. A test W derived from ity is called an L test.

Theorem 3.2 states that the locally best rank order test is an L test.

Lemma 4.1, Let byy, -+« , byw ; baa, - -+, ban e two sets of constants given for
every N. Let by , by be the averages of the two sets of numbers. Then

Eo(Zanbyr,)(Candyr,) = Z(bys — bx)(by: — by)/N — 1.

This is proved by an elementary computation.

The next theorem gives some information about the large-sample power of a
rank order test derived from (4.1). It is assumed that =by; = 0. This involves
no loss of generality since it gives a ¢y equivalent to (4.1). It should be recalled
that Zy; £ -+ £ Zyy are the ordered values of Xy, :-+, Xx, and that by
Assumption A, m/N — K as N — =,

THEOREM 4.1.

ASSUMPTIONS.

(a) Assumptions A and B hold.

(b) Assumptions (a), (b), (¢) and (e) of Theorem 2.1 hold.

(¢) N7 ZbwiBoH (Zn:) — ¢/, N Zby; — (¢”)), as N — .

ConcrusioN. The large-sample power of the rank order test derived from (4.1) 18
1 — &\ — ON"c), where ¢ = K"*(1 — K)"*%'/c".

Proor. The only thing that needs to be verified is Condition (d) of Theorem
2.1, Let Iy, -+, Iy be the value of R on S;. Then

’ dEsty & ’
Eyo = % = (Saxibyi)Po(S;) / N1
(1] j=1
= (mn)"*N"*(N — 1) Zbw; EH (Zx:)
by (3.5) and by Lemma 4.1. Also Var ty = (N — 1)™ Zby by Lemma 4.1.
Hence

(E;ro) (N Val‘o tN)-uz - C.

ReEMARKS oN THEOREM 4.1.
(a) If £y is the locally best rank order statistic (according to Definition 3.5),
then

¢ = K1 — K)lim N S[EH (Zy)].



358 MEYER DWASS

Hoeffding has studied limits of this sort in [6]. His results involve restrictions,
some of which do not seem appropriate for the problem here. (The main restric-
tion requires the convexity of H(x).) A reasonable conjecture on the basis of
Hoeffding’s work in [6] is, however, that

NBEHZ) — [ H @)@ d, as N — w

(f is defined in (3.1)). This conjecture tends to be borne out by the work of Part
IT of this paper.

(b) Let (filx, 0), fo(z, 6)), (fi(z, 6), f2(x, 6)) be two (possibly different) sets of
alternatives. Let f(z) = fi(x, 0) = fo(z, 0) and let Ey, Zy;, H be defined in exact
analogy to Ey, Zy;, H. If the actual alternativeis (fi, f2) and the test is derived
from ty = Zay:EuH(Zy:), then

. EyH(Zy)EoH(Zys)
= K1I2 1 . K 1I21 N!.I2E 0 A _N'l 0 .
c ( ) N];I:: {E[EOH(ZIW)]Z}I”

Let F(z) = [Z.f(t) dt and suppose 2= p(t), the inverse of F(x) = ¢, exists. Make
analogous definitions of ¥, p. Since

) 1
[ B = [ mew) a,
a possible extension of the conjecture in Remark (a) would be that
1
N2EAEn)BH (Ze) = | BGOHG) dt
as N — o, in which case
1
[ BG@)HGCW) d
¢ =K"1 - K2 -
[ fo H(p(2)) dt]

This conjecture also tends to be borne out by the results of Part II of this paper.
(e) If

4.2) ty = Zanp(Ri/N),

where p(z) is a polynomial (0 £ z = 1), then it will be shown below that the
assumptions of Theorem 4.1 hold under easy conditions. The importance of
this approach is the following: Let r(z) be a continuous function on (0, 1) for
which 7(¢/N) = Eoh(Zy;). As r can be approximated by a polynomial p(x) of
high degree, it is reasonable that the large-sample power of the test derived from
(3.3) should be approximated by the large-sample power of the test derived from
(4.2). In Section 5, a heuristic upper bound is given for the large-sample power of
the locally best rank order test. In Part II it is shown that this upper bound can
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be approximated as closely as one pleases using rank order statistics of the form
(4.2), where p(x) is of sufficiently high degree.

6. A heuristic upper bound for the large-sample power of a rank order test.
By the Neyman Pearson lemma, an optimum statistic for testing H, against the
alternative of a specific 0 is

¥ filX;,0) 3 (X, 0)
G1) = L loer e T2 X 0
Of course, (5.1) is in general not a rank order statistic. As a sum of independent
random variables, (5.1) will under quite general circumstances be asymptotically
normal. Assuming that the conditions of Theorem 2.1 hold, a heuristic derivation
of the large-sample power of the test based on (5.1) is now given. (Notice that
here ¢y depends on 6, which is not the case in Theorem 2.1.)

2 _m [*log fiz,6) — log fi(z,0) filx,6) — fi(x,0)
(Botw — Bot)/Ne* = % [~ . - do

n [®log fo(x, 0) — log fu(z,0) filz,0) — fo(z,0)
Ty Lo 9 ’ 9 de.

Set 6 = 8N and assume that the limiting operations involved may be inter-
changed. Then

(Bats = Bat)/N6' — K [ B f@) do+ (1 = K) [ H@) 1) de,

5.2)

¢ as N — oo.
In a similar way one finds that Vary tv/N6" approaches the same limit. (The

computations use (3.4).) Hence,

2 _ .. (Boty — Eity)’
= zlvl.r.ri No? Varg tx

is equal to the right-hand side of (5.2). The Neyman-Pearson lemma implies that
1 — &\ — &c) is an upper bound for the large-sample power of the optimum
rank order test.

The alternative considered above is that the distribution of X;, ---, Xy is
determined by (fi(z, 6), fo(x, 6)). If one considers instead the alternative that the
random variables are distributed as 7'(X1), - - - , T(X») where T is an increasing
function, then there is no difference between the ranks of the X; and the ranks of
the T'(X;); hence, the power of one rank order test against either of these alterna-
tives is the same. Thus, the upper bound found above may be tightened if in the
alternative (fi(z, 6), fu(z, 0)), fi and f; are replaced by the density functions of
suitably transformed variables. In particular, suppose that the N random vari-
ables are distributed as

KFy(X:, 0) + (1 — K)Fy (X, 0) ¢G=1,---,N),
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where
Fi(z,0 = f fi(t, 0) dt, j=12.

Let f1 (z, 6), f2 (z, 6) be the density functions of the transformed random variables.
It is easy to verify that

(53) Kfi, 6) + (1 — K)f2(z, 6) = 1.

Hence, for purposes of obtaining an upper bound for the large-sample power of a
rank order test, there is no loss in supposing that (5.3) holds for fi, f: in the
earlier argument. An easy calculation shows that under condition (5.3) on fi, f2,

¢=Ku-K [ " B f(z) da.

Notice that this ties in with the conjecture of Remark (a), Theorem 4.1.

The development of this section is extremely heuristic and unrigorous. Suitable
regularity conditions can no doubt be put down to make everything correct.
Since the results of this section will not be used, the matter will be left as it is.
In the case of the usual examples of particular density functions, fi , f2 , the results
can often be verified directly.

Parr I1

6. U statistics. In this section, U statistics are studied in order to obtain in-
formation about the related statistics (4.2).

DErFINITION 6.1. Let u(xy, -+, Tp ; Tp41, =+ * » Totq) be a function of p + ¢
variables which is symmetric in the first p variables (that is, invariant under all
permutations of the labels 1, - - - , p) and which is symmetric in the last ¢ vari-
ables. Such a u will be called a (p, ¢) symmetric function.

Let oy, -+, ap; P, , B, bep + g integers subject to the restrictions

(6.1) 1f2y< - <ap=sm<m+1=2ph<---<B =N
There are, of course, <;1> sets of a’s and (Z) sets of B,'s satisfying (6.1).

DEeriNITION 6.2. Let

-1 -1
(6.2) U= <;n> (’;) SU(Xay, * y Xag; Xory - > X80,

where =’ means summation over all <:)1> (Z) choices of the indices, subject to

(6.1). Any statistic of the form (6.2) is called a U statistic. This generalizes the
terminology of Hoeffding [3], who studied the case ¢ = 0.

The first problem is to study the asymptotic normality of U statistics as
N — « (p, ¢ fixed). Under suitable regularity conditions, asymptotic normality
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was established by Hoeffding [3] for the case ¢ = 0 and by Lehmann [9] for the
case p = q. (Lehmann’s proof was, for simplicity, done for m = n.) What follows
admits the possibility that % may depend on N and that 6 may depend on N.
The methods are essentially those of Hoeffding in [3].

Let u, uy be two (p, ¢) symmetric functions. Assumption «, below, will pre-
scribe a certain sense in which uy — u as N — «. Let Uy denote the U statistic
determined by uy as in Definition 6.2. Let § = 6(N) be a function of N such
that 6(N) — 6 as N — o . (This includes the possibility that 8(N) = 6 for all N.)

DermNiTION 6.3.

UN,re = uN.r.a(xax y "ty Zap 3Ty "y xp,)

I

Eouy(ay , - ’xanxdrn: o ’Xap;zﬂn cery Xy Xﬂu-n"' ’ Xﬂq)
Myy = Euwes(Xayy o+ y Xap 3 Xpyy o+ » Xps) (this also equals Eguy)

o

Yo = Uy — My,

\I’N,O,r,a = UNyp,y — MN,G,
pro = E¥’xy ;
2
PN O = E¥ NJb,rs, r = 0, 1, crcyD; S = 0, 1, e, q.

By deleting the subscript N throughout, analogous definitions are made of
Urys s Mo, Wo, Wo,ray 0, Po,rs

Since X, - -+ , X, are identically distributed and Xm41, -+, Xx are identi-
cally distributed, the values of My, Mo, pn,0, po, p¥,6,r.s 5 Po,r,s d0o nOt depend
on the labels oy, +--, @p; B1, -+, By . It is understood that ¥, = ¥uy,
Wy.00 = 0. (A similar convention holds for N removed.)

ASSUMPTION a. N

MN,G d Mﬂo ) PN 0,78 > POg,r,s
asN—> o forr=0,1,---,p;8=0,1, ---, g. (Recall that § = 6(N).)
Let

m N
Yy = P(Km)—llz Zl Vyo1,0Xd) + ¢(1 — K)m, i .Z";H Wy,0,01(X5).

Evidently Vary Yy — (p°/H)psy.01 + (@*/1 — K)pgoo1 = L as N — =, by
Assumption c.
ASSUMPTION (.
Yy is asymptotically normal (0, L'*) as N — » and m/N —» K, (0 < K < 1).
Since Y is a sum of independent random variables, Assumption 3 is not very
restrictive. It will be satisfied, for instance, if u» converges in probability to
u as N — o and max(ps,.1 ; pss,10) > 0. (See [2], Theorem 3, p. 101.)
LemMa 6.1. Assumption o implies thot N Varo Uy — L, N Var, U — L, as
N — o, m/N — K.



362 MEYER DWASS

Proor.

-2 -2 m m
NVars Uy = N (7:’) (g) Z < z(r")Eo[‘I’N.O(Xﬂ ) ° 1Xap ;Xﬁn cte ,Xﬁ,)]

80 Teal
‘[‘I’N,O(Xc'l y 'ty Xa'p ) Xﬂ’; y Tty Xﬂ’q)])

where = means summation over those subscripts where exactly  equations
a; = a; are satisfied and exactly s equations 8; = B; are satisfied. Each term in

= is equal to py.s... and the number of such terms is (f) (7;: : f) (g) (Z)

(Z' : sq) <Z') . A similar expression holds for U. The required result follows on
taking limits.

THEOREM 6.1. Assumptions a and B imply that N"*Uly is asymptotically normal,
0, L"), as N — =,

Proor. It is sufficient to show that Es(N"*Uy — Yy)* = 0as N — . Let
Dy = N Vary Uy + Var, Yy — 2N EsUxYy . Consider the facts that

E¥y 000X ¥n0(Xay, oy Xap 3 Xoyy 200, Xap)

{P:v.o,l.oifz'is oneof ag, *++,ap,

0 otherwise;
and
PR FFFTIO.€)) 771 0. CHEEETIND. GHED CHARRRIND. €%
pro01if Zisoneof 1, -+, By,
- {0 otherwise.
Hence,

N"EUxYx = p"(N/mK)ox 01,0 + eWN/n(l — K))prs01
— (0"/K)pso.r0 + (@/1 — K)psgo.,
and Dy — 0 as N — .
7. L, statistics.

DermvTIoN 7.1. Let p(f) = bit + -+ + bi* (0 < ¢t < 1) be a polynomial
with real coefficients and let

(7.1) tv = Z anip(Ri/N).

Such a ty is called an L, statistic. (Notice that including a constant term in p(t)
gives an equivalent ¢y .) The test derived from ¢y is called an L, test.
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The main purpose of this section is to show that an L; statistic is a U statistic
and is asymptotically normally distributed. Define

1 ify >0,

c ]
) 0 ify £0.

N
Then with probability 1, B; = 1 + Z ¢(X; — X;) and

=l
R? = 2PBpe(Xs — Xj) -+ e(Xi — X)) + -+
+ 2(‘)B,,¢C(X.' = X)) - o(Xi — Xi) + .-
+ E(I)Bplc(Xi - Xi)

+ 1,
where 2 is summation over all subscripts satisfying1 £ 1 </ < -+ <ji = N
¢t =1,---, p). By depends on p and on t but not on N and not on 1. Since

¢(X; — Xi) = 0, it can be assumed that none of ji, - - -, j; is equal to 7. The

expansion of RBf makes use of the fact that ¢’(y) = c¢(y) (G =1,2,---).
Consider the ¢ + 1 integers ¢, j1, -+, j:. Let aa, + -+, @, be those that are a

subset of 1,---, m and let Bi, ---, By, be those that are a subset of

m+ 1,---, N.
DEeFINITION 7.2. Define w81, by

Np(prpt)—lug.};-)l-l—s(Xal sty Xags Xgyy oo, Xﬂt+l--)
= amic(X: — Xjp)e(Xi — X3,) -+ (X — Xj,)
+ anic(X5 — X)e(Xj — Xp) -0 olXy, — X,)

+’ aNJ'zc(X.‘it - Xh)c(Xj: - Xiz) e C(X.‘it - Xz'):
= ui® =0,
wh =1, 0=s=<t+1, O0=t=p.

Notice that u; 41, is an (s, £ + 1 — s) symmetric function (see Definition 6.1).
Consider the ¢ + 1 integers a; , 8; satisfying

(7.2) 1§o;1<---<a3§m; m+1§ﬁ1<'--<5,+1_.§N,
and the 2(h + 1) integers o} , 8; satisfying
(73) 1Sad < - <appusm; m+15p<-<pipusN.

The first set is called an associate of the second set if every ; is some o and
every B; is some 8; . Thus, any fixed set satisfying (7.2) is an associate of

<h _": l_j s) (n ;i;_*l_ :— s) different sets satisfying (7.3).
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DerinitioN 7.3. Define uy by

Niz(om -1 n _lu(X e X X, e, Xa )
h+4+1 h+1 N\Layg s y Yapyy s Apry y ABusy
h p t+1 -1 1
= n—t—1+s 1, (2)
pz—lt2030<h+1—s> ( h"'t-l-s > E’lh.t+l—:,

where 2” is summation over all the u{%};_, terms (for fixed s, ¢, p) whose indices
are associates of o1, *++, ahy1; B1, ***, Brtr-
DermNiTION 7.4.

m \ n ,
U”=(h+1> <h+1> 2'ux

where 2’ is summation over all sets of the 2(h + 1) indices satisfying (7.3).
The following theorem now follows directly from the constructions made

above.
THEOREM 7.1.

= N"Uy, where ty is given by (7.1).

LeMMA 7.1. uy has the following properties:

(a) The 2(h + 1)-dimensional space over which uy is defined is partitioned into a
finite number (which depends on h but not on N) of disjoint sets on each of which
Uy assumes a constant value.

(b) limyao 4y = uexistsas N - o, m/n—>K O<K <1

(e) uvisa (b + 1, h 4+ 1) symmetric function.

(d) Uy 1s a U statistic.

Proor. (a), (b), (c), (d) all follow from the constructions made in definitions

7.1 and 7.2. In particular,

. L R m n ) m—s )"
w = lmouy = ﬂ§1§<h+1><hv+1 <h+1—s

n—p—1+8—1 p—-1/2 sn , (D)
( h—p+s ) N~ Eu,,+1.,.

LeMMA 7.2. uy, u satisfy Assumption c.

This follows from (a) and (b) of Lemma 7.1.

As in Section 6, it is still supposed that § = 6(N) — 6 as N — «.
LemMma 7.3.

h
(@) Vanty— 3 bibgili +i+ DTG+ DTG+ DT =,

(b) Vargty = o asN — .
Proor or (a). By Lemma 4.1,
Vare ty = Z[p@/N)/(N — 1) — [Z p(i/N)I' / N(N — 1).
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The lemma follows from the fact that
N

2i/NP-1/r+1asN > » (r=1,2,:)

feml

ProoF oF (b). Because Assumption a is satisfied, Vary N2 Uy and Var, N**Uy
aplgroach the same limit as N — . The proof follows from the fact that &ty =
N"Uxy.

DEFINITION 7.5. Let Pi(z) = po + paz + -+ + pu’ (6 =0,1,2,-+)
be the system of orthogonal polynomials associated with the weight function
#* over (0, 1); that is,

1 10 1]
(74) f P@)Piz)dde ={ J.’
0 1, t=J.

In other words, {P;(x)z} is an orthonormal system. It is well known that this
orthonormal system is complete with respect to the Lebesgue square integrable
functions on (0, 1). For the very basic Hilbert space information needed in the
remainder of this paper, see [15].

DEeFINITION 7.6.

Poo o o0 .- 0
P = P:m pu 0 - 0

P10 Praag 0 <o Drapa

3 1 e Y492
A o YR+
1/(h+2) 1Yk +3) - 1/@h+1)
3 0
D = 5 . s
o B+,
3 b
s = % , b=
1/h+1 by

Any of the above matrix or vector symbols with a prime means a transpose.
Lemma 7.4. A is a positive definite matriz.
Proor. First notice that 1/ + j + 1, the (¢, 7)th element of A is equal to
[i P+ 22 4z, Hence, the orthogonality conditions (7.4) mean that
PAP' = I (the unit matrix).
Hence, P is nonsingular and
A =P7P7,
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which proves the positive definiteness of A. (The idea of this lemma was sug-
gested by [1].)

THEOREM 7.2. Suppose max (|by|, --+, |ba]) > 0and m/N - K 0 < K < 1)
as N — =,

Then

Po{(tx — Euty)(Varg ty)™* < s} — (s)

as N — . (Recall that 6 = 0(N).)

Proor. By Lemma 7.3, Varyty — o> = b’DADb. Hence, * > 0, since DAD
is positive definite by Lemma 7.4. By (a) and (b) of Lemma, 7.1, ux converges in
probability to u as N — «; hence assumption 3 is satisfied. (See the remark
following statement of Assumption B.) The required result follows from
Theorem 6.1.

8. The large-sample power of L, tests.
AssumprioN C.

0< [ H(z) fx) dz < o (Lebesgue integral).

Lemma 8.1. Assumptions A, B, C imply that

_0Ey(R;/N)’

(8.1) Nt Zay = " l; asN— o,

where
I = K21 — K" f HWF) f) dz, and F@) = [ 50 at

Proor. Let P;; be the probability that the random variable X; has rank ¢,
({,t=1,---, N). Then

m N N
Py =73 fol(xno) H falxi, 6) I1 d=:,
[251 t=m+1 . t==l
where [ is over the set where z;, < -+ < zj,_, < ; < j,,, < -+ < Zjy and
2’ is over all permutations ji, -+, e, Jeqr, +++ , jv of the N — 1 numbers
1,2+ ,t—1,t+1,--+,N.
An elementary but tedious computation shows that

aP.-, _ S5t N ° t—1 _ N—t¢
Pa| = woeyy (V) [ H@F@ 0 - F0)Y™ 160 d,

where
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Let y'” denote the factorial y(y — 1) --+ (y — 7 + 1). Then

R (6]
oF, (R; - 1) i t — 1 aP;
—_— t=1 Ni a6
a6 0=0

0—0

= 8N — 2)9ON [” H@F @) ) do

by another routine computation. The result of the theorem follows from the
evaluation of the limit of

N . an(R’ — 1)(1‘)/NJ

N*Y ax asN — o,

=1 a0 | 00 o

and from the fact that this limit must be the same as the limit of the left-hand
side of (8.1). (Notice that by Assumption C and by the Schwartz inequality the
integrals displayed above all exist.)
h
- ( ,
b

Drrmvition 8.1. Let
and define B by B’'B = DAD. (This factorization makes sense by Lemma.7.4.
Also, by the same lemma, B is nonsingular.)

The next theorem shows that the theorems on large-sample power can be
applied to Ly tests.

Tueorem 8.1.

ASSUMPTIONS :

() max {|bi], ---, |bal} > O, '

B) Ay — N, as N — o, where ®(\) = 1 — q,

(c) Assumptions A, B, and C hold.

ConcrusioN. The large-sample power of the test derived from (7.1) 1s
1 — &\ — &c), where

(8.2) ¢ = (V)(®'B'Bb)™ = (b'1)(b’DADb)™2,

Proor. The proof will follow by verifying the assumptions of Theorem 2.1:

Condition (a) of Theorem 2.1 holds by Theorem 7.2.

Conditions (b) and (c) of Theorem 2.1 hold by Theorem 7.1 and Lemma, 7.1.

Condition (d) of Theorem 2.1 together with the explicit value of ¢ follow from
Lemmas 7.3 and 8.1.

(Notice that it is no loss to suppose ¢ = 0, since otherwise the statistic —iy
could be used.)

CoroLLARY. The maximum large-sample power obtainable with a py-rank order
statistic 1s 1 — ®(\ — oc), where

¢ = [(DADY™,
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Proor. ¢ = (b'B’B'~'Iy(b'B’'Bb)™”. By Schwartz’s inequality,
¢ < (B'Bb)('B'B)(WB'Bb)™ = ('B'BY).
This maximum is achieved by choosing the coefficients of the polynomial p(t) as
b = (DAD)™L.

Dermirion 8.2. The L, statistic which maximizes the large-sample power
(for fixed h) is called the locally best L, statistic. The test derived from it is
called the locally best L, test.

AssumpTioN D. F(z) = [Z, f(f) d¢ is an increasing function of  whenever
F(z) is not zero or one.

Let F(z) = t. Assumption D implies that this function has a continuous
inverse,z = p(t) (0 <t < 1).

DEerFINITION 8.3.

90 = K1 — K" HG(),
60 = [ 4@ do ©<t<.
Since
[ 7w a = [ B6 @) a

Assumption C implies that g(f) is Lebesgue square integrable on (0, 1). What
follows also requires this to be true for G(t) / ¢t and Assumption E, below, is a
convenient way of insuring this.
. AssumpTioN E. G°(f) /t—0ast—c.

Lemma 8.2. Assumptions C and E imply that G(f) / t is Lebesgue square in-
tegrable on (0, 1).

Proor. G() is continuous and differentiable at any point of (¢, 1)
(0 < ¢ < 1), hence [ G*(t) /  dt exists. Differentiating by parts and using the
Schwartz inequality implies that

f‘ ) /Pl =~ [ e+ 2 f G0 d

S -G /e+2 [ f l GO dt]u2 [ f l g’ dt:lm.

The left-hand side of Assumption C implies that [f: G*(t)t* df]'* > 0; hence
dividing by this quantity gives the desired result.
Lemma 8.3. Let
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Let s(t) be a function on (0, 1) such that
1
v; =f s(t) dt (6=1,++-,h).
0

Then the vector

V1 Poo
Py = vl?lo + ve Pu

V1Pr-1,0 + VaDr1,1 F+ ¢ + U Dr-141

28 equal to

( fo ' Puis(t) dt

lfmdwm@dt

In other words, the jth element of Pv is the jth Fourier coefficient of s(t) with
respect to the orthonormal system {P.({)t}. The proof follows simply from the
fact that

1 i el ) j
fo Pi(t)ts(t) dt = Zo fo piit™ s(f) dt = _Z;,pjevﬂl.

Recall that the corollary to Theorem 8.1 says that the maximum large-sample
power obtainable with a ps-rank order statistic is

1—-&0\ —dc), &= [(DAD)'*

The fact that ¢ depends on A is now stressed by writing & .
Lemma 8.4. Assumptions C, D, and E imply that

1 L]
& — f g'() dt = K1 — K) [ H*(x) f(x) dr, ash— w.
0 0

Proor. Using integration by parts,
1 . 1 1 .
f b@®) — G® /4F dt = f g dt — f Gt dt
0 0 0

l I3
=fO+D£MMﬂ="W+Db

By Lemma 8.3, the vector PD ™ is the vector of the first 4 Fourier coefficients of
g(t) = G(¢) / t. Hence, by Parseval’s Theorem (see [15])

1
VDP'PDY — f b — G /& d, ash— .
0
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Integration by parts gives [54°(t) dt for this last integral, which proves the
lemma.

It should be noticed that Lemma 8.4 implies that Assumption (a) of Theorem
8.1 is satisfied when b = (DAD)™L.

The results of Theorem 8.1 and Lemma 8.4 can be summarized in the following
Theorem 8.2, which together with Theorem 8.3, might be considered the main
results of Part II of this paper.

TueOREM 8.2. Suppose Assumptions A through E hold and Ay — N as N — .

Let oi) be the power function of the best L, test. Choose any positive
e and a positive number 8. Then there is an N’ = N'(¢, 6) and an &' = h'(e, 6)
such that

les(0) — (1 — &\ — ON"¢)| < e

for 6N'? = 5, and all N = N".

1 1/2
= ( f g’ dt)
0
REMARKS ON THEOREM 8.2.

(a) Roughly, this theorem says that the large-sample power of the best L, test
approaches 1 — ®(\ — &c) as h, the order of p(f), is made large.

(b) This theorem lends credence to thé conjecture made in remark (a) of
Theorem 4.1. It is reasonable that the “polynomial approximation” to the best
rank order test should behave almost like the best test itself, but this does not
constitute a proof.

Let (fi(z, 6), fa(z, 0)), (fi(z, 6), fo(z, 6)) be two (possibly different) sets of
alternatives. Let §(t), G(t), H(x), I, 5(t) be defined analogously to g(f), G(t),
H(z), I, p().

TuEOREM 8.3. Suppose both sets of alternatives (f1, f2), (1, fo) satisfy Assump-
tions A through E.

Let Ty be the locally best Ly statistic against the alternative (f1, f2). Then, if the
true alternative is (f1, f2),

(a) the large-sample power of the test derived from Ty is 1 — ®(\ — dcs), where

e = ('(DAD)Y ™ )(W'(DAD)™' )™~
(b)
| o0a as

([roa]

Hence (in the sense described in Theorem 8.2), the large-sample power of the test
derived from Ty approaches 1 — ®(\ — &c) as the order of p(t) is made large.

¢ — = ¢, as h — o,
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Proor. Part (a) follows from Theorem 8.1 by setting the b vector in (8.2)
equal to g

b = (DAD)™l.
Part (b) follows from considerations exactly analogous to those used in proving
Lemma 8.4. The vectors PD™'] and PD '] are the vectors of the first h Fourier
coefficients of g(t) — G(¢) /t and §(¢) — G(¢) /¢, respectively, Hence, by Par-
seval’s theorem,

I'D7'P'PD7 — fo 1 lg@®) — q@) / dlgl) — G@) /] dt

= [ o000 @ ash— .

CoroOLLARY. If the locally best L statistic against (fi, f2) is an Ly statistic for
some h = k', then

o= ¢, for all h = K.

Proor. This is because the locally best L, statistic for all o = A’ must be
the locally best Ly statistic.

9. Applications and examples.

1. Location-parameter alternatives. Let fi(x, 6) = flx + mi(8)) (¢ = 1, 2),
where f(z) is a density function not depending on 6; m;(0) = m.(0) = O,
my(0) — ma(0) # 0. Let p(f) be the inverse of F(zx) = ¢ where F(z) = [%,f({) dt.

Evidently, the carrier of f(x) must be (—«, «) if Assumption B is to be
satisfied. (This, of course, is not sufficient for Assumption B.) It is easy to verify
that

9(t) = Df'(o(8)) / f(p(®)),
G(t) = Df(p(t)),  where D = (m1(0) — ma(0))K**(1 — K)*",
and that Conditions C through E hold if

0.1) [ @16 ds < =,

and f'(z) — 0 as x — — . (L’Hospital’s rule is used, together with the fact
that f(— ), f(«) must equal zero. It is easy to verify (9.1) for the normal
density function, for instance. For the usual pathological example, the Cauchy
distribution, these conditions can be shown to hold also.)

One can make quite similar remarks about scale-parameter alternatives,
where

1 z .
(92) fi(x, 0) = ;:(0—)f<;-:(—0—)->, and 0’1‘(0) = 1, 1= 1, 2.
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IL. Normal alternatives. Suppose fi(x, 6), fo(x, 6) are normal density functions,
(m1(6), 1), (m2(6), 1) respectively, where m; — my = 0. Then an easy calculation
shows that [ ¢°(f) dt = K(1 — K). For 6 > 0, there is a uniformly most powerful
similar test based on D 1y X;/m — D iompa Xi/n = Tx. As

Exno(N Var, Ty)™? — K*(1 — K)**

as N — o and § = 6N /2, it follows that the large-sample power of the locally
best Lj test is, for large h, arbitrarily close to the large-sample power of the test
based on Ty . :

In an exactly analogous way one can treat the scale-parameter alternative
with normal density functions. In that case, also, the locally best rank order
test has the same large-sample power as the test based on the F statistic.

IIL. The asymptotic efficiency of the Wilcoxon-Mann-Whitney statistic.”

Let fi(z, 6) = Jf(z), the uniform density on (0, 1), and let fy(z, 6) =
2(0)F (z)f(x) + (1 — 6)f(x). By Theorem 3.2, the best rank order statistic against
this alternative is equivalent to = ax:R:, which is equivalent to the Wilcoxon-
Mann-Whitney statistic [11]. This must then be the best L, statistic for all
h = 1. Let f1, f2, f be as described in Example I on location-parameter alterna-
tives. We consider the alternative given by density functions f , f2 . Let ty be the
locally best rank order statistic against that alternative. By Theorems 8.2 and
8.3 (Corollary) and an elementary calculation, the asymptotic efficiency of
3 an:R; relative to {y when the true alternative is fi , f» is the square of

03 [: (1 - 2F@) f'a) do | 2V/3 [: () da
" [Fo- v TG weT (LG T

The role of (f1, f>) can be dropped. The number (9.3) is the asymptotic efficiency
of 2 an:R; relative to ty where the true alternative is (f1, f2).

Letting (i, f;) be normal densities (m1(6), 1)(ms, (6), 1) where m;(6) —
ma(6) = 6, (9.3) turns out to be 4/3/x, hence the asymptotic efficiency is 3/x.
By (II), above, this is also the asymptotic efficiency of = ay:R; relative to the ¢
statistic. This result was apparently first given by Pitman in [14]. (See also
12].)

IV. A rank test for dispersien. In [12] Mood suggested a rank order statistic
(against a dispersion alternative) equivalent to = axi{R? — (N + 1)R.. This
statistic is asymptotically equivalent to

(9.4) = axi{(R:/ N)* — R:/ N].
(See Remark (b)), Theorem 2.1.)

? See Remark (c) to Theorem 2.1 for definition of efficiency.
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Let fu(z, 6) = (1 — 0)6[F(z) — F*(@)] f(z) + 6f(x),
Jo(z, 6) = f(x), the uniform density on (0, 1).
By Theorem 3.2 the best rank order statistic against (f1, f2) is asymptotically
equivalent to (9.4). Let ¢y be the best rank order statistic against the alternative
(f1, f2) described by (9.2). Theorems 8.2, 8.3 (Corollary), and an elementary

calculation show that the asymptotic efficiency of (9.4) relative to ¢y when
(fi, f2) is the true alternative is the square of

[ 6@ - F@ + D@r@ + 6 do
1 1/2 ®
([6¢ ~0+wa) ([ e +1@r /s is)
As in (III), above, the role of f; , f, can be dropped.

If for the alternative (fi, fz) as given by (9.2) f is the normal (0, 1) density
function and

9.5)

1y2°

a®) _
0'2(0)

(hence H; implies the variances are the same), then (9.5) becomes

1 -6

[ ©F@) - 6r'G) — D — 5@ do

| "6 — 6t + 1) dt) ( [ : @ — V%) dx)”

The integrals in the numerator are evaluated in [8]. By the remark at the end
of II, this is also the efficiency of (9.4) relative to the F statistic. This result was

given by Mood in [12].

7= V15/2x°.
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