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The second term on the right of (38) can be made arbitrarily small by making N
sufficiently large. The first term can be made arbitrarily small by making » suffi-
ciently large, since P{D(n — N)} — 0 as n — «. This completes the proof of

).
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.
ON THE DERIVATIVES OF A CHARACTERISTIC FUNCTION
AT THE ORIGIN
By E. J. G. PrrmaN
University of Tasmania

1. Introduction. Let F(z), —® < z < «», be a distribution function, and
o(t) = f ¢'** dF (z)

its characteristic function, defined and continuous for all real ¢. Let k be a positive
integer. If the kth moment of F(z),

w= [ ot dr),

exists and is finite (integral absolutely convergent), ¢(¢) has a finite kth deriva-
tive for all real ¢ given by

P @) = f 2" dF (x).

In particular,
¢®(0) = 1w .

The existence and finiteness of u is a sufficient condition for the existence and
finiteness of *°(0). It can be shown (see [1]) that when k is even, this condition
is also necessary; but when % is odd this is not so. Zygmund [2] has given a
necessary and sufficient condition for the existence of ¢’(0) and also one for the
existence of a symmetric derivative of higher odd order at ¢ = 0; but he imposes a
certain condition (smoothness) on the characteristic function. In the following
theorem the conditions are on the distribution function only.
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2. Statement of Results.

THEOREM. Let k be an odd positive integer. Necessary and sufficient conditions
for the existence of ¢™(0) are:

@ lim 2*{F(~z) + 1 — F@)} = 0,
(ii) le : z* dF (z) exists.

When these two conditions are satisfied,
T
#9(0) = ¢* lim [ & dF ().
T-»0 T

If X is a random variable with distribution function F(z), so that
F(z) = P{X = =},
condition (i) may be staved in the form
lim 2*[P{X £ —z} + P{X > z}]] = 0.

A condition which is easily proved equivalent is
lim 2*{P|X| = z} = 0.
3. Two lemmas.

Lemma 1. If G(z) is defined and non-decreasing for x = 0, and if k > 0, the
four stalements below are equivalent, 7.e., any one implies the other three.

) lim T* f dG(x) = 0;
T+ T
T
fo 2 dG(z)

® e
(3) lim Tf 2 dG(z) = 0;

T-»0 T
(4) lim T' | 2" sin’ (z/T) dG(z) = 0.

T0
Suppose (1) is true. Put

G = [ d6@) = 6(=) — Ga).
Then T*H(T) — 0 when T — o, and

T T
f MG - f 2 dH(z)
0 = 0
T T

k+1 [ " #HG) ds

= — k
T°H(T) + T )
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both terms of which — 0 as T — w if T*H(T) — 0, and so (2) is true. Now

2
T

27 T 2T
2(27)™ l £ dG(z) = T / 21 dG(z) = T f dG(x).
T

When (2) is true, the first term in the inequality — 0 as T — o, and therefore so
does the last, i.e.,

®) W(T) = THG@T) — G(T)} > 0as T — w.
T* fr " 46 = T }::1 {@2'T) — G2*'T)} = 22“"‘”"W(2"“T).

Because of (5), W(T) is bounded for T = 0, and therefore this series is uniformly
convergent with respect to 7 = 0. When T — «, each term — 0, and therefore
(1) is true. Thus (2) implies (1).
Suppose again that (1) is true. Put
A(T) = sup [z"H(z);z = T].
Then A(T) > 0as T — «, and

" N =
Tj;:v dG(zx) = Tfo dH(z)

Il

T*H(T) + (k — 1)T fT ® A H ) do

< T'H(T) + | k — 1| TA(T) f:x-zdx

T'H(T) + | k — 1| A(D),

which — 0 as T — «. Thus (1) implies (3).
The converse of this is not actually used in this paper; but there is some in-
terest in stating and proving it so as to round out the lemma. If & = 1,

° k—1 > k °
Tj; 2 dG(x) = T j; dG(z),
and so (3) implies (1) in this case. We now suppose 0 < k& < 1. Now
27 27
I O e off . TC)
T T h

If (3) is true, the first term in the inequality — 0 as T — «, and therefore so
does the second. (5) is then true, and this,.as shown above, implies (1). Next,

) T 0
Tfo ac"-‘s,ixf(aa/T)alG(ac)=Tfo +Tfr — L+ I

L=T" fo e <S—-—inx(/xT/T)>2 dG(x);

T T
sin®1-77! f A=) = L = T f 2 dG(z).
(1] 0
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Hence I; — 0 as T'— o if and only if (2) is true. Thus (4) implies (2) which
implies (1). Also
I, £ Tf 271 dG(z),
T

and so —» 0 as T — o if (3) is true. Thus (1), which implies (2) and (3), implies

(4).
LemMA 2. When the statements 1-4 of Lemma 1 are true,

' Tfowz""lsin (z/T) dG(x) — j;ra:"dG(x)—»Oas T — o,

This function of T is equal to

T f: ¥ sin (z/T) dG(z) — for z* (1 sin ?%T)) dG(z),

which has a modulus not greater than
L] T ) T

Tf 7 dG(z) +f 2" /6T dG(x) < Tf 7 dG(z) + %;T“lf 2 dG(z).
T 0 T 0

This — 0 as T — « because of (3) and (2).
4. Proof of theorem. If ¢o(f), ¢1(¢) are the real and imaginary parts of ¢(f),

#(t) = ¢o(t) + iga(?),
&(t) = [w cos tx dF (z), a(t) = [ﬂ sin tx dF ().

¢o(t) is an even function of ¢, and ¢;(¢) is an odd function of ¢. A derivative of
¢o(t) of odd order which exists at ¢ = 0 must be zero there, and the same is true
of an even derivative of ¢;(t).

Let & be an odd positive integer, and suppose that ¢ (0) exists. It follows from
the last paragraph that

$*(0) = i:”(0),

and so has real part zero. ™ (0) must exist and be finite. As & — 1 is even, this
means that u_; is finite [1]. Therefore ¢ (¢) exists and is finite for all real ¢, and

¢(k—1)(t) — ik—lf xk—l eitz dF(x),

=Dy L (k=D)
¢ (1) t ¢ (0) = f Fre —1 e dF(x)

6
®) I f 21 sin® (§t.’l}) diF ()

+ fka'lsmtxdF( ).
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Put Q(z) = 1 — F(—z). This is a non-decreasing function of z. We may write
(=1)(p _ , k=1 w .2
¢ () td’ (0) N f g1 5 %(t%tx) AUF () + G@)}
0

@) 4 [ fo e Sint % 3F(z) — fo Y dF(x)]

1/t

x|l [° % sin iz we P L
— [fo z ——t—-dG(:v) -j; x dG(:v)]+7, f_m:z: dF (z).

Because ;p(") (0) is purely imaginary, when ¢ — 0 the coefficient of ™ must — 0.
Hence F(z) and G(z) both satisfy (4) of Lemma 1 (with T = 2/t). Therefore
they satisfy (1), i.e.,
T*{F() + G(x) — F(T) — G(T)} »0as T — ,
{1 — F(T) + F(=T)} > 0as F — ,
which is equivalent to condition (i).

By Lemma 2 (with T = 1/t), the second and third terms on the right-hand
side of (7) both — 0 as t — 0, and therefore

1/t
¥ lim 2* dF(z) = ¢*(0).
t»0 J=1/t

Condition (ii) is thus necessary.
To prove that conditions (i) and (ii) are sufficient, suppose them satisfied.
F(z) and G(z) satisfy (1) of Lemma 1 and therefore (3) also. Hence

f 2 1dF(z) and f 771 dG(z)
0 o
are both finite, and
wos = [ @7 AF@) + @)
is finite. (6) is then true, and therefore (7). When ¢ — 0, the first and second
terms on the right-hand side of (7) both — 0, and the third term — a limit.
Thus ¢* (0) exists, and
T
4§90 = #lim [ o dFG).
T-»0 T
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