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To see that ¢ is the best possible, consider the case of the sequence {z,} in-
dependently distributed, each taking the values 41 with probabilities %, 1.
It follows from a result of Chernoff [3] that

Pr{x,+---+m,.gne}”"—>¢ as n— o,
so that our ¢ is exact.
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A REMARK ON THE ROOTS OF THE MAXIMUM LIKELIHOOD
EQUATION

By C. Krarr aAND L. LECaM!
University of California, Berkeley

1. Introduction and summary. The statistical literature combines two types
of investigations concerning the consistency of maximum likelihood (M.L.)
estimates. A few of these, such as the most excellent paper of A. Wald [1], do
prove directly the consistency of M.L. estimates. However, most investigators
seem to have concentrated their efforts on proving the existence and consistency
of suitably selected roots of the successive likelihood equations. Some authors,
see [2], for example, add the supplementary remark that such consistent roots
will eventually be unique in suitably small neighborhoods of the true value and
will achieve a local maximum.

It is the purpose of the present note to point out by means of examples that
this second mode of attack is not adequate. In the examples given below, the
‘“usual regularity conditions” of Cramér [3] or Wald [4] are satisfied, but the
M.L. estimates are not consistent. It should also be pointed out that the direct
proofs of existence of roots, simple in the case of a unidimensional parameter,
become unwieldy in more than one dimension. On the other hand, if one has
proved the consistency of the M.L. estimates, the existence of roots follows
trivially from the fact that when a differentiable function reaches its maximum
in an open set, the derivatives vanish at that point.

2. Examples with independent identically distributed variables. The first
example given below has the following characteristics:
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(1) Cramér’s conditions are satisfied and the condition of identifiability is
satisfied.

(2) The likelihood equation has roots.

(3) The M.L. estimate does not exist, except maybe for sets of sample points
of measure zero.

(4) There exist consistent estimates. (See Section 3, below.)

For every nonnegative integer k, let A; be the open interval

A = (2k, 2k + 1).

Let © = Uy 4s, and let {a}, k = 0,1,2, --- , be an arbitrary ordering of
the rationals of the interval (1, 2). Define p(8) = ai if 6c Ax . For each 0 ¢ 6,
let the vector (X, Y) have a normal distribution with E(X | ) = p(68) cos 26
and E(Y | 0) = p(0) sin 270, and covariance matrix the identity. If {(X,, Y.)},
1=1,2 ---,n---, is a sequence of independent random vectors with the
distribution of (X, Y), the logarithm of the probability density of the first n
observation is given by

—21log pn = Kn + n[X. — p(6) cos 2x6)* + n[¥, — p(8) sin 28],

where (X, , ¥,) is the sample mean. _ _
Defining 7, > 0 and ¢,, 0 < ¢x < 1, by X, = 1, cos 2mp, and Y, = 7,
sin 2mwen, the above equation can also be written as

—21log pa = nlog 2w + [rn — p(O)] + 2rap(0)[1 — cos 27(6 — ¢,)].

Accordingly, the likelihood equation is 7, sin 2m(6 — ¢,) = 0. Therefore, all
values of the form 6 = ¢, + k/2 which belong to © are solutions of the likeli-
hood equation. However, if 7, is not rational, the M.L. estimate does not exist,
since p(#) can be chosen close to r, but not equal to it.

One could define approximate maximum likelihood estimates as follows. Let
{ea} be a sequence of positive numbers tending to zero. For each =, let S, be the
set of values of 6 such that

stugp»(xl,xz, ooz | t) S (14 e)palmr, -+, 24 | 6).

Since every interval, however small, contains an infinity of rationals, for every
e, > 0, the set S, will, in our example, have elements in common with an in-
finite number of the intervals A , and therefore the sequence {S,} cannot con-
verge to a point. ‘

One might object to the preceding example for two reasons. In the usual
proofs of “consistency’” of roots of the M.L. equation, it is assumed that the
random variables are real-valued. However, this assumption is irrelevant to the
proofs given, so that the bivariate character of the example is no detraction. It
is, of course, possible to build analogous univariate examples.

Another feature to which objections can be raised is the nonexistence of the
M.L. estimate. This is also irrelevant, as shown by the next example, which
possesses the following characteristics:
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(1) Cramér’s conditions and the condition of identifiability are satisfied.

(2) The likelihood equation has roots.

(3) With probability tending to unity, the maximum likelihood estimate
exists, is unique, and is a root of the likelihood equation.

(4) The M.L. estimate is not consistent.

(5) There exist consistent estimates.

Let © be U4, as in the first example, and let {a;} be an ordering of the ra-
tionals of the interval (0, 1). Let p(8) = ax if 6 £ A and let (X;, ¥;, Z;) be
multinomially distributed with probabilities p; = p(6) cos® 276, p» = p(6) sin®
276, and p; = 1 — p(f). For n independent observations, the likelihood func-
tion is

log p» = m1log p1 + 72 log pe + 1z log ps + f(m, 72, m3),

where ny = > P X, mp = D py Vi, 5= 3.ty Z:, and f is a function
which does not depend on 6. Again, the likelihood equation has solutions of the
form 276 = tan"'/ny/n;. Since the density is maximized by taking p; = n:/n,
if this is possible, only one of these solutions is the M.L. estimate. With prob-
ability tending to unity, the M.L. estimate 8, is such that 1 — p(6,) = ns/n.
For 8, to be consistent, it must eventually stay in a fixed interval A; so that
ng/n = 1 — o, but the probability of this equality tends to zero as » tends to
infinity.

3. Existence of consistent estimates. In the discussion of the first and second
examples given above, it is stated that there exist consistent estimates. This
follows from the lemma stated in the present section.

Consider a situation where the following assumptions are satisfied:

(1) Observations are made on a sequence of independent identically dis-
tributed variables {X.},n = 1,2, ..., taking their values in a Euclidean
space X.

(2) The parameter space O is a measurable subset of a Euclidean space.

(3) To each 6 € © there corresponds a measure P; on X, and the distribution
of the sequence {X,} is the product measure corresponding to a Py of the family
{P 9,0 € 9}.

(4) Pol = Pa, implies 6 = 0;.

(6) © is a locally compact subset of a Euclidean space and the map 6§ — P,
is continuous in the sense that if 6, — 6o, then Py, — Py, for Paul Lévy’s dis-
tance. ,

One can easily obtain the following proposition:

Lemma 1. Let assumptions (1) to-(5) be satisfied. Then there exists a sequence
{Ta} of estimates such that for every positive ¢ and every compact set K C O the
quantity

%QEP[I T —0]|> €6

tends to zero as n tends to infinity.
The proof of this lemma has been given elsewhere, see [5]. It entails that
Cramér’s conditions in [3], when supplemented by (4), above, imply the existence
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of consistent estimates. Even in the simple case described by assumptions (1)
to (4), the problem of finding necessary and sufficient conditions for the existence
of consistent estimates has not been solved. Partial results have been obtained
by C. Stein [6] and Doob [7].

4. Independent, not identically distributed, variables. In the case of inde-
pendent identically distributed variables, the lemma given in Section 3 ensures
the existence of consistent estimates in a wide variety. of circumstances. If the
variables are not identically distributed, much more freedom is available, as
indicated by the next example which possesses the following characteristics:

(1) Wald’s conditions [4] and the condition of identifiability are satisfied.

(2) There does not exist any consistent estimate.

Let © be the open interval (0, 3x). For each 6, let X5; be normal with mean
cos a;0 and variance 1 and let X,;,; be normal with mean sin 6 and variance 1.
It can be verified that if a; tends to unity, Wald’s conditions for the existence of
consistent roots are satisfied. However, a necessary condition for the existence
of consistent estimates given in [8] is not always satisfied. In the present case,
this condition would require that for any two values 6, 6., the quantity

n(sin 6, — sin 6) + Z [cos a6, — cos a;82)°
=1

increases to infinity. If 6, is taken equal to 6; 4+ 27 and the a.’s tend o unity
sufficiently fast, this condition is not satisfied, although the condition of identi-
fiability can readily be satisfied.

It should be noted that the above is not contradictory to Wald’s assertion
that there is a sequence of roots which converge to the true parameter value.
However there can be, as in this example, more than one limit point to the set
of all roots. There is no consistent estimate because it cannot be determined from
the sample values alone which convergent subsequences of the roots are the
appropriate ones.
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