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the last equality following from (9). Since f(z) is an arbitrary Qg-integrable func-
tion, this last equation, being true for all B ¢ &, , shows that s, is a sufficient sta-
tistic for {us ; 9 £ 2,}. But we are given that ¢ is minimal sufficient for {us ;0 €Q4).
Hence there is a mapping h of S; onto T' such that ¢(z) = h(su(z)), [{uet '} sl
If we now restrict  to X, it is evident that #(z) = h(s(z)), [{ud t7'}], as was tc
be proved.
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A CENTRAL LIMIT THEOREM FOR MULTILINEAR STOCHASTIC
PROCESSES

By EMANUEL Parzen
Stanford University

1. Introduction. Let the random sequence X (¢) be observed fort = 1,2, - - - ,
and let S(n) = X(1) 4+ --- + X(n) be its consecutive sums. The random se-
quence may be said to obey the classical central limit theorem if, for any real
number a,

(1.1) 31_.12 Prob {'g—%—rg—f(—@ < a} = -\71—5; [: eV gy,

Because of the importance of the central limit theorem in establishing the
properties of statistical tests and estimates, it would appear that in order to
develop a satisfactory theory of statistical inference for stochastic processes
which are random sequences of dependent random variables, it is necessary to
establish a central limit theorem for such processes. Diananda [2] has proved
a central limit theorem for discrete parameter stochastic processes which are
linear processes. We here introduce a class of stochastic processes which we call
multilinear processes, for which we prove a central limit theorem. The results
are capable of extension to the continuous parameter case, but we do not do so
here.
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2. Multilinear processes. A random sequence X (¢), defined for¢ = 0, 1, .- -
is said to be a multilinear process if it can be represented as follows:

0

(2-1) X@) = Z a(v, y *t vx) Wit — o) - We(t — vx):
Ve o R—
where K is a positive integer; the a(v1, - - - , vx) are constants, defined for v; = 0,
+1,..-and7 =1, ---, K, such that
(2.2) Z la(v, -+ ,v5) | < o,
Ve R0

and the W,(t) are random variables, defined for¢ = 0, =1, ---and 7 =1, -- -,
K, such that the K-dimensional random vectors W(t) = [Wy(f), ---, Wk(?)]
are independent. For the sake of clarity, we give the definition of independence;
the W(t) are independent if, for any integer n, for any set of points &, « -« , t.,

and any set of bounded Borel functions of K-variables gi(w), ---, g.(W), it
holds that
(2.3) Elg(W(t)) - -+ ga(W(t))] = Equ(W(t1) - - - Ega(W(ta)).

It is also assumed that the random variables W(t) satisfy the condition that,
for some a > 2 and constant C,

(24) E l Wl(tl) e IVx(tx) Iu = C for any i y * k.

Random sequences which admit a representation of the form of (2.1), with
K = 1, have been called by Bartlett ([1], p. 146) linear processes. The interest
of multilinear processes derives from the fact that they possess certain closure
properties, if it is assumed that the random variables W;(¢) which occur in the
definition of the multilinear processes possess moments of sufficiently high order.

By a linear filter is meant a linear transformation on the space of bounded
doubly infinite sequences {X (), t = 0, %=1, - - -} to itself, of the form

(2.5) Y() = f, k(@) X(t — v),
where
26) vilk(vn < .

Multilinear processes are closed under the operation of linear filtering, in the
sense that if X(¢) is a multilinear process, then so is Y (¢).

It may be verified that powers of multilinear processes are multilinear proc-
esses. More generally, polynomials in multilinear processes

PIX®)] = cX"(t) + -+ + aX(t) + ¢

are multilinear processes.
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Next, we note that the sum and product of the multilinear process X (¢), and
a different multilinear process

X'(t) = 2a @, , o )Wi(t — v1) -+ Wit — vxr),

is again a multilinear process if the (K 4 K’) dimensional random vectors [W:(z),
e W), W), - -+, Wee ()] form an independent sequence. Since the process
defined by X'(t) = X(t 4+ 7), where 7 is fixed, satisfies this condition, it follows
that X(#)X(t + 7) is a multilinear process.

The model of a multilinear process appears to be applicable to many stochastic
processes which are physically observed. For many physical processes may be
regarded as arising from independent random variables through a finite bank
of linear filters and non-linear power law interactions which represent on the
one hand the effect of measuring devices, and on the other hand the transmission
properties of nature from the regions where the independent events occurred to
‘where they (or their superpositions) are observed.

3. A central limit theorem.
THEOREM. Let X (t) be a multilinear process, in the sense that it admits of a repre-
sentation of the form of (2.1), with (2.2), (2.3) and (2.4) all being true. Then (1.1)

holds if
(3.1) Jim inf% S1S(m)] > 0.

Proor: For any positive integer M, let V » be the set of K-tuples (v;, - -- , vx)
whose components v; are integers and satisfy |v;| < M. Define, fort = 0, +1, - - -

82 Xu®) = X al, -0 Wit — v) -+ Welt — vx).

(01, E)EV
Define the consecutive sums
(3.3) Su(n) = Xy(1) + -+ + Xp(n)

and let Ry(n) = S(n) — Sy(n). To prove the theorem we use the method of
iterated probability limits introduced by Marsaglia [3]. We will show that

(i) for every M greater than some My, (1.1) is satisfied by the X »(f); that
is, the random sequence (Sx(n) — ESu(n))/c[Su(n)] is asymptotically normal
with mean 0 and variance 1.

o[Ru(n)] _

(ii) li;n limnsup S 0.
T _ a[Su(n)] —
. (iii) hLI{n hmnsup 1 W 0.

In view of Theorems 1 and 2 of Marsaglia [3] the validity of these facts imply
the validity of the theorem. To prove (ii) and (iii), we use the inequalities, for
any random variables X and Y,
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(3.4) olX + Y] = o[X] + o[Y],
(3.5) [o[X] — olY]| = o[X — Y]
From (3.5) it follows that (ii) implies (iii). To establish (ii), we write

Ru(n) = Z a(v y Tt vx) tZ:; Wit — vg) - - Wg(t — vk).

(v WKV

Consequently, by (3.4),

% oRu(n)] = E las, <<+, ve) |

(1,2 0K 4V ar

(36)
X [\/- 2 Wit — o) - - Wkt — ”K)]-
n =1
Now
[ ; Wl(t - Ul) Wx(t - 7)&)]

32) = 22 A — ) -+ Wil = v)]

+ poy thz-‘- COV[W;(S - 1)1) WK(S o l)x), Wx(t - U;) . Wx(t - Ux)].
For fixed s, v, , - - - , vk, the covariance in (3.7) vanishes for all ¢ except perhaps

for ¢ such that ¢ = s + v; — v, for some 4,5 = 1, --- , K; there are at most K’

such values of .
Now, in view of (2.4), there is a number C; such that

(38) 0'2[W1(t1) e Wx(tx)] = 01 for all b y Tty e .

Consequently, the variance on the left-hand side of (3.7) is less than Ci[1 + 2K7],
which is less than 4CiK*. Further, from (3.1), it follows that there is a positive
constant B’ such that for all n,

(3.9) a’[S(n)] > B
i
Therefore
10) CRu@] L oAR(@] 20K )

SO =B Vi = B eSheu

From (3.10) and (2.2) one may infer (ii).
~ Next, to show (i), we note that the X »(t) form an 2M-dependent sequence of
random variables. From Marsaglia [3], it follows that a sufficient condition for
the X x(f) to obey the ¢entral limit theorem, and thus for (i) to be established,
is that for some positive constant B, ,
Su(®)]

(3.11) — =B

-
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and for some a > 2 and constant C.
(3.12) E |Xy(t) - EXM(t) la é Cg fO!' all {.

For M large enough, (3.11) follows from (3.1), (3.10) and (3.5). By Minkowski’s
inequality, (3.12) follows from (3.2) and (2.4). The proof of the theorem is now
completed.

4. A remark on applications. One use of the foregoing central limit theorem
is to provide conditions, without any further ado, for the asymptotic normality
of various estimates of the spectrum of a stationary time series that have been
considered by us (see [4]).
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ON THE ENUMERATION OF DECISION PATTERNS INVOLVING
n MEANS!

By R. L. WinE? anp Joun E. Freunp

Virginia Polytechnic Institute

1. Introduction. The purpose of this paper is to provide a mathematical
treatment for the enumeration of decision patterns obtained in the pairwise
comparison of n sample means. In the comparison of n means, there are altogether

(2> pairwise comparisons, and each individual comparison between two means,

say m; and m, , must result in the decision that m; is significantly less than m, ,
that m, is significantly less than m,, or that there is no significant difference.
Symbolically, these three alternatives are written as m; < m,, my < m;, and
my = my, respectively.

There are, thus, altogether 3(2) possible decision sets in the comparison of
n objects, a decision set consisting of the (g) pairwise comparisons. However,
for the comparison of n means, there are fewer decision sets since circularities are
"automatically ruled out.
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