THE ADMISSIBILITY OF HOTELLING’S 7%-TEST

By CHARLES STEIN

Stanford Unaversity

1. Summary. In Section 3 we shall prove a theorem based on a method of
A. Birnbaum [1] and E. Lehmann concerning the admissibility of certain tests
of simple hypotheses in multivariate exponential families. In Section 4 we
compute the supporting hyperplanes of the convex acceptance region in some of
the most common applications of Hotelling’s T?-test and show that the theorem
of Section 3 implies the admissibility of this test. In Section 5 we point out some
of the limitations of the method of this paper.

2. Introduction. We recall the definition of admissibility of a statistical test.
Let & be a set, ® a s-algebra of subsets of %, © a set, 6, a nonempty proper
subset of 6, and for each 6 ¢ 0, let P; be a probability measure on . We observe
a random element X distributed in % according to Py, with 6 an unknown
element of ©, and we want to test the hypothesis Hy: 0 ¢ 0. A test isa &-
measurable function ¢ on & to the closed interval [0, 1], with the interpretation
that if we observe X, we reject Ho with probability ¢(X). The test ¢ is said to
be admissible if there does not exist a test ¢ such that

(1) /fp dPyy £ [ o APy, for all 6, € 6y,

@) f¢dpogf¢odpo forall f @ — 6y,

with strict inequality for some 6, ¢ O, or some § € © — 6y ; i.e., a ¢ which has a
smaller probability of error for some parameter point and does not have a larger
probability of error for any parameter point.

An exponential family consists of a finite-dimensional real linear space &, a
measure u on the o-algebra & of all ordinary Borel subsets of &, a subset © of
the adjoint space &’ (the linear space of all real-valued linear functions on )
such that for all £ € ©

®) Q) = [ o du@) < w,
and P, the function on © to the set of probability measures on ® given by
1
4 Py(A) = — | € du(x),
@) ((4) = oo [ o )

for all A ¢ ®.
It is well known that any set of nonsingular multivariate normal distribu-

tions in the same space can be expressed as an exponential family. If ¥ =
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(Yy --- Y,) is a random p-dimensional column vector (written horizontally to
facilitate printing) normally distributed with mean g, and nonsingular co-
variance matrix sy, its density (with respect to ordinary Lebesgue measure in
p-space) is

1

Gt syt P - — 905ty — )] '

(5)
_ exp(=$y057%0)
@m)*P(det so)

We take & to be the (p + p(p + 1)/2)-dimensional real linear space of pairs
(y, s) with s a symmetric p X p matrix and denote by (y, T') with 4 a p-di-
mensional vector and T' a symmetric p X p matrix the element of %’ defined by

(6) (n, T)(y, 8) = n'y — 3 tr Ts.

Let f be the mapping of Y (the space of p-dimensional vectors) into & given by
Q) @ = @, v,

let » be ordinary Lebesgue measure in ¢, and let u, defined by

(8) w(d) = »(4),

be the induced measure in X. Let © be the set of (, T') ¢ X’ with T' positive
definite, and define P, r) by (4). Then (X, u, 6, P) is an exponential family
and P, is the distribution of (¥, YY) if we put

exp {(yosa)y — % tr [so (yy")]}.

9) T=s, 7==5"4.

Since the function f is 1 — 1 and preserves measurability (and is therefore
sufficient), this shows that the set of all nonsingular normal distributions in
p-space (and therefore any subset) is an exponential family.

3. A theorem on admissibility for tests in exponential families.

TaEOREM: Let (X, p, ©, P) be an exponential family and 6o a nonempty proper
subset of 6. Let A be a closed convex subset of X such that for every & € X' and real
¢ for which

(10) {x:tx > ¢} n A = ¢ (the emply set)

there exists 6, € © = {£: [ e¥du(z) < o) such that there exist arbitrarily large \
for which 6, + A € © — Oq. Then the test ¢o, defined by

a1 w0 ={ in

7.6.,

(12) oo(x) = 1 — x4(2),
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18 admissible for testing the hypothesis that a random element X of X ¢s distributed
according to some Py with 0 & Oy against the alternatives § € © — 6, .

The reader will observe that the theorem essentially gives conditions under
which a test is admissible for testing any simple hypothesis in the given expo-
nential family. However, the above statement is more convenient for the appli-
cation we are going to make. This theorem is an extension of a result and method
of proof which appeared in a first draft of Birnbaum [1], suggested, I believe, by
E. Lehmann. It is related to Theorem 3 in the final version of Birnbaum’s
paper.

Proor. We shall suppose a test ¢ strictly better than ¢ and obtain a contra-
diction. Thus, suppose

(13) [ @ dPu@) = [ 11 — xu(o) dPoa),

(14) [ e@ aPi@) = [ 1 - @) dPsa)

for all 8y € 6 and 6 ¢ © — Oy, with strict inequality for at least one 6 £ 6
orone f £ © — 6. By (13),

(15) J 1 = %@ = o@) dPu@ 2 0,

so that, since Py and u are mutually absolutely continuous for any 6 ¢ 0 either

(16) u{zil — xa(x) — o(z) # 0} = 0,
or
(17 u{z:l — xa(2) — o(x) > 0} > 0.

Since (16) would imply equality everywhere in (13) and (14), it is impossible.
But

(18) {z:1 — xa(x) — () > 0} = 4" n B,
where A’ is the complement of A and
(19) B = {z:p(x) < 1}.

Cover A’ with a denumerable collection § of open half-spaces disjoint from A.
Then, by (17) and (18), for some half-space S = {z:fx > ¢} ¢ 8,

(20) wA’'nBnS)>0.
By hypothesis there exist 6, ¢  and arbitrarily large A > 0 such that
(21) =0+ A\eO — 0.
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Then
[ 1= %@ = @) dPy @)

- ﬁ f [1 — x4(2) — p(@)]e™ du(z)

- % [ — x4(@) — o(@)]e dPy,(x)

= 080 [ 1 - @) — @1 aPu @)

N 583 e {f{m»c’ [1 — xa(x) — o(x)] &7 dPy,(z)

[ e 1= 0 = @ apo @)
{z:¢z=¢)

(22)

Since the first integral in the final expression approaches +« as A — 4+« and
the second is bounded, this is >0 for sufficiently large A, contradicting (14).

4. Admissibility of Hotelling’s 7T-test. Let ¥, Z,, -+, Z,, Uy -+, U,
be independently normally distributed random p-dimensional vectors (with
p = n) with means given by

(23) &Y =y, 8Z; = 2z, gU;, =0

and common unknown, nonsingular covariance matrix so. Suppose 7o and the
zjo are also unknown. Hotelling’s T"-test for the hypothesis Ho:yo = 0 is to
accept H, if and only if

(24) Y(YY' + D UUDTY L ¢,

where the positive constant ¢ is chosen so as to give the desired significance
level. We shall show that this test is admissible as a test against unrestricted
alternatives.

The joint probability density function of Y, Z,, --- , Z,, Uy, --- , U,
(with respect to ordinary Lebesgue measure » in the (m + n + 1)p-dimensional
coordinate space) is

exp { —3lyoso yo + > Ziosy 2al }
(25) (21r)("'+"+1)1’/2(det 80) (m+n+1) /2
Xexp { —3 tr 5o’ D wiui + 2 z2i + yy'l + vosa'y + X 2hoso ai) -
Thus the given family of distributions is equivalent to an exponential family
(x, u, ©, P). X is the [p(p + 1)/2 + (m + 1)p]-dimensional space of all

(s,Y,21, -+, 2m), where s is a symmetric p X p matrix and y, 2, - - , 2, are
p-dimensional vectors. The measure u is given by

(26) w(4d) = »(f'4),
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where f is the function on the original (m + n + 1)p-dimensional space to <,
defined by

(27) f(yyzl, Tty RBmy UL, 7un) = (Zumﬁ + ZZJZ; +?/?/',?/,31, yzm)-
It is convenient to designate by (T, #, {1, -+ , ¢m), with T'a p X p symmetric
matrix and 9, {1, --- , {mp-dimensional vectors, the element of the adjoint
space X', defined by

(28) (I‘, "77;17 o )K.M)(S’yyzl) e ,Zm) = —%tl‘ I's + ?7’?/+ Efgzl

The parameter space © consists of the (T, %, {1, -+ , ¢m), With I' positive
definite. The correspondence between this designation of the parameter point
and that in terms of (so, %o, 210, **+ , Zmo) is given by

(29) I'=s', n=s'%, {=s%n.

P is the function given by

1

P vtm(A) = ———————
(T8, .i'm)( ) al/(r,ﬂ,fl,"’,g.m)

(30)
° /AGXP [(I"'r”{l: "',g.m)(s’ Y, 2, "',Z,,,)] d:u(s’yyzly "':zm)'

In terms of the sample point in %, the acceptance region for Hotelling’s
T*-test is
{(5,9,21, -+ , 2m)i8 — 2 2,2 is positive definite
and y'(s — D 22) 'y < ¢}-

LemMa. The set (31) is contained in the intersection of all half-spaces of the form

31)

2
(32) {(8, Yy 21, * oy Zm) i Y + Z kin'z; — & trmy's < gj:z_ZJ&}
and those of the form
2
(33) {(s,y,zl,...,zm):zkj,,’z]._ 1 tr nr's éz—zk“’},
7

where n ranges over the set of all p-dimensional vectors different from 0 and
ki, -+, km range over the real line. Also (31) differs from this intersection by a set
of probability 0.

We first show that any point (s, ¥, 21, - , 2x) in the set (31) lies in each of
these half-spaces. Since s — . z,2; is positive definite, we have, by Schwarz’

inequality

> kin'z;

IIA

V2KV (')

34 )
(84) SEY K+ Stran' Dz S 1Dk + 3 troan's,

so that (33) holds.
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Since y'(s — D.2) 'y < ¢, we have, again by Schwarz’ inequality,
Wy + L'z £ Vn's — 2zdn)nVy' (s — ey

+ V208V 2o (')

In'(s — Xeim + 3y'(s — 22y

+ 3208 + 32’2

< Htr gn's + ¢ + 22K,

so that (32) holds. Thus, (31) is contained in the intersection of all sets of the
form (32) and (33).

Next, consider a point (s, ¥, 21, - -+ , 2») for which (32) and (33) hold for all
nand ky, -+, k. Putting k; = #’z; in (33), we obtain

35)

IIA

! 2
S (z)’ — Strm's £ ;(gﬁ)—,

ie.,
(36) tr gq’(s — Zz,z;) = 0.

Since (36) holds for all %, it follows that s — > 2;¢; is positive semidefinite, and
thus, except for a set of probability 0, positive definite. Then by (32), with

ki = n'z;,
Wy + 2 (n'z;)" — dtrgn's < 3le + 22 ('),
so that
'y < e+ 3roan'(s — 20 2525)].
With
n = (s — 2 2) Y,

this becomes
(37) y'(s — D zey) Ty < % + 3 (s — 2 =)y,

which shows that the given point is in the set (31).

We return to the proof of the admissibility of Hotelling’s T -test. The set
(31) is essentially the intersection of all sets of the form (32) and (33) whose
defining relations can be rewritten in the notation of (28)

(38) ("777'7 m kln’ T 7‘7m71)(3, Yy 21, ", Zm) = %[C + Z kﬂz]
(39) (7777,7 0, kg --- km"l)(sy Yy 21, " zm) = %Z kf-
Thus, if £ = (T, 9, &1, , {w) is any point in &’ for which

(40) {wigr > clnd = ¢,
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where A is the intersection of the half-spaces mentioned in the lemma, then £
must be a limit of positive linear combinations of elements of the form (38) or
(39). In particular, T must be positive semidefinite. Consequently, for any
parameter point,

O @) (D ¢V}
01=(F s 381, 0y m

and any A > 0, the first component I'® 4 AT of 6, + \¢ must be positive defi-
nite and, for sufficiently large A, the second component ™ -4 An must be dif-
ferent from 0. The theorem of Section 3 enables us to conclude that 4 is an
admissible acceptance region.

5. Limitations of the method. Examining the proof of the theorem of Section
3 and the end of the proof of Section 4, we see that, in showing that for any
test essentially different from a 7T°-test but of the same size, there exists an
alternative for which the other test is worse, we have looked at parameter
points which are arbitrarily far out, in particular, points for which 4Ty =
Yoo 7o is arbitrarily large. How large this has to be taken depends on the test
with which we are comparing the T?test. This is unsatisfactory, since it leaves
open the possibility that there is a test which is appreciably better than Hotel-
ling’s T*-test for all values of 4TIy which are of practical importance and
worse only where both tests have power very close to 1.

A question which comes closer to answering our concerns in practice
is whether Hotelling’s T"-test is admissible for testing H, against the class of
alternatives n'T'n = \, with A a given positive constant. The methods of this
paper are completely inadequate for this purpose. In the case p = 1, m = 0
(Student’s ¢-test with no unknown means as nuisance parameters), the affirma-
tive answer is given in Lehmann and Stein [2]. For p = 2 or m > 0 the answer
is unknown. For p = 2 it is not even known whether the appropriate T*-test is
minimax for the problem of testing against a given »'I'™'y, with constant losses
a, b > 0 for errors of the first and second kinds. An example by the author [4]
shows that this does not follow from the invariance of the problem under the
full linear group and the minimax property of Hotelling’s T"-test among all
invariant tests. The strongest known optimum property of Hotelling’s T*-test
seems to be that of Simaika [3] that of all tests whose power depends only on
7Ty, it is uniformly most powerful.

Nevertheless, it is clear that, in most applications, Hotelling’s T"-test cannot
be substantially improved upon for all 5, T' with 'T""y fixed. For if n/p is large,
the test is nearly equivalent to the x’-test which results if one knows I'. This
x’-test is of course admissible against such alternatives. The proof is essentially
given by Wald [5].

For some common multivariate tests of composite hypotheses, the methods
of the present paper give no information. For example, let Yy, ---, ¥, , with
n Z p, be independently normally distributed random p-dimensional vectors
with mean 0 and unknown nonsingular covariance matrix s, . Suppose we want
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to test the hypothesis that the first coordinate of the Y; is independent of the
last (p — 1) coordinates, i.e., that sps = 0, where

(41) & = <so11 8312>

Soi2  Soz2
with sg; a1 X 1 matrix. The usual test is to accept H, if the sample multiple
correlation coefficient is small, i.e., if

(42) 81287812 < ¢Su,

where S = D_; ¥;¥; . By a calculation analogous to that of the lemma in Sec-
tion 4, one can show that the convex cone determined by (42) differs by a set
of probability 0 from the intersection of all half-spaces of the form

(43) {s:—csu + 28'spp — tr £E's, = 0},

where £ ranges over the set of all non-zero (p — 1)-dimensional vectors. How-

is not positive semidefinite for ¢ < 1, the only case of interest. A similar argu-
ment shows that the methods of this paper can never prove the admissibility
of an acceptance region which is a cone when the alternative hypothesis is a
subset of the class of normal distributions with mean 0.
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