CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE
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Summary. It is shown that, under usual regularity conditions, the maximum
likelihood estimator of a structural parameter is strongly consistent, when
the (infinitely many) incidental parameters are independently distributed
chance variables with a common unknown distribution function. The latter is
also consistently estimated although it is not assumed to belong to a parametric
class. Application is made to several problems, in particular to the problem of
estimating a straight line with both variables subject to error, which thus after
all has a maximum likelihood solution.

1. Introduction. Let {X;;},¢=1,---,n,j=1, ---, k, be chance variables
such that the frequency function of X, -+, Xu is f(x | 6, a;) when 6 and a;
are given, and thus depends upon the unknown (to the statistician) parameters
6 and a;. The parameter 6, upon which all the distributions depend, is called
“structural”’; the parameters {c;} are called “incidental”. Throughout this paper
we shall assume that the X;; are independently distributed when 6, oy, -« -,
ay , are given, and shall consider the problem of consistently estimating 6 (as
n — o). The chance variables {X;;} and the parameters 6 and {a;} may be vec-
tors. However, for simplicity of exposition we shall throughout this paper,
except in Example 2, assume that they are scalars. Obvious changes will suf-
fice to treat the vector case.

Very many interesting problems are subsumed under the above formulation.
Among these is the following:

(1.1) f(x | 0, ) = (270)~" exp {_ Z,: (xij — ) }

20

Suppose now that the {a;} are considered as unknown constants and we form
in the usual manner the likelihood function

(1.2) (2x6) "% exp {—- é% 2}: (Xi — ai)2}

corresponding to (1.1). Then the maximum likelihood (m.l.) estimator of 6 is
2 (X — X
]

kn

(1.3)
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with X; = k™3, X,;, and is obviously not consistent. This example is due to
Neyman and Scott [1], who used it to prove that the m.l. estimator® need not be
consistent when there are infinitely many incidental parameters (constants).
The latter authors, to whom the names “structural” and “incidental” are due,
seem to have been the first to formulate the general problem. Special forms of the
problem, like Example 2 below, had been studied for a long time (e.g., Wald
[2] and the literature cited there).

The general fact that, when the {a;} are unknown constants, the m.l. estimator
of 6 need not be consistent, is certainly basically connected with the fact that,
since there are only a constant number of observations which involve a particular
a;, it is in general impossible to estimate the {a;} consistently. Now there are
many meaningful and practical statistical problems where the {a;} are not
arbitrary constants but independently and identically distributed chance
variables with distribution function (df) Gy (unknown to the statistician). The
question then arises whether the m.1. method, which does not always yield a con-
sistent estimator when there are infinitely many incidental constants, and does
yield consistent estimators in the classical parametric case where there are no
incidental parameters, will give a consistent estimator in this case, where the
{a:} are independent chance variables with the common df G . This note is. de-
voted to this question.

The answer is affirmative. Not only is the m.l. estimator of 6. strongly con-
sistent (i.e., converges to 6 with probability one) under reasonable regularity
conditions, but also the m.1. estimator of Gy converges to Gy at every point of con-
tinuity of the latter, with probability one (w.p.1). This is the more striking when
one recalls that Gy does not belong to a parametric class, i.e., a set of df’s indexed
by a finite number of parameters. (If Gy were a member of such a given class, the
problem would fall completely in the domain of classical maximum likelihood.)
The interest of the present authors was originally in estimating 6. That @ can also
be estimated by the m.l. method is a felicitous by-product of our investigation.
A heuristic explanation of the present result may be this: A sequence of chance
variables is more “regular’’ than an arbitrary sequence of numbers. In the present
procedure one does not attempt to determine the particular values of the chance
variables {a;}, but only their distribution function; thus, we seek the m.l.
estimator of the “parameter” v = (6, G) based on a sequence of independent
random variables whose common distribution function is indexed by «.

In sections 3, 4, and 5, the results are applied to three problems which seem to
be of interest per se. Among these is the problem of fitting a straight line with
both variables subject to normal error. This problem has a very long history and
has been the subject of many investigations (see, for example [2], [7], [4], and the
literature cited there); it seems interesting that it can, after all, be treated by the
m.l. method. The verification of the regularity assumptions or the formulation of
not too onerous conditions for them to be verified is sometimes not entirely ob-

8 Throughout this paper, for the sake of brevity, we use the term ‘‘estimator’’ to mean
‘“‘sequence of estimators forn =1,2, ... .”
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vious, and the verification of these assumptions (in the form used in Section 2)
constitutes the main difficulty of the paper. As is explained in detail below, the
fact that these assumptions imply the general consistency result of Section 2
follows from a modification of the proof of [5]. Professor Herbert Robbins has
kindly called our attention to his abstract in Ann. Math. Stat. , vol. 21 (1950), p.
314, Abstract 35, which states that the m.l. estimator of G is consistent. Since
nothing further has appeared on this subject, the intended restrictions under
which the statement is true, and the intended method of proof, are unknown to
the present authors. This seems to be the second instance in the literature where
the m.l. estimator has been used to estimate an entire df which is not assumed to
belong to a class depending only on a finite number of real parameters. The first
instance of the employment of such an estimator is the classical estimation of a
df by its empiric df (shown to be asymptotically optimal in [3]), which is its m.l.
estimator (see the paragraph preceding the lemma in Section 2). The only other
instance of the estimation of a df in the nonparametric case seems to be that of the
estimation of identifiable df’s in stochastic structures such as those of the present
paper by means of the minimum distance method [4]# (The latter requires
regularity conditions weaker than those of the present paper. Compare, for ex-
ample, [4] with Example 2 below; see also Example 3a.)

In connection with these examples, and also in Section 6, we give some ex-
amples which illustrate the fact that the classical m.l. estimator may not be con-
sistent, even in parametric examples which lack the pathological discontinuity
sometimes present in hitherto published examples.

Section 6 also contains the statement of a simple device which can be used in
the classical parametric case as well as in the case studied in this paper, to prove
consistency of the m.l. estimator in some cases where the assumptions used in
published proofs of consistency are not satisfied.

The proof in Section 2 is a modification of Wald’s [5], and its fundamental ideas
are to be found in [5]; for this reason some of its details will be omitted. Wald
states in his paper that his method applies more generally when his Assumption
9 is fulfilled. However, this assumption is not fulfilled in our problem ab initio
and some technical modifications have to be made. One obstacle to extending
Wald’s proof to our problem is in establishing an analogue of (16) in [5]; one
“neighborhood of infinity”’ does not always seem to suffice. Also some changes in
the assumptions are made necessary by the nature of our problem. The results of
the present paper can be extended in the usual manner to abstract spaces, but we
forego this. It should also be remarked that in [6] Wald studied the present
problem of estimating a structural parameter.

The attitude towards the {a;}, i.e., whether they are to be regarded as un-
known constants or identically and independently distributed chance variables
or something else, seems to vary with the author and sometimes even within the

4 A paper entitled “The minimum distance method,’”’ which gives the details and proofs
of the results announced in [4], is scheduled for publication in a forthcoming issue of these
Annals.
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publications of the same author. For example, Wald [2], in his treatment of the
problem of fitting a straight line mentioned above, considers the {a,} as un-
known constants; and Neyman and Scott, in their general formulation of the
problem given in [1] and described at the beginning of the present section, also
consider the {a;} as unknown constants. On the other hand, Neyman in his treat-
ment [7] of the straight line problem treats the «; as independently and identically
distributed chance variables. Also Neyman and Scott [8] criticize Wald’s solution
[2] on the ground that the conditions he postulates on the sequence of constants
{a;} are such that they are unlikely to be satisfied when the {a;} are inde-
pendently and identically distributed chance variables. Our own point of view
and perhaps also that of the other writers cited, is that one need not insist on any
one formulation to the exclusion of all others. There are certainly reasonable
statistical problems where the {a;} may be looked upon as independently and
identically distributed chance variables, and consequently the problem of the
present paper is statistically meaningful and interesting. This is also the attitude
implicit in [4] and [9]. ’

2. Proof of consistency. As we have stated earlier, the essential idea of the
proof comes from [5]. A compactification device has to be employed because the
space I' defined below may not be compact.

We postulate that the following assumptions are fulfilled (see also the par-
agraph preceding the lemma at the end of this section):

AssumpTION 1: f(x | 6, @) is a density with respect to a o-finite measure u on a
Euclidean space of which z is the generic point. (This is also Wald’s Assumption
1.)

Let Q be the space of possible values of 8, and let A be the space of values which
a; can take. (Both @ and A are measurable subsets of Euclidean spaces, f is
jointly measurable in x and « for each 6, and we hereafter denote by
0 (1 £ s < r) the components of a point 8, in © and by | « | the Euclidean
distance from the origin of a point @ ¢ 4; 7 will denote Lebesgue measure on 4.)
Let T = {G} be a given space of (cumulative) distributions of a; . Let 6o, G be,
respectively, the ‘“true” value of the parameter 6 and the ‘“‘true’’ distribution of
a; . It is assumed that 6y ¢ @ and Gp £ T. Let v = (6, G) be the generic point in
Q X T. We define

(2.1) flx|y) = fA flx]6,2) dG(2)

and yo = (6o, Go). In the space @ X T we define the metric
6(‘\/1 ) 72) = 8([91 ) Gl]y [02 ) GZ])

(2 2) = Z l arc tan 0%5) — arc tan 0;‘) ’
) 8=1

+ [ 16:6) — Gale) | 7 dr(a).
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Let & X T be the completed space of @ X I" (the space together with the limits
of its Cauchy sequences in the sense of the metric (2.2)). Then & X T is compact.

AssumpTioN 2 (Continuity Assumption): It is possible to extend the defini-
tion of f(z |v) so that the range of v will be & X T and so that, for any {v.}
and v* in & X T, y; — v* implies

(2.3) f@ ) — = |v¥),

except perhaps on a set of z whose probability is 0 according to the probability
density f(z | ¥0). (The exceptional z-set may depend on ¥*; f(z | v*) need not be
a probability density function.) (This assumption corresponds to Wald’s con-
tinuity Assumptions 3 and 5.)

AssumprioN 3: For any v in & X T and any p > 0, w(z | v, p) is a measurable
function of z, where

w(@|v, p) = sup f(x |7), .
the supremum being taken over all ' in & X T for which 8(y, ¥') < p. (This
assumption is made for the reasons given by Wald. See his remarks following
Assumption 8 in [5].)
AssumpTioN 4 (Identifiability Assumption): If 4, in & X T is different from v, ,
then, for at least one y,

24 [ i@imaus [ 1w da,

the integral being over those z all of whose components are < the corresponding
components of y. (This is the same as Wald’s Assumption 4.)
Let X be a chance variable with density f(z | vo). The operator E will always
denote expectation under v, ; vo Will always, of course, be a member of & X T.
AssumprioN 5 (Integrability Assumption): For any v in & X T we have, as

PlOs

(2.5) lim E [log ‘%%QT <

(This assumption is implied by assumptions corresponding to Wald’s Assump-
tions 2 and 6.)

For any v in & X T other than v, define v = log f(X, v) — log f(X, 7). We
begin the proof of consistency by showing that

(2.6) Ev < 0.

First, if v isin @ X T, Ee’ < 1. Hence from (2.3) and Fatou’s lemma it follows
that, for any v in & X T,

2.7) Ev < Ee < 1.

If v is — o with probability one according to f(z | yo), then (2.6) is obvious.
Suppose therefore that » > — e with positive probability according to
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f(x | o). Then, by Jensen’s inequality and (2.7),
(2.8) Ev < log E¢” £ 0,

and the first equality sign can hold only if v is a constant ¢ with probability one
according to f(z | vo). If the first equality sign does not hold (2.6) follows at once.
Consider, therefore, the constant ¢. If ¢ < 0 then (2.6) holds. If ¢ > 0 then
(2.8) is violated. We cannot have ¢ = 0 because of Assumption 4. This proves
(2.6).

Now, as p | 0, for v = 7o,

: w(X | v, ,,>]+ _ [ X | ]"
by (2.3), (2.5), and Lebesgue’s dominated convergence theorem. Also,
. w(X |, p)]‘ _ [ JX ) ]‘
(2.10) lim E [log FX 70 E | log X Tl

since the integrand of the left member decreases monotonically to the integrand
of the right member. Hence, as p — 0,

: wX |v,0) ]| _ f&X 1)
@11 lim £ [l"g o 4ED) ] B log sy <0

by (2.6). Just as in [5] (see also [12]) it may then be shown that, for any positive
p, there exists an h(p),0 < & (p) < 1, such that the probability is one that, for all
n sufficiently large,

IH FX: | )
(2.12) supe=t
I 7(X: | )

< R,

the supremum being taken over all ¥ in & X T for which 8(y, 7o) > p, and where
X;, X, --- are independent chance variables with the common density
f@@ [ o).

Let L(z1, -+, @a |v) = 111 f(: | 7). A modified m.l. estimator is defined to be
a sequence of u-measurable functions {4,} such that

Lz, -, xnl&n(xly"'y Za)) = ¢ sup, L(zy, -, xnI'Y)

for almost all (u) 21, - -+ , . for each n, where c is a positive number (the supre-
mem is over @ X T'); for ¢ = 1, this of course defines an m.1. estimator. (We shall
not be concerned in this paper with conditions which ensure the existence of such
measurable functions, although reasonable conditions are not difficult to formu-
late.) We also define a neighborhood m.l. estimator to be a sequence of u-meas-
urable functions {‘y:} such that there exists a sequence of positive numbers
€, With lim,.€, = O for which supqem, L(1, +* ,Zn |¥) = supy L(z1, *++ , Za |7)
for almost all (u)x1, -+ + , n, where IL, is the set of all ¥ in @ X T for which
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8¢y, yn(x1, -+, Zn)) < € . (Thus, neighborhood m.l. estimators exist in some
cases where m.l. and modified m.l. estimators do not; this will be useful in
making clear certain examples below where the lack of consistency is not merely
due, as it might seem, to the fact that no strict m.l. or modified m.l. estimator
exists.)

The above result (2.12) implies the strong convergence of m.l., modified m.l.,
and neighborhood m.l. estimators (in the respective cases where they exist).
The component of the estimator which estimates Gy converges to it at all its
points of continuity w.p.1.

We remark that the above proof actually demonstrates consistency if, in the
definition of m.l. estimator (or its variants), the supremum is taken over & X T
instead of over @ X T or, in fact, over any subset of & X T containing vy, . This
last fact implies that if consistency is verified in an example where @ = Q,
I = I, then it automatically holds in the example where @ = Q,, I' = I,
whenever @, C @ and T; € I';. In particular, this remark applies to the ex-
amples of Sections 3, 4, and 5.

We remark that Assumption 1 is not really essential in the above proof. Let
P, denote the probability measure of X when v is the true parameter value,
and let d(xr v, 70) = r(x, Y, 70)/[1 - r(x, v, 70)]7 where r(a:, Y5 70) denotes a
Radon-Nikodym derivative of P, with respect to P, + P., at the point z. If,
for each vo € @ X T, Assumptions 2 and 3 are satisfied when f(x | v) is replaced
by d(z, v, 7o), if (2.4) is replaced by the condition that d(z, v, vo¢) = 1 does not
hold on a set of probability one under v, for any v, and if f(z | v)/f(x | o) is replaced
by d(z, v, v0) (with a similar replacement for w(z |v, o)) in Assumption 5
and in the argument of the section, then (2.12) (with the replacement noted
above) will still hold. An m.l. estimator 4 is now defined to be one for which
SUp, 117 dax: , 7, 4) = 1 (with an analogous definition of modified and neigh-
borhood m.l. estimator). We have not stated our assumptions and result (2.12)
in this more general setting above because the stated form of the assumptions
will suffice in most applications and will be easier to verify than assumptions
stated in terms of d(x, v, 7o) (which must be verified for each v). As an example
of the use of the more general result just cited, consider the problem of esti-
mating the df F of a sequence of independent identically distributed discrete
random variables, it being assumed that the true probahility measure Py (cor-
responding to the df F) satisfies

Y P(x) log Py(z) > — o,

the sum being over all points 2 for which Pr(z) > 0. Then the assumptions
are easily seen to be satisfied, and we may conclude that the sample df, which
is the m.l. estimator, is a consistent estimator of F, a well-known result which
does not usually seem to be considered as an example of the consistency of the
m.l. estimator. (Of course, even if no restrictions of discreteness or logarithmic
summability are placed on P, the sample df is still consistent and, as pointed
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out in the introduction, this is the m.l. estimator. However, Assumption 5 is
not satisfied in this case.)

Before proceeding to our examples in subsequent sections, we prove a simple
lemma which will be useful later in verifying Assumption 5.

Lemma. If f(z1, - -+, 2) is a bounded probability density function with respect
to Lebesgue measure u on Euclidean k-space R, and if

(2.13) f(‘l og| 2 1) du < 1<ish),
then
(2.14) - fnkflogfdu < .

Proor: If we prove that (2.13) implies (2.14) when f is replaced by ¢f in these
equations, where ¢ > 0, then the lemma is clearly proved. Thus, since f was
assumed bounded, we may hereafter assume f < (2¢)™". (The new f need not
have integral unity.) Let

k
(2.15) gler, -+ ) = fC, -+ m) + H1 &+ 17
Clearly, (2.13) is true with f replaced by g. Moreover, since g(z1, -+, %) < €

outside of a sufficiently large sphere about the origin, and since —f log f < —g-
loggif 0 < f < g < e, it suffices to prove (2.14) with f replaced by g, assuming
¢ bounded and (2.13) with f replaced by g. By (2.13), we have

k
(2.16) fk glogIT @ + 2Htdu < .
R =1
Thus, it suffices to prove the finiteness of
k
— f gloggdu — f glog [T 1 + 2% du
R¥ RF i=1

_ : ai J—log g JT (1 + z?)*]}
fﬂkglogigl(l e { g IL 0+ /¢

The fact that g(z,, -+, 2x) = H(z? + 1) (see (2.15)) implies easily that the
bracketed expression in (2.17) is £ 1; by (2.16), this completes the proof of the
lemma,.

(2.17)

3. Example 1. Structural location parameter, incidental scale parameter.
Let & be a positive integer, let u be Lebesgue measure on Euclidean k-space, let
g be a univariate probability density function with respect to Lebesgue measure,
and let

, 177y (x5 — 8
(3.1) fxi| 6, a:) = 7Hg Qo)

a’ Il
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where x; = (za, ---, za). (Thus, observations are taken in groups of £ = 1,
the value of the incidental parameter being the same within each group. The
(unconditional) density of X; = (Xu, -+, Xu) is given by Equation (2.1).
Thus, the X, are independent, but, for fixed 7, the X,;(j = 1, - -+, k) need not
be independent.) Here Q is the real line. Some further assumptions on ¢ will be
made below; we remark here that the important case

(32) g(x) = (2m) te D

will satisfy our assumptions. (See also (3.4) below.)

The cases k = 1 and k > 1 are essentially different. In Example 1a the con-
sistency of the m.l. estimator will be proved for £k = 1 assuming that A is the
set of values @ = ¢ where ¢ is a known positive constant, and it is pointed out
that the property of consistency of the m.l. estimator does not hold without this
assumption. The proof of consistency in Example 1a is actually carried out for
k = 1 since this requires little additional space and will save space in Example 1b
where we may refer back to 1a for proofs. In Example 1b we prove consistency
of the m.l. estimator in the case £ > 1 without assuming « = ¢ > 0.

Example 1a. We assume that £ = 1 and that A is the set of all real values
a 2 ¢ where ¢ is a known positive constant. In the case k = 1, this assumption
on A can be weakened slightly to an assumption on the behavior of G(a) as
a — 0; however, some such assumption is necessary for consistency, since the
last example of Section 6 shows that, even in cases where I' is restricted to a
simple parametric class of df’s on a set of positive reals which is not bounded
away from zero, it can happen that no m.l. or modified m.l. estimator exists
and that there are neighborhood m.l. estimators which are not consistent.

We now state our assumptions on g and Gy . They seem reasonable and are in
a form which makes brief proofs possible; they undoubtedly can be weakened.
(These last remarks apply also to Examples 2 and 3. See also the first part of
Section 6 for one method by which we can prove the results of our examples
under weaker conditions.) We hereafter assume

(a) sup: g(z) < =;

(b) g is lower semicontinuous and for every ¢ > 0 there is a continuous
function k. = g for which [[h(z) — g(z)]dx < ¢

(c) Ilim g(x) = 0;

z|->0
33) @ — [ g@hog |z |1 dx > —o;
(e) [ | z |“g(x) dx # 0 for almost all real ¢;

(f) g(x) > 0 for almost all x in some open interval whose closure con-
tains the point x = 0.



896 J. KIEFER AND J. WOLFOWITZ

We note that, in addition to being satisfied in the case (3.2), Assumption (3.3)
is also satisfied in such important cases as

(a) 9(z) = 1/x(1 + 2%);
(34) (b) g(x) = 11if [¢| < 3 and g(x)
(c) g(x) = ¢ “if x > 0 and g(x) = 0 otherwise.

0 otherwise;

Of course, if g does not satisfy (3.3) but if there is a function g* satisfying (3.3)
and for which g(z) = g¢*(z) almost everywhere, then we may carry out our
considerations replacing g by g*.

We assume that T consists of all G such that

(3.5) f " (log &) dG(a) < ,

where ¢ is the constant used before in the definition of A. For example, G be-
longs to T if, for some positive constants b and e,

b
log a(loglog a)™**

(3.6 1 -Gl <

for @ > ¢°; integration by parts will verify that (3.6) implies (3.5). Condition
(3.5) is weaker than the requirement that any positive (not necessarily integral)
movement of G be finite.

We now verify the.assumptions of Section 2. We complete the definition of f
for (8, @) in & X A by setting f(x | 6, ) = 0 whenever § = 4» or a = .
For (8, G) ¢ & X T, we then define f(z | 6, G) by (2.1). (We remark that T ob-
viously contains all df’s on A.) Assumption 1 is obviously satisfied. Assumption
3 follows from the fact that (3.3) implies that f(z | 6, @) is for each z lower semi-
continuous in (6, @) (in the sense of the metric §) on & X T, and the fact that
& X T is separable. Write he(z: | 0, @) = a4k [(z:; — 6)/a). In order to
verify Assumption 2, we note that, by the lower semicontinuity in (8, G) of
f(z] 6, G) and by the Helly-Bray theorem, we have (assuming, as we may,
that the he of (3.3) (b) satisfies lims(., he(z) = 0) that (6;, G;) — (6%, G*)
as 1 — o implies

fo | 0%,G%) < lim inf [ fz | 65, @) dG: < lim supff(x | 6, «) dG

37)
< lim [ ho| 0,0 dGi = [ ko | 6% a) dG*

Since the last member of (3.7) is greater than or equal to the first for all z and
since their difference has integral < ¢ (with respect to x), Assumption 2 fol-
lows at once.

In verifying Assumption 4, it clearly suffices to prove that, if f(z | 8. Go) =
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f(zx | 6:, Gy) for almost all x, where (8; , G;) e @ X T for< = 0, 1, then (6, Go) =
(81, Gy). If an interval 0 < z < e satisfies (3.3) (f), there is a value 8 such that

P{X,; < tforl §j§kl00,Go} =

is satisfied (whatever be G,) if and only if ¢ < 6y, a similar assertion holding
if the'interval —e < x < 0 satisfies (3.3) (f). Hence, it suffices to prove the above
assertion when 6y = 6, , since it cannot hold when 6, > 6, . Let H; be the df of
the random variable log a; when G; is the df of the random variable o ; i.e.,
Ht) = Gi(e"). Then, putting g*(z) = €’lg(e’) + g(—e")] (¢* is the density of
log |U| when g is the density of U), it suffices to prove that, if Ho and H, are

not identical, then pi(2,, - - - , 2) and py(21, - - - , ) are not identical for almost
all (z1, ---, z), where

w k
(38) piter, ) = [ T1 g% = ) dHi6).

Let g** be the density function of Y s Z,/k when the Z; are independent random
variables with common density g*. The above assertion is then implied by the
assertion that the function

39) i@ = [ ¢ — 9 aHE)

uniquely determines the df H. But if 4, B, C are the characteristic functions
of g, g**, H, respectively, then B(t) ¢ 0 for almost all ¢ by (3.3) (¢) and hence
C(t) is determmed for those ¢ for which B(t) # 0 by C(t) = A(t)/B(t) and else-
where by continuity. Thus, Assumption 4 is verified.

It remains to verify Assumption 5. Since f(z | 6, G) is uniformly bounded in
z, 0, G, Assumption 5 will clearly be satisfied if

(3.10) Elogf(X1| 60, Gy) > —oo.

Since the left side of (3.10) does not depend on 6, we may assume 6 = O.
By (3.3) (d) and (3.5), we have

+ | Xu l "

Ellog| Xul|]" = E|log~—— + log a4
(3.11)
=< E[log’ u I] + Ellog a]* < =;

equation (3.10) is a consequence of (3.11) and the lemma at the end of Section 2.
This completes our verification of the fact that the assumptions of Section 2
are implied by (3.3) and (3.5).
Ezxample 1b. We now assume k& > 1. A is the set of all positive «, while T’
is the set of all df’s G on A satisfying

(3.12) | " log a | d6(a) <-<o.
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We assume that g satisfies (3.3) (some alterations could be made here but,
for the sake of brevity, we forego making them) and also that
(a) Ilim zg(z) = 0;

(3.13) k
(b) sup [m<irg1 | 21 — 235 | 1¥ III g(zyy) < .
z1 <) J=

Assumption (3.13) is easily verified, for example, in cases (3.2) and (3.4).

We now verify the assumptions of Section 2. We define f(z | 6, &) = 0 when-
ever§ = 4o ora = 0 or «; f(x | 8, @) is then defined by (2.1) for (6, @) ¢ & X T.
Assumptions 1, 3, and 4 are verified exactly as in Example la. In verifying As-
sumption 2, we may follow the demonstration of Example 1a, noting only that
the he of (3.3) (b) may (because of (3.13) (a)) clearly be assumed to satisfy
limz)», Zhe(z) = 0, so that for every z none of whose components is §*,

(3.14) lim h(x | 6: a) = 0;

100
a0

thus, for almost all (u) z, the Helly-Bray theorem may still be used at the last
step of (3.7), no difficulty being caused by the possibility that lim inf,.  G:(0) <
G*(0).

It remains to verify Assumption 5. Now, f(z | 6, G) is no longer uniformly
bounded as it was in Example 1a. However, by (3.13) (b), there is a constant
B such that, for all z; = (2u, -+, 2ix) none of whose components are equal,
every 0 ¢ Q, and every a € A4,

k
f(z1 ] 6,a) = [min | 2y, — 21, |]7* { (min | g2 — yu |11 g(yf)}
(3.15) < '<’ .
< B[min | 21, — 23, ”_k’
r<8

where ¥, = (21, — 6)/a. Hence, for almost all 2, ,

sup log f(z1 | 6,a) < log B + k maxlog [1/ | 21r — 21 | ]
Q <8

acA

(3.16) — +
<logB -+ L2 [log (1/] 21 — a1 |)]T.

r<s

Now, by (3.3) (a), there is a value B’ such that g(z) < B’ for all z. Hence, by
(3.12), B, denoting a firite constant, we have

Ellog(1/ | Xu — X )] = Ellog 1/ai]" + Ellog (a1/ | Xu — Xp | )"
© 29+1
(38.17) < B -2 f g(22) f B’ log (21 — 22) dz dz,
— w0 29

=Bl+2B,<°0.
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From (3.16) and (3.17), we obtain
(3.18) E sup log f(X:1]7) < o.

ye@xT

Assumption 5 is a consequence of (3.18) and of (3.10), the latter of which is
proved exactly as in Example 1a. This completes the verification of the assump-
tions of Section 2 in Example 1b.

The discrete analogue of Example 1 can be carried out similarly by letting =,
6, o take on only rational values; this is, however, of less practical importance.
The multivariate extension of Example 1 (X;; a vector) may also be carried
out similarly.

4. Example 2. The straight line with both variables subject to error.

In this section we shall treat the case £ = 1 of fitting a straight line with
both variables subject to normal error, a famous problem with a long history.

We consider a system {(X, Xi2)},2=1,2, - -+, of independent chance 2-vectors
(the two components X, X;; need not be independent for fixed 7). We have
0 = (6;, 62), @ the entire plane, 6y = (610, 020), A the entire line. T is the totality
of all non-normal (univariate) distributions G (a chance variable which is con-
stant with probability one is to be considered normally distributed with variance
zero) which satisfy

f(log | @ |)+dG(a) < o,

It is known to the statistician that
Xa = a; + ui,
X = 610 + Oza; + v;,

where (u;, v;) are jointly normally distributed chance variables with means
zero, each pair (u;, v;) distributed independently of every other pair and of the
independent chance variables {a;}, with a common covariance matrix which is
unknown to the statistician.

It is known (see [10]) that the distribution of (X, X:2) then determines 6y
uniquely, but in general not Gy, the “true” df of a;, or the “true” covariance

matrix
dh dd)
{dgz dgz}
of (u;, v;). However, a “canonical” complex is determined. (See [4].)
Complete the spaces 2, 4, and T to obtain €, A and T. The space T' contains

all normal distributions on A4, but this will cause us no trouble in estimating 6, ,
as we shall soon see.
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Let D be the space of all triples (dy , di2 , dz2) such that
du = A\ > 0, dzz = A2 > 0,

dudy — diy = A\ > 0,

where Au, Az, A2, are given positive numbers. (This will be discussed further
below.) We define a metric in D in the same way that one is defined on Q. Let
D be the completed space. We shall assume that the “true” triple df;, dis,
d3s is in D.

The place of & X T in Section 2 and in Example 1 will now be taken by
@ X T X D. We therefore define

¥ = (b, 0:,G, du, di, ds)

as the generic point in & X T X D.
Letf (x1 y Lo I 6, , 0, y O du y dis , dzz) be the joint density function of (Xﬂ ’ Xﬂ)
when 6 = (6:, 6), a; = o, and the covariance matrix of (u;, v;) is

{dll dl2
d12 d22
(u is Lebesgue measure in the plane). If, in the above, 6 is in O —Qoraisin
A — Aor (du,dyg,ds)isin D — D, we define f to be zero. Finally we define

f@i, 2 | y) = j:_f(xl %2 | 601, 0., a,dy ,dr ,dr) dG().
A

It is known ([10] and [4]) that all v in the same canonical class, and only such,
define the same f(x:, 22 |¥) (of course, to within a set of u-measure zero). Two
members of the same canonical class have the same 6 = (6,, 6;) but different
G@’s and d;;’s. We shall estimate only 6. For an estimator of the entire ca-
nonical complex by the minimum distance method under necessary assump-
tions only, see [4].5 In Section 5 below will be found an explanation of why
the entire canonical complex cannot be estimated by the m.l. method.

From the definition of f(zy, ;2 |v) it follows immediately that Assumptions
1, 2, and 3 of Section 2 are satisfied. Since we are estimating only 6y , it is suffi-
cient to verify Assumption 4 only for 6, and 6* = 6, i.e., if we write the v,
and v, of (2.4) as

Yo = (6w, 020, Go, dh , dis dg2),
m = (67,65 ,G,du,d,dn),

only 6, = (6., 6x) has to be different from the corresponding 6* = (67, 03).
Now we know that G, is in T, hence is not normal and assigns probability one
to A. If G, is also in T' then Assumption 4 follows at once from the results of

5 See footnote 4.
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Reiersgl [10] or from [11]. If G, assigns probability less than one to 4, f(z | v1)
assigns probability less than one to the Euclidean plane of (z1, z2). If Gy is
normal and assigns probability one to 4, then (X, Xy) are jointly normal
under v; , but not under v, . Thus Assumption 4 is always satisfied.

To verify Assumption 5 we proceed essentially as in Example 1, and use
the lemma at the end of Section 2. Assumption 5 is satisfied if

Elogf(Xa, Xa|y) > —w.
By the lemma this will follow if we prove
Eflog |Xiif}" < oo
forj = 1, 2. Now
Eflog |Xal}" = E{log [ |Xa — ai + |l }7T
< Eflog[ [Xa — | + 1]} + Eflog |ail}*
= E{log [ |ud + 11} + B{log |af}*
< o,
Similarly,
Eflog |Xa|}* = E{log [ | X2 — 610 — 6] + |610 + 000l 1}
S Elog[|Xa — 610 — 60| + 1] + Eflog |61 + 6aail} "
< Elog| o] + 1] + {log [6u]} ™ + E log [1 + |6xas] ]
< o,

Thus we have shown, under our assumptions on I' and D, that Assumptions
1 through 5 of Section 2 are satisfied, so that the m.l. estimator of 6, converges
strongly to 6, as n — .

The assumption on D (that di; , d , and dy due — dis” are bounded away from
zero) cannot be entirely dispensed with. For if D consists of all triples for which

du , do , and du das — dys are positive, if S, is the sample df of zy, -+ , Zu,
and if 4. is the complex (0, 0, S., ¢, 0, D1 ), then it is easily verified that
lime,o L((zu, %12), -, (@m, Tn2) |¥e) = oo; thus, no m.l. or modified m.l

estimator exists, and there are neighborhood m.l. estimators which are not
consistent, (for ). .

The case k¥ > 1 is much simpler to treat than the above case. It is easy to
see that then the covariance matrix of (u;, v;) is uniquely determined, and
from this it follows easily that the whole complex v is uniquely determined. The
problem can be treated in a manner similar to that of Examples 1b and 3b.

The problem of this section with the distribution of (u;, v;) other than normal
may also be treated by the m.l. method, as in Examples 1 and 3. The last para-
graph of Section 3 applies also to the present example.
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6. Example 3. Structural scale parameter, incidental location parameter.
We consider here the case of a structural scale parameter and an incidental
location parameter; this reverses the roles of the two parameters of Example 1.
Thus, we suppose u to be Lebesgue measure on R* and

k
5.1) fx:|6,a) = 0_}”1_11 g (”"' ; "‘) .

The cases £ = 1 and k& > 1 are essentially different, and we consider them
separately.

Ezample 3a. The case k = 1. This example is another simple one where no m.l.
estimator is consistent, and also shows, in a simpler setting, why in Example 2
the m.l. method was incapable of estimating the components of the canonical
complex other than 6. Since Example 3a is intended to illustrate the failure
of the m.l. method in certain situations, we shall for simplicity assume that g
is given by (3.2); examples with other ¢ (e.g., (3.4)) may be treated similarly.
Q may be taken to be any specified set of positive numbers containing more
than one point; for the sake of brevity, we assume that Q contains its greatest
lower bound ¢ (say) (and thus, that ¢ > 0), but it is easy to carry through a
similar demonstration (with modified or neighborhood m.l. estimators in place
of m.l. estimators) when ¢ £ Q. T' is taken to be the class of all df’s G on the
real line for which [[log |a|]" dG(a) < « and such that G has no normal com-
ponent; i.e., no G in T can be represented as the convolution of two df’s, one of
which is normal with positive variance. (I' may be further restricted, e.g., by
the condition that for each G there is a bounded set outside of which G has no
variation.)

All assumptions of Section 2 are easily verified except Assumption 4; there is
no difficulty of identifiability in @ X T, but there clearly ¢s in & X T'. Consider
now the expression

. ° 1 —(1/2¢2) (z;—8'
(5.2) II [m TR UM grr(sy

1=l

It is clear that the maximum of (5.2) with respect to M can be achieved only. by
an M which assigns probability one to the interval (min (z;, - -, z), max
(1, ---, x,)) and hence which has no normal component. This discussion of
the expression (5.2) shows that, for every n, any m.l. estimator (the fact that
the maximum is attained is easily verified) of (6, G) subject to our assumption
0 = ¢ always estimates 6 to be c. Thus, no m.l. estimator of (6, @) is consistent
(unless 8§ = c).,

To summarize the result of this example, then, the m.l. method is incapable
of estimating consistently the normal component of the df of the sequence
{X,} of independent identically distributed random variables because, in every
neighborhood of a point (6, G) with 8§ > ¢, there are points with 6§ = ¢ (and
for which the likelihood is larger).
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Let N, denote the normal df with mean 0 and variance o°, and let H; * H,
denote the convolution of the two df’s H; and H,.

It is interesting to note that, without any assumption on I' (except the neces-
sary identifiability assumption that G, has no normal component), the minimum
distance method is capable of estimating (6, Go) consistently [4]. The difficulty
noted above for the m.l. estimator is avoided by noting the rate at which the
sample df S, converges to the df Ng, * Go of X, and estimating 6, nof by the
value ¢ for which N, » H is closest to S, for some normal-free H (this would
encounter the same difficulty as the m.l. estimator, since, the smaller ¢ is taken,
the closer can N, * H be made to approximate S,), but as the largest value
for which there is an N, * H suitably close to S, (‘“suitably” is connected with
the rate mentioned above.)

One could modify the example as considered above so as not to require Gy
to have no normal component, and try then to escape the difficulty of non-
identifiability by asking for an estimator of the canonical representation of
(6, G), this representation consisting of two df’s, the normal and nonnormal
components of Ny + G. The previous demonstration then shows that no m.l.
estimator of the canonical representation estimates it consistently, and thus
illustrates, in a simpler setting than that of Example 2 with £ = 1, why the m.1.
estimator could not be used in Example 2 to estimate the components of the
canonical complex other than 6.

We remark that it is easy in many cases such as that of the present example
to prove a result such as the one that, (f,, H,) denoting an m.l. estimator of
(60, Go) after n observations, the df N,, * H, converges w.p.1 to Ny, * Gy as
n — . Such a property is much weaker than that of the consistency of the
m.l. estimator, and does not lie much deeper than the Glivenko-Cantelli theorem.

Example 3b. The case k > 1. We assume f to be given by (5.1) with k£ > 1.
The function ¢ is assumed to satisfy the conditions (a), (b), (¢), and (d) of
(3.3); conditions (a) and (b) of (3.13), and

(5.3) f ¢®g(x) dz # 0 for almost all real ¢.

(As in Example la, weaker conditions could be assumed here if we assumed
also 8 = ¢ > 0; the above conditions are analogous to those of Example 1b.)
Thus, for example, (3.2) and (3.4) satisfy these assumptions. Q is the set of all
values 6 > 0, while A is the real line and T is the set of all df’s G on A for which

(5.4) f_ : llog | | I d6(a) < .

We now verify the assumptions of Section 2. We define f(2 | 6, a) = 0 when
6 = 0or © or @ = = . The definition of f(z | 6, G) for (8, G) ¢ & X T is then
given by (2.1). Assumptions 1, 2, and 3 are now verified as in Example 1b, inter-
changing the roles of 6 and « in the latter (including the definition of h(z | 6, a))
and noting that (3.14)) still holds for almost all (x) z, with this interchange. In
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order to verify Assumption 4, we note, for (8, G) € @ X T, that 9 is determined
by the density function of X;; — Xj, and that, for almost all real ¢, the char-
acteristic function of G is then given by B(t/k, ---, t/k)/[C(6t/k)]* where
B(t,, -+, t) is the characteristic function of Xy, ---, Xu and C(f) is the
characteristic function of ¢.

Finally, Assumption 5 is a consequence of equation (3.18), which is proved
in the present case exactly as in Example 1b (using (3.15), (3.16), and (3.17),
with a; replaced by 6 in the latter), and of equation (3.10) (with f defined by
(5.1)). Equation (3.10) in the present example is a consequence of the lemma
at the end of Section 2 and of

Ef{log | Xul}* < E{log[ |Xu — ai| + || 1}*
S Elog[|Xu — ai| + 1] + Eflog |a|}* < .

This completes the verification of the assumptions of Section 2 in Example 3b.
The last paragraph of Section 3 applies also to the present example.

(5.5)

6. The Classical case. Miscellaneous remarks. It does not seem to have been
noticed in the literature that a simple device exists for proving consistency of the
m.l. estimator in certain cases where the regularity conditions of published
proofs fail. This device may be used in the case studied in the present paper (to
prove consistency in the examples under weaker conditions than those stated) as
well as in the classical parametric case. We now illustrate this device in an ex-
ample of the latter case.

When T consists only of distributions which give probability one to a single
point, the problem of the present paper becomes the classical problem of esti-
mating the parameter 6 and the parameter ¢ (say) to which Gy gives probability
one. If § may be any real value and ¢ any positive value, then the function
(1/0)g((x — 6) /o) of Section 3 does not satisfy Wald’s integrability condition
or the corresponding condition of any other published proof; one verifies easily
that (2.5) is not satisfied for any point in the (6, o) half-plane which lies on
the line ¢ = 0. (The line ¢ = 0 has to be added to @ in the process of forming
. As in earlier sections, we assume the true oy to be >0.) Often, however, when
the observations are considered as if they were taken in groups of two or more,
the integrability condition will be satisfied. Such is the case, for example, with
the density function

1 o 1 T
r+ (@ — 0 7o+ (z — )

and the normal density function

1 1 (z, — 0) 1 1 (z2 — 6)
(2m)io exp{—— 27 o } . (2m)to exp{— 27 2 } ’

(Of course the estimator from the normal distribution is known to be con-
sistent, but this does not alter the validity of the example.) In such cases it
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follows from Wald’s proof [5] (using the compactification device used above) or
from the result of Example 1b that the m.l. sequence of estimators considered
only after an even number of observations in consistent, and from this it is an
easy matter to show that the entire m.l. sequence of estimators is consistent.
We shall now discuss the integrability conditions of [5] and of the present
paper. The integrability condition (2.5) involves the difference of two logarithms;
the integrability condition as given by Wald in [5] requires the finiteness of the
expected value of each logarithm. The form (2.5) is satisfied whenever the
condition of [5] is, and has one other advantage which we shall now illustrate
by an example. Let the observed chance variable X have density function
6¢% for z > 0 and zero elsewhere. The parameter 8 is unknown and @ is the
positive half-line, so that & contains the point 6 = 0. One verifies easily that the
condition of [5], and hence (2.5), are satisfied. Suppose now that, instead of
observing X, one observes Y = e“x), which therefore has the density function

9 —6—1
z (log )

for > e, and zero elsewhere. One readily verifies that, when § < 1,
E log {—g—, (log Y)—‘H} = — oo,

so that the condition of [5] is not satisfied when 0 < 6, < 1. Thus, whether the
condition of [5] is satisfied depends in this instance on whether one observes X
or Y; this is an unfortunate circumstance, since the estimation problems are in
simple correspondence. On the other hand, condition (2.5) is invariant under
one-to-one transformation of the observed chance variable because the numer-
ator and denominator of the ratio in (2.5) are multiplied by the same Jacobian.
(In particular, therefore, the chance variable Y satisfies (2.5).)

Without resorting to artificial or pathologic examples as is sometimes done
in the literature, it is still easy to give instances where the m.l. method does not
give consistent estimators in the classical parametric case. For example, consider
the density function

1 IRTA Y 1 _l(x"‘o)zl

2(27r)? exp {—3(z — O} + 2(27)to exp{ 2 ¢ f
of the sequence of independent and identically distributed chance variables
X1, Xz, -+ . Here 6 and o are the unknown parameters, § may be any real

number and ¢ any positive number. It is easy to see that the supremum of the
likelihood function is almost always infinite, no m.l. or modified m.]. estimator
exists, and there are neighborhood m.l. estimators (where 6, is estimated by
X, , say) which are obviously not consistent.
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