THE WAGR SEQUENTIAL ¢{-TEST REACHES A DECISION
WITH PROBABILITY ONE!

By HerBrerT T. Davip? AnD Wirniam H. KRUSKAL
University of Chicago

0. Summary. The WAGR test? is a sequential procedure for testing the null
hypothesis that the proportion of a normal population greater than a given
constant is po (given) against the alternative that it is p: (given). These are
equivalent (after a translation) to hypotheses specifying the value of /s, where
u and ¢® are the mean and the variance of the normal population under test. We
prove that, with probability one, a decision is reached when the WAGR test
is applied. This fact is of importance in its own right; it also has indirect interest
because, unless it were true, the standard Wald inequalities on probabilities of
error at the two hypothesis points could not be applied.

1. Introduction. The WAGR sequential test for one-sided proportion defective
may formally be described as follows: Let X;, X», -++ be a sequence of in-
dependent identically distributed normal random variables with mean u and
variance ¢°. Let U be a given number. Let

n n 1/2
un = 2, (U — X (Z U - Xaz) :
=1 i
Let a and 8 be given numbers, between 0 and 1, such that « + 8 < 1. Define
for reference the inequality

(1.1) P <) <h 1- B,
l—a o
where
. ) 2 2 Hhyr(—u, Ky)
(1.2) L(u,) = 3(n — ua)(Ko — K1) +In (= Ky’
(13) Hh@) = [ Zexp =3+ o) &,
o v!

Received May 31, 1955.
1 This work was sponsored by the Army, Navy, and Air Force through the Joint Services

Advisory Committee for Research Groups in Applied Mathematics and Statistics by Con-
tract No. N6ori-02035 (NR 342 043).

2 Now at Towa State College, Ames, Iowa.
3 The name WAGR stems from the initials of those individuals who suggested and de-

veloped the test in question: A. Wald, K. Arnold, Goldberg ([4] p. 83n), and Rushton [8].
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for the special case in which po = % (i.e., » = 0 under the null hypothesis).

797

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Mathematical Statistics. IIKORS ®

i)

2
W2

WWWw.jstor.org



798 HERBERT T. DAVID AND WILLIAM H. KRUSKAL

and K; < K, are given. K; (¢ = 0, 1) is the unit-normal deviate exceeded with
given probability p; . It is no loss of generality to take po < p:1, and consequently
K1 < Ko .

Proceed by observing X; , X, , and computing . and l(us). If (1.1) is broken
at the left, accept Ho: (U — u)/oc = K, ;if (1.1) is broken at the right, accept
Hi: (U — w)/o = K;. If (1.1) is satisfied, observe X3, compute u; and Iz(us),
and look at (1.1) with » = 3. If (1.1) is broken, take the appropriate decision;
otherwise, continue taking observations, each time looking at (1.1), until (1.1)
is broken. When (1.1) is broken, stop taking observations. The rationale behind
the above procedure is discussed in [8], [1], and in Chapter 1 of [4].

It is important to know whether or not the WAGR test procedure as described
above will lead to a decision at finite n for almost every sample sequence, that is
with probability one, whatever (U — u)/o = K in fact happens to be. Were this
not the case, the WAGR test might not be a satisfactory statistical procedure,
and doubt would be thrown on the accuracy of the Wald approximation to the
probabilities of Type I and Type II errors. (This approximation says that the
probability of Type I error is approximately « and that the probability of Type
II error is approximately 8; its derivation depends on the knowledge that almost
every sample sequence leads to a decision at finite 7.) '

The proof to be given is rather direct. An alternative proof could no doubt be
obtained by the method used by Barnard [1], in which the WAGR test is thought
of as a limiting procedure in a sequence of tests each of which is a weighted se-
quential probability ratio test in the sense of Wald ([9], Section 4.2.2), weighted
by a distribution on population variance. Such a proof would depend on knowing
that the weighted sequential probability ratio tests mentioned in the last sen-
tence themselves reach decisions with probability one. Although Wald ([9],
Section 3.2) states that under general circumstances such weighted procedures
do reach a decision with probability one, so far as we know no exact statement or
proof of this has appeared in the literature.

It is also possible that a proof might be had along the lines expounded by
Nandi [7], but we are not able to follow Nandi’s arguments.

In order to prove that almost every sequence leads to decision at finite », it is
useful to rewrite I,(u,) in terms of the variable v, = u,/+/n. We shall feel free
to drop the subscript » when convenient. Then, letting » = n — 1, l,(u.), the
center of (1.1), becomes, in terms of v, ,

Hhv(" \/ 14 + 1 UnKl)
Hh(—~/v + 1 v, K)

(14) f 2 exp (=12 + 2V F 1 0. K)) dz

= T - KD + s :
2 exp (=3 + 2V + 10, Ko) dz

14

Pl - @& - k) + o

by =

Jo

It is known that for n (or ») fixed, I, as a function of v, is strictly monotone de-
creasing (see [5], and note that our v, is u of [5]). Also 5 < 1.
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Hence (1.1) is equivalent to
(1.5) 4

where 4, and R, are acceptance (accept Ho) and rejection (accept H;) numbers
for v, , functions of n, K; , and K, .
The first problem is to show that 4, and R, have the same limit as n — .
From this it will be possible to show that the probability of decision is unity.
Note that A, and R, are the solutions respectively of

v

v, = R,

(16) LAY =m-P @) =mi"8
1—«a «a

Hence if we can show that there exists a number L such that lim,.. ,() =
o(—w) asvis <(>)L, we may conclude that lim,., 4, = lim,..R, = L,
the desired result.

In order to show this it is essential to obtain asymptotic formulas for the
integrals appearing in (1.4). This is our first step.

2. Asymptotic formulas for the integrals of (1.4). This section is devoted to
the statement and proof of the following Lemma:
LeMma.

@©

/0 2 exp (=3 + 20/v + 1Kv) dz ~ \V/2x(z/e)” exp (37)
{1+ (VK22 ¥ 4 — Ko)’/4\7™?
as v — o, K and v are fixed and

Z2=3Vv + 1Kv + Vil + DKW + ».
The right side of the above asymptotic relation may be replaced by

V2r(z/e)” exp (32°) V2/(FE + v).

Since K and v always appear together in this section as a product, we may as
well set Kv = w. The integral of interest then is

(2.1) [D 2 exp (—32" + 2y + L w) dz.

The maximum of the integrand occurs at (differentiate)
(2.2) = rFlu+VIeF Dw +r
satisfying

(2.3) F—3Vrv+1lw—r=0

and suggesting the change of variable y = 2z — 2. Thus we may write

24) (21) = f: (y+2"exp—iy+2°"+ @+ DV + Lul dy
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or, by virtue of (2.3),

5 @ =7eop (- +2vitiw [ (1+2) oo (-t - v3)a
The factors preceding the integral equal, again using (2.3),

Z exp (—32 + 2 — ») = (2/e)" exp (£'/2).

It will suffice then to show that the integral in (2.5) has a limit, as v — «, equal
to the square root of the quantity in curly brackets in the statement of the

lemma.
Note that

s _ Vv + 1[ /‘/ 2 v ]
e e L Ty |
and hence that Z — « asv/». Now rewrite the integral of (2.5) in the form

(26) [ : ¢:(y) exp {——y +v [ln <1 + g) - g]}dy

where ¢;(y) = 0 or 1 as y < or = —2. It is readily checked that when —Z <
y < ™

1n(1+¥)—¥§0.
2 2
Hence, for all y,
0 = o:(y) eXp{—%zf + u[ln <1 + g) - i—/]} < exp (=319,

and exp (—3¢°) is integrable. Thus, by Lebesgue’s theorem, the limit of (2.6)
as » — o is the integral of the pointwise limit. But for each y

lim ¢;(y) exp{—%y2 + v [ln <1 + g) - —g—]} = exp [-—-%y2<1 + lim %)]
= exp {—3'[l + (Vu? + 4 — w)’/4]}.
Hence the limit of (2.6) is the square root of
2w
1+ (Vwr +4 — w)'/4
This gives the first asymptotic form of the lemma. The second is obtained by
noting that

lim (/v/%) = 2/(v/w* + 4 — w),
so that (2.6) is asymptotically equivalent to the square root of

-2
2r z

1+ &/@) rE
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For Kv = 0, the above lemma provides an asymptotic expression for the
Gamma function that is equivalent to Stirling’s formula. Similar methods have
been applied to obtain inequalities on the Gamma integral. See, for example:
J. R. Wilton, “A note on Stirling’s theorem,” Mathematical Notes (Edinburgh
Mathematical Society), No. 28 (1933), xii-xiii.

3. The limit of I, . From the lemma we see that for large » and fixed v, (1.4)
behaves like

z 5 1(K§—K§)+vln<§—;>+%(é§—2§)

4
@1 1. YT Ko £ VB F 47
-+ 5 In 1 ,
1+

[Kl?) + \/W]Z
where forz = 0, 1
B2 zZ = Vv + 1Ko + Vil + DK% + ».
For fixed v, the last term of (3.1) is a constant and the first three terms are of
order .
Hence, as the following quantity is positive or negative,
Ko+ VECE+4 | o2 g
21 =+ Ly(K7 — Ko)
Kov+\/K§vz+4 H ' °

+§{K1\/ T2 - 4 — Ko VK + 4

1, will have the limit + o or — «. (In obtaining (3.3), (2.3) is used.)

Next we wish to show that there exists a number L (|L| < 1) such that (3.3)
is positive (I, — «) for » < L and (3.3) is negative (I, — — ) for » > L.
Such an L will obviously be unique. The derivative of (3.3) with respect to v is

68  HEVEF - KVEE T4+ 5 K - KD,

We shall show that (3.4) is negative, that (3.3) is positive at v = —1, and that
(3.3) is negative at v = 1; these three facts suffice to show the existence of L
with the stated properties.

First, (3.4) is, for any fixed v, equal to f(K1) — f(K,), where

I R
(3.3)

(3.5) f(K) = {EVE? + 4 + K.
Since
(36) A K) = (VR F 4+ Kol /B 4 >0,

and K; < K, by hypothesis, (3.4) is negative for all v.
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Second, (3.3) evaluated for v = —1 is equal to g(K;) — g(K,), where
@7 9K = -3iK+h[-K+ VK +4] - 1 KVEK + 4.

Since
(38) 2gE) = —3[K + VE ¥ 4] <0,

and K; < Ky, (3.3) at v = —1 is positive.
Third, (3.3) evaluated at v = 1 is equal to h(K;) — h(K,), where
(3.9) MK) = —tK' 4+ In[K + VK + 4] + 1 KVK? + 4.

Since
(3.10) d% MK) = K + VK> + 4] > 0,

and K; < K;, (3.3) at v = 1 is negative.

This completes the proof that L exists and lies between —1 and 1. Although
we do not need the information here, the sign of L may readily be found by evalu-
ating (3.3) at v = 0. For there, (3.3) is just (Ki — K3)/2. Hence

if Ky + Ko > 0, 0<L<l;
ifK1+Ko=0, L=O;
if Ki + Ky < 0, —-1<L<O.

One might expect L always to lie between Ko/v/1 + K: and Ki/+/1 + K2,
since these are the stochastic limits of v, under Hy and H, , respectively. How-
ever, this does not seem to be the case in general.

4. Proof that the probability of decision is one. It is now easy to prove that
the WAGR test reaches a decision with probability one for every value of K
save one. An immediate method is to note that v, = u,/A/n converges almost
everywhere to K/4/1 + K2. Hence for every value of K except one, v, will,
for large enough n (depending on K) have crossed a decision limit. Were the
probability of no decision positive, this would contradict the strong conver-
gence of v, . The one exception is the case for which K/4/1 + K2 = L.

An alternative argument follows that of Cox [2]. We note that

un — VnK/AV/1+ K
V(1 + 3K)/(1 + K?)?

converges in distribution to the unit-normal distribution. This follows from the
delta method theorem applied to u, in terms of sample mean and variance for
the (U — X,)’s.

Hence the probability that v, lies in the interval [R, , A,], which is the same as
the probability that u, lies in the interval [\/nR, , v/nA.], becomes arbitrarily

(4.1)
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close, by uniformity of convergence, to

(42 o (Vb o VAK/VIER) _ o (Valka VIE/VIEE)
VI IR0+ B VI +3B/0 + B

Now, provided L is not KA/1 + K2, (4.2) — 0, for both terms together approach

either one or zero. But the probability that decision is not reached by n is = the
probability that R, < v, £ A4,, and this has the limit zero.

5. Special argument if K is such that the common limit of 4, and R, is
K/~/1 4 K2 The above arguments fail if L is K/4/1 4+ K2, and it then becomes
necessary to look at the speed of convergence.

If we differentiate (1.4) with respect to v, , we obtain
[ 2Mexp (=3 + 2y + 10, Ky) dz
(5.1) KV + 15—

A 2 exp (=3 + 2y + 1 v.Ky) dz

minus a similar quantity with K; replaced by K, . Following the same argument
as that in Section 3, but with Z replaced by z,

(5.2) 2=3Vv + 1Kv. + Vil + DK + (v + 1),
where
(5.3) 2 — 2V + 1Kv, — (v + 1) = 0,
we find that (5.1) for large » behaves like
(5.4) KV + 1% (2) exp [3(z1 — ) — 1],
where %, is 2 for K = K. Now, letting wy, = v,K;,
(5.5) lim (?) = exp [2(wiV/w? + 4 + wi + 4)7]
1
and
(56) lim (3 — ) = 1+ e
) 1m (21 c1) = \/m.

It follows that the derivative of (1.4) with respect to v, , divided by » 4+ 1,
has the limit
(6.7) Kifwr + Vwi 4 4] — 3Kowo + Vw§ + 4,

where wo = v,K,. Call this limit A(vs); we shall assume that A(L) < 0 and
demonstrate this later. ,
By the law of the mean

1—-81—a
‘“(—ﬁ“— =)
(An—Rn)n

(5.8) = %& X [Derivative of (1.4) at v, = 6],
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where 6 lies between A, and R, . Now A(v,) is negative in some interval about
v. = L, by the assumption of the last paragraph and the continuity of (5.7).
Hence the right side of (5.8) has the negative limit A(L) as n — . Hence
lim n(4, — R,) = constant and lim »,(4, — R,) = 0. Thus the argument at the
end of Section 4 applies.

It remains to show that A(L) < 0. This follows directly from the observation
that the partial derivative with respect to K of K[Kv + A/ K%? 4+ 4] is positive.

6. Further comments. The question of whether or not a decision is reached with
probability one may be asked, not only about the WAGR test itself, but also
about each of the several approximations to it that have been suggested.

For example, Wallis ({4], Chapter 1) suggested a sequential procedure that
approximates the WAGR test in a manner described by Kruskal [6]. It may be
shown relatively easily that the Wallis procedure leads to a decision with prob-
ability one. Other approximations have been suggested by Kruskal [6], but for
them the probabilities of decision have not been investigated. Rushton [8]
suggests three approximations to the WAGR test, but we know of no theoretical
work on their properties.

It may be noted that the asymptotic expressions of this paper suggest still
another approximation to the WAGR test, namely the use of (3.1) as an ap-
proximation to I, .

Although we have shown that 4, and R, converge to the same limit asn — «,
nothing has been said about monotonicity of approach. One feels that A4, should
approach L from above and R, from below monotonely. However, consideration
of the crossing point of I, and ,,; suggests that this cannot be true for all o’s
and @’s. It may very likely be true, for given « and 8, when n is sufficiently large;
and again it may be true for all n if @ and g are restricted. These seem to be open
questions.

We feel that the conclusions of this paper should become a special case of
some much more general results. Perhaps when they do, questions such as those
of the above paragraph will become more easily handled.
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