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A CERTAIN CLASS OF TESTS OF FIT!
By LioNEL WEISS
University of Oregon

1. Summary and introduction. Suppose X;, X», ---, X, are known to be
independently and identically distributed, each with the density function
f(x), with [of(x)dx = 1. Let ¥; < Y, < --- < ¥, be the ordered values of
Xl,Xz, cee ,Xn, and define W, = Yl, Wy=Y, — Yl, ey, Wo=Y,—
Yo, and Woppy =1 — Y., so that Wy + --- + W,y = 1. Finally, define
Zy, -+ 5 Znya as the ordered valuesof Wy, -+, Wy ,s0that0 < 2, £ Z, £
cor £ Znp, withZ, + -+ + Z,11 = 1. We are going to test the hypothesis
that f(z) = 1 for 0 < 2z <'1, and we are going to consider only tests based on
Zy,2Zy, -+ , Z,. The intutitive justification for this is that, roughly speaking,
deviations from the hypothesis on any part of the unit interval are treated alike.
Several authors have discussed tests based on Z;, --- , Z, . (See references [1],
21, 31.)

If » is a number greater than unity, it is shown that the test of the form “re-
ject the hypothesis if Z + --- 4+ Za,.1 > K” is consistent against a very wide
class of alternatives. When » = 2, the resulting test has some desirable proper-
ties with respect to alternatives with linear density functions.

2. The distribution of Z;, --- , Z, . It is easily seen that P[Z; = Z; for any
1 # j]is equal to zero. We want to find the joint density function Az, - - , 2,)
of Zy, -+, Z,. The joint density function of Wy, ---, W, is equal to n!
flw)f(wr + we) -+ fwr + we + -+ + wa) in the region w; = 0, wy + --- +
w, < 1, and is equal to zero elsewhere. Let {j(1), 7(2), --- ,j(n 4+ 1)} be any
permutation of the first # + 1 integers, and let Y, denote summation over all
the (n + 1)! permutations. Given any set of numbers 0 < z; < z, < -+ <
2. <1 — (a1 + -+ + 2.), we denote by Q[j(1),5(2), ---,j(n + 1)] the con-
ditional probability that W; = zj4 for¢ =1, --- , n + 1, given that Z; = z;
fors =1, -+, n + 1. It is understood that if j(¢) = n + 1, then z;; = 1 —
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(z1 + -+ + 2.). For each set of values z;, --- , 2, for which Az, - - , 2.) is
positive, we have

w!f @)l o + ziw) < fiw + - + 2iw)
h(zly"',zn)‘ )

Since >, Qj(1), - -+ ,5(n + 1)] = 1, for each set of values 2, --- , 2, for
which h(z1, - - - , 2a) is positive, we have h(zy , -+ , 2,) = n! X, f(2iw)f (2iay +
2imy) * -+ fiwy + -+ + 2jwy). Now let D be the region in (21, - - , z.)-space
where the following three conditions are satisfied:

Mo=a=as - -=H=s=l—(GCG+ - +2z),

(2) h(zl7 T ,Z,,,) =0,

3) n! 25 fEiw)f i + ziw) + -+ f@m + -+ + 2im) > 0.

Then D must be of measure zero. For if D is of positive measure, then

QL) -+, jln + 1)] =

‘ f,,f 0! 2 fGo) o + zi@) -+ fiw + o0+ Ziw) da - dzn > 0,

which implies that P[(W., ---, W,) in D] > 0, which in turn implies that
P{(Z,, --- , Z,) in D] > 0, which is a contradiction. Therefore we have shown
that f0 <212 =< - 22, 51— (a+ -+ + 2,), then

@2.1) Az, -, 2) = 0l 25 f@50) Giwy + ziw) -+ f@iw + -+ + 2iw),

" while h(z1, - - - , 2,) is zero for other values of z;, -+ - , z, . We note that when
f(z) = 1, the right-hand side of (2.1) is equal to n!(n + 1)1

3. Properties of the power of tests basedon Z, , - - - , Z, . Let r(x) be a given
bounded measurable function of z satisfying the conditions

folr(x)dz= 0, folrz(x)dz>0.

Then for 6 small enough in absolute value, 1 4 ér(z) is a density function on
(0, 1). For any given measurable region R in (21, - - - , 2,)-space, we denote by
M(R, 8) the probability that (Z,, --- , Z,) will fall in B, assuming the density
of the original observations is equal to 1 4+ ér(z). In what follows, we shall al-
ways assume that R is a subset of the region

0=z - Z2zZ=l—(+ - +2z).

For any given region R, we have

3.1) @_17(12,_6_)] = nl [ . f Zp Z,:;_l reiw + -+ + 2iw) dar - -+ dzn,
) 5=0 R

(32) M]H = 27”['1}'/ 2 22, o+ o+ ziw)

ds® 15k<Lan
r(ziy + -+ + ziwy) dor - dza .
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Equations (3.1) and (3.2) follow easily when f(z) in (2.1) is replaced by 1 +
or(z), and the result is expressed as a polynomial in 8.

4. The case of linear r(z). The integrands in (3.1) and (3.2) are complicated
for many functions r(z). However, when r(z) = 2 — %, we have (remembering
Znyr1 =1 — (21 + -+ + 2z,)) that the integrand in (3.1) is identically equal to
zero, while the integrand in (3.2) is equal to

(n — 1)(n + 2)! (n —1)(n 4+ 1)!
24 12 :

Suppose we are testing the hypothesis that f(z) = 1 against alternatives of
the form f(x) = 1 4 8(x — %), with given level of significance . We are going
to consider only tests based on Z;, --- , Z,, so that our critical region will be
aregionin (Z;, -+, Z,)-space. We want to find the critical region R satisfying
the following three conditions:

(41) G+ 42 —

(1) M(R,0) = a,
dM (R, 6) _

@ dd ]a=o =0
d’M (R, 5)

®3)

pr :I 1s & maximum.
=0

In the terminology of [6], this region E would be called an ‘“unbiassed critical
region of type A’ for testing the hypothesis that 6 = 0. We know that in the
present case, condition (2) is automatically satisfied by any region R, since the
integrand in (3.1) is identically zero. But then a very simple application of the
Neyman-Pearson lemma shows that the desired region R is given by

2nl{(n — 1)(n + 2)1(z3 + - -+ + 2511)/24 — (n — 1)(n + 1)1/12}
nl(n 4+ 1)!

where K(a) is a properly chosen constant. Equivalently, R is given by
a+ o+ dan 2 ke,

where k(a) is a properly chosen constant.

= K(a)’

6. Consistency of the proposed test. In this section we prove that the test
described in Section 4 is one of a class of tests, any one of which is consistent
against a wide class of alternatives. First we need some lemmas.

Lemma 1. If g(z), the common density of X1, -+ , Xa, has at most a finite
number of discontinuities, and if R,(t) denotes the proportion of the values
Zy, s Zun

which are not greater than t/(n + 1), while S(t) denotes 1 — [§ g(x) exp {—t g(x)}
dz, and V(n) denotes sup:zo |Ra(t) — S(t)|, then V(n) converges to zero with proba-
bility one as n increases.
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Proor. This is proved in [4].

Now we introduce the following notation. Let u be any positive number, while
Y, shall denote T'(n + u + 1)/T'(n + 2)[ZY + -+ + Zn.4). Let g(x) denote
the common density of X1, -+, X., and define J(g; u) as

Ma+1) [ W@ d.
[z:9(2)>0]
J(g; u) may fail to exist (that is, be infinite).
Lemma 2. If J(g; u) vs finite, then given any positive numbers e, 8, there is a
positive integer N (e, 6) such that

P[Y, > J(g; uw) — e simultaneously for alln > N(e 6)] > 1 — 6.

If J(g; uw) fails to exist, then given any positive numbers B, b, there ¢s a posttive
integer M (B, &) such that ’

P[Y, > B simultaneously for alln > M(B, )] > 1 — 4.
Proor. In the notation of Lemma 1, we have
Zi+ oo 4 Zaa = (n + 175 £ dR. (1),

and therefore Y, = I'(n + u + 1)/T'(n + 2)(n + 1)' ™[5 t* dR, (t). Now we
choose any positive number 7 and hold it fixed until further notice. We have
Yo= T+ u+1)/T(n + 2)(n + 1)"™/5 t*dR, (t). As n increases, the co-
efficient of the integral in this last expression approaches unity, and from now
on we shall treat it as unity, and it will be seen that this does not affect our con-
clusion. We have [§ t* dR, (£) = T"R.(T) — ufs t*"Ra(t) dt, and by Lemma 1,
the expression on the right of this equality approaches the following with prob-

ability one:

™ [1 - j;l g(x) exp {—Tg(x)} dx] —u fOT 7 dt

ruf s {[ e (ot & s,
which equals
1 Tg(z)
- fo T*g(z) exp [—Tg(x)] dz + u f g™ fo e dr da.

[=:0(2)>0]

But by taking T large enough, this last expression can be made arbitrarily close
to J(g; w) if its exists, or it can be made arbitrarily large if J(g; ) fails to exist.
This proves Lemma 2.

LeMMA 3. If the common density of X1, + -+ , X ts unsform on (0, 1), then Y,
converges stochastically to T'(w + 1) as n increases.

Proor. This is proved directly from the discussion on page 245 of [5].
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Lemma 4. If u > 1, and if g(x) 7s positive almost everywhere on (0, 1) and dif-
fers from unity on a subset of (0, 1) of positive measure, then J(g; u) > T'(u + 1).

Proor. For convenience, we omit the limits of integration, which are always
zero and one throughout this proof. Hélder’s inequality states that if p > 0,
g > 0,and p + ¢ = pg, then

[ s az| < ([ 1@ P az)” ([ 16a) 1 o)

with equality holding if and only if |r(z)|” = K |s(z)|? almost everywhere, where
K is a constant, and either r(x)s(xr) = 0 almost everywhere or r(z)s(z) < 0
almost everywhere. Applying this inequality with r(z) = [g(z)]“ ™™, s(z) =
[g@) ™, p = w/(u — 1), and ¢ = u, the lemma follows immediately.

THEOREM. Suppose it 1s known that X, , X2, -+ are independently and iden-
tically distributed, and it is desired to test the hypothesis that the common distribution
is the uniform distribution over (0, 1). For a given level of significance, o
(0 < a < 1), a given number u > 1, and a given posttive integer n, let T(o; n; u)
denote the test of the hypothesis described as follows: Reject the hypothesis if and only
if at least one of the following occurs:

(1) At least one of the values X1, - - - , X, falls outside the open interval (0, 1),

(2) X; = X; for some integers ¢, jwithl < i <j £ n,

@) ZY +Z3 + -+ + Zn = K(o;n; u),
where K(a; n; w) is a constant chosen to give the proper level of significance. Then
the sequence of tests {T(a;n;u), T(a;n + 1;u), -} is consistent against any
alternative common distribution function G(x) with at least one of the following
properties:

1) G) > o,

@) Q1) <1,

(3") G(z) has at least one positive saltus,

4") G(0) = 0,G(1) = 1, G(x) is absolutely continuous with derivative g(x), and
g(x) differs from unity on a subset of (0, 1) of positive measure and has at most a
finite number of discontinuities, and a finite number of oscillations.

Proor. If G(z) has property (1’) or (2'), specification (1) of T(e; n; u) proves
consistency. If G(z) has property (3'), specification (2) of T'(a; n; u) proves con-
sistency. If property (4) is possessed by G(z), we distinguish two cases, accord-
ing to whether or not g(z) is positive almost everywhere on (0, 1).

Cask 1: g(z) is positive almost everywhere on (0, 1). We may express specifica-
tion (3) of the test in terms of Y, defined above. For large n, Lemma 3 tells us
that specification (3) of the test is essentially Y, > T'(v 4+ 1). But Lemmas 2
and 4 guarantee that under G(z) the probability is high that Y, will be greater
than I'(u + 1) if n is large.

CasE 2: g(z) is zero on a subset of (0, 1) of positive measure. Since g(z) has
at most a finite number of discontinuities, a point w in the interior of (0, 1) can
be found such that g(z) is continuous in a neighborhood of w, g(w) = 0, and any
neighborhood of w contains a set of positive measure on which g(z) = 0. Since
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g(z) has a finite number of oscillations, this implies that there is an interval of
positive length A in the interior of (0, 1) on which g(z) = 0. But then the
largest of the values Z,, - -- , Z,41 is certainly no smaller than A; therefore Y,
is certainly no smaller than A*T'(n + 4 + 1)/T'(n + 2), and this last expression
approaches infinity as n increases.
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ON THE PROBABILITY OF LARGE DEVIATIONS FOR SUMS
OF BOUNDED CHANCE VARIABLES

By HAarRrY WEINGARTEN
Bureau of Ships, Navy Department

1. Summary. The following theorems are proved.
TueorREM 1. If 21, 4, -+ - satisfy —1 Sz, S a,a = 1 and

E(xn l Tiy "0y xn—-l) S —u max (Ix"] l Try "y xﬂ—l):
0 < u < 1, then for any positive t,
Priz + -+ + 2» = ¢ for some n} £ 6,

where 0 is the positive root (other than 6 = 1) of
a + U a+1 a 1—u _
1 a1’ O+ o75=0

This choice of 6 is the best possible.
THEOREM 2. If 21, %, -+ satisfy |x.| < land E@a |z, -+, Tn) = 0,
then for all N > 0,

Pr{xl+---+xn .

- = ¢ for some n;N}§2¢N,
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