VARIANCES OF VARIANCE COMPONENTS: II. THE UNBALANCED
SINGLE CLASSIFICATION!

By Joan W. TukEey
Princeton University

1. Summary. The variance of the usual estimate of between variance com-
ponents in an unbalanced single classification has been found for arbitrary in-
finite populations by Hammersley [1], who found it necessary to use rather
heavy algebra. The methods of polykays are here applied to a family of weighted
estimates to obtain the variances and covariances of the estimates of between
and within variance components. These apply to arbitrary finite populations.

Weighting column means equally seems to give a better estimate than the
classical proportional weighting for the between variance component as soon as
(i) the between component exceeds 3 of the within component in a moderately
unbalanced design, or (ii) the between component exceeds the within component
in a substantially unbalanced design. Slight further gains come from interme-
diate weighting. Numerical examples are given.

While pooling mean squares instead of sums of squares across columns loses
acecuracy, notably for the within variance component, doing the same in calcu-
lating the between variance component seems to have a minor effect. If the
within contributions are sufficiently non-normal, this effect will be favorable.

2. Introduction. This paper closely follows the method and concept of the
first paper of this series [2], familiarity with the techniques and results of which
is assumed. The present paper deals with the unbalanced single classification,
where we have observations in the various columns. The actual observations
are supposed to be representable in the form

(observation) = (column contribution) + (cell contribution),

where each class of contribution arises from a separate population, or popula-
tions, and some independence is assumed for the selection or sampling of con-
tributions in the different classifications (this is not a serious element of un-
realism for a single classification situation).

A wide variety of models can be constructed within this framework. The way
in which the lack of balance arises may be very important. If the number of ob-
servations in a column is at all related to the value of the corresponding column
contribution (as might be the case if items with potentially extreme values were
preferentially lost), the situation becomes very complex, and may he outside
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44 JOHN W. TUKEY

the scope of both the present paper and the literature known to this writer. We
shall assume a fixed pattern of column sizes and a random arrangement of the
column contributions among them.

There still remain various possibilities for the cell contributions. These could,
for example, be drawn from a single population, or from a family of populations,
one per column. In the interests of simplicity, we shall begin with the case where
only one population is involved.

3. Types of analysis. Having specified the probability model, we are not, as
an acquaintance with balanced designs alone might suggest, through with the
specification of the problem. There are various possible analyses to make of the
observations, as we shall shortly see. Let {z;;}, with¢ = 1,2, --- ,candj = 1,
2, -+, r;, be the observations, let {z;.} be the column totals, z,, be the grand
total, and let R, the sum of the r;, be the total number of observations.

If we are to have unbiased estimates of the variance components, they will be
quadratic functions of the z;; with coefficients depending on ¢ and the {r;}. In
principle, we could start with a general quadratic function and then optimize its
coefficients in some way. In practice, we select two quadratic functions by some
scheme involving elements of intuition, find how their average values are ex-
pressed linearly in terms of the variance components, and then form two linear
combinations of the original quadratics whose average values are the variance
components. These linear combinations are then our estimates. Much flexibility
is possible in this situation, but only a limited amount of flexibility seems to be
customary.

Within each column, reasons of symmetry favor using

2
Ei (%‘ - x”) = Zi i — Ei,

r: r;

but we may as well be prepared for the use of arbitrary weights in combining
these pieces. For the first quadratic then, we take

2 2
Tiy 2 Tiy

J = Zi uiZi <$ﬁ - > = i Ui L5 — Ziui .
i i

B T

The average value of J will be shown to be D_ u;(r; — 1) times the within-vari-
ance component, so that the within estimate is immediately constructible.

The other quadratic is usually definable in terms of the column means z;/r;
and some weighted grand mean

1 .x,-+
W Zwt '7;" )

where W is the sum of the weights w; . The usual expression is the weighted sum
of squares of deviations

: 1 Y 2 1 T\
L= o (% - LT = Tu - b (S 2).

Ti 75 i Fj
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We shall confine our analyses to this family of cases, which is parametrized by
the {u;} and the {w}.

The choice w; = r; gives the customary analyses, which treat observations as
important and columns as unimportant. This is appropriate when testing signifi-
cance or when the column variance component is small compared with the within
variance component,.

The choice w; = 1 gives the equally-weighted-column analyses, which treat
columns as important and observations as unimportant. This is appropriate
when the column variance component is large compared with the within variance
component.

Some intermediate choice of weights may indeed be preferred.

Finally, as we shall see, it is sometimes possible to choose the weights so that,
although the pattern is unbalanced, the analysis becomes a balanced analysis
in the sense of Paper I [2]. This, we shall see, occurs when we try to make the
estimate of the between variance component unbiased whenever the variances
within the various columns differ.

We shall try to obtain as general answers as seem useful for this family of
cases.

4. Model and elementary results. Our model is

Il

Zi; = p+ 9 + wij, Z.=1,2,"',0, J 1,2"")7'0';
n’sfromn,kl,ku,---,
w’sfromN,Kl,Ku,--- )

independently and randomly sampled and arranged.

It is easy to see that the values of the # do not affect the value of the within
sum of squares J. Since J is quadratic in the #’s and «’s and invariant under a
common translation of all the values in either population, we must have

ave {J} = ¢K,.
Since L is also quadratic and invariant, we must have
ave {L} = tky, + tK,.

The estimates of the variance components will then be

s 1 1 £
within = = J between = - L — = J.
¢’ ¢ @
Arguments similar to those just used, and entirely parallel to those used in
Paper 1 for the balanced case, now determine the finite population corrections
and the vanishing of certain coefficients in the expressions for variances and co-
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variance. The results are

var {between} = <a1 - ?—1) ky + (Bl - ;i—l)k” + 71k Ko + 6K, + &1 Ko,

- 1
var {within} = <62 - N) K, + (62 s 3 1) K,

cov {between, within} = & K, + e Ks.

We are left with the task of determining ¢, ¢, & a1, 81,771,081, 8,8, a, &, e ;
we may do this by treating separately the cases of (i) single minimal unit popu-
lations, which together give us ¢, ¢, £ o1, 81, 8, 8, and (ii) normal theory,
which gives us 81, 11, e, e, & . These are our next tasks. We shall find it help-
ful to calculate, as intermediate quantities, some of the coefficients in the formu-
las for the variances and covariances of J and L. These formulas are of the forms

2
var {L} = (a,, - %) ky + (,31, - %) ke + v ko K

2 2
+<6L —£—> K4+<€L - 2£ >K22,
n—1

n
2 2
Var{J}=<61—¢;>K4—l—<e,— 2¢' >K22,
n n—1
cov {J,L} =<c —'¢—£>K4+(€c —_ ﬁi>K22.
n n—1

6. A single-unit column. If we take the special case where all w’s are zero
(K; = K4 = Kz = 0) and the 7’s are a minimal unit population (just enough to

go around, all zero except one and that one equal to unity, n = ¢, ks = ks =
¢/1, ke = 0), then we can make the first step. We will have J = 0, and if the
unit # falls into the jth column (an event of probability 1/c), we shall have

2
Z;+ = rj, other z; =0, L =w; — w;//W = a;,

which defines a;. (If we write 6, for the relative weight w;/W, then
a; = Wo,(l - 0,))
Thus,

4= Yo =W Ful,

and hence

4~ ave (L} = g + 8K, = ¢

so that { = 4. Correspondingly,

2 2\
var {L} =%Za‘f—(%1) = (aL—%>Cl.
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so that

2 2
w; w;
w=Zd=wI(p)(1-7)

6. A single-unit observation. Take, now, the special case where the w’s are a
minimal unit population (N = R, K; = Ky, = 1/R, K» = 0) and all the »’s
vanish (k; = k4 = ks = 0). If the single non-zero w falls in the jth column, an
event whose probability is now r;/R and not 1/¢, then we have

J=u‘(1_£) Lz_%_i<ﬂ>2=b.
4 T; ’ T? W T e

(Note that a; = 75b;.)
The average value of J is
U;T; _ _1_ _ _ (2
ave {J} > = <1 r-) oK, 7

J

whence ¢ = > u;(r; — 1). The variance of J is

-2 -0 - (- D

2 1V of 1
& O uir 1—7 = > uj rp—2+4+=).

)

so that

The average value of L is

Zgbj= ave (L} = ¢k, + £Kz =

so that
w; 1 w}
E=2 b = Z—%“-W —.
For the two special choices of the w; , this reduces to

t=c—1 (for w; = 1),
1 1 _
5—(1—;)25 (for w; = 1).
The variance of L is
i (EY _ _ 52>l
var{L}——Z—Rb, (TB) —<5z, R B

so that
6[, = Z ij? .
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The covariance of J and L is
= T (1 =LY (2 (E) = (5 — 25\ L
cov {J, L} = ERb,u, (1 "'i) (R) <R> (ac R>R,

8 = D ubi(r; — 1).

7. Normal theory. We now need to calculate variances and covariances of J
and L on normal theory (where ky = Ky = 0, K»n = K3, n = N = ). The
sums of squares within each separate column are distributed as multiples of chi
square, independently of each other and of L, so that we have

whence

var {J b=l 2_.__________(7',-7”;_1)12 K _ &Ko
whence
& =22 ui(r; — 1),
and
cov {J,L} =0 = ¢Kap,
whence

e = 0.

In calculating var {L}, it will be convenient to assume that all means are zero,
so that

var { (2 cizi)’} = 2 (var { 2 cimii})?,

and to write

= Tt - .
z. =T, .=, wi.,
when
1
var {x,} =k, + ;Kh
var {z_} = (2 wik: + (2 wi/r) Ks),
cov {x;,xz_} = (Wikz + :fﬁ K2> ,

and since
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we have
var {L} = 2 Y w} (k2+ }l'iKz)z
+ 2 (T ol + (T wl/r) KoY’
- 7 oo+ 1)
= Buks + vikeK: + K3,
whence

—2(Ta+ s (T’ = (Tud)),
ZIw‘ 2 Zw.+W222 w‘>
Dm0 (25)-E9))
«“=2 (z ’;; 2yt (=4

(2§ (= -53)

8. Combined results. Combining all of the results above, using such rela-
tions as

a; = g_—za,‘,

1 2% , '3
b=t gl ond,
33 = g%&c —g&;,

and writing ¢ = §/¢, we find
a = ‘% Z a?y
-2 (T (- (Cu),
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r,— 2+ )
75

J

2
(Zf;;bl) e,

Y1
al=_4—1§(2rb2—2¢2u,b(r,—1>+¢ Eu,(
2 a? 1 wf 2 wf 2 2
61:3.—2<E7‘—"}+_2(< Z>—2E)+\P ZW(’}“D)
_2(ya 1 wi' _ (s~
_Az(zr?-,_ 2(( ri) (er>>)+
_ o, _ g4 1
b= ey S (2 )
_ 1 20, _
T oy 2
8 = 1 (Z usbi(r; — 1) —¢Eu?<r~ -2+ 1—))
A ui(r; — 1)) T \”’ rj
- — Z"J‘biaz’
— -2 200, _ =erble
T ACue oy =Y = S
where
a,~=w,—%,w§, A=2a,
o g 2rb
& ri’ v 2 ui(ri — 1)’

1 2 uibi(r; — 1)
A 3 ul—1)

These results are not easy to digest, but, computationally
ageable If we introduce g; = wuj(r; —

[

, they are quite man-

1) and put f; = a;/A, so that b;/4 =

fi/7 , and rearrange the order of the equations, we may write them in the fol-

lowing way:
=21,

B = 20+ o () — (),

Y1 =

8 = 2 ug; (1 - %)/(Z 9)’,

WY + s [(Z 0 it/r) — St/



€2
€
8,
83
0

€

VARIANCE COMPONENTS: II

22" uigi/(2 0:)’,
-2 (i/ri)le,

2 (fi/rgi/ 2 i,
=& —[X (fi/r)l&,

2(Fi/r) = 22/l + [ 22/rd)es,
20D + o (i) = Tt/ + (Z s/re.

51

(The precise form of these equations has been chosen with computation in mind;
it takes account of the fact that the w; are likely to be small integers.)

9. Special cases. The quantities appearing in the formulas for a; to & fall
naturally into several groups according to which of the {r.}, {w;}, and {u,} they

TABLE 1
Quantities depending on w; and r; but not on u;

Quantity General Form Form for w; = r; Form for w; = 1
w E wj R c
l. 2 - 1. 2 1 }
a; Wi = Wi et ~
1 ,\ 1L\ 1\
a} Z(w,-—Ww:) E(""E"‘) c(l—;)
1 1
A=ZG‘W_W»Z“’§ R—E Ti c—1
1
ay - h -
c
— O W) - (Z w!) (IR O (c—1) =AW

B4
(Cu(E-x )
S5 (w-gu)

Ti

(ze) -5

T Ti
1 1,
2 7',~ (“” W w’)
2
i < 1 1 L\
Z 5 B Z rf-(u' W w,)
w2 — 2 wi

ZT; (l - %7’,‘)2

(x
(-iyz)
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TABLE 2
Quantities depending on {u;} and {r;} but not on {w;}
Quantity General Form Form for #; = 1 Form for u; = ;_1—-—1
b Z Ui (Ti - l) R—-c [
1
— Zu}(r;—l) R-—c¢ Zr,-—l

— Zu,2<r,~—2+%) R—2c+2717_ —
H

82

! 2 2
| R—c c? ri— 1

mvolve. The various quantities and their special values are given in Tables 1
and 2 with the exception of &', which is the only quantity essentially involving
both {w;} and {u;}. Its special values are:

11 c 1 _ o
(6—1+R—Z;’> (wi=1',, uz——l)!

AR —¢
LISl 5 (e, wel)
Ac ] R LS '——ri_lr
1 1 1 _ _

1
7'? (w‘El’ uiETi—l)'

It is now quite clear that the result is not likely ever to become algebraically
simple, whatever the values of {w;} and {u;}.
One of the simplest cases arises when w; = r; and u; = 1. Here we have

var {between} = {Z%%g—:—%;; - %} ks
RYn—2RYr+(Qn) 1
+ [ & ]kzz

n—1

+ 8 kK + ﬁ%—&%[z G - Té)]K‘
2(c — (B — DR

(r — 0% K,

+
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R S R

2 .2
+<R—0“N— 1)K”’
cov {between, within} = g((f__c)lz) {Z - — —} — 2,;8(—55:—:)2 K,

where R = Zr,-andS = Eri(R — 1) = R — Zr;.

Since the first of these checks with Hammersley’s result [1] for the between
variance, we can have reasonable confidence that the result is right, since the
algebra involved here is somewhat different from his.

10. Numerical examples. In order to learn what these formulas imply, it
seems necessary to carry out at least a few numerical examples. The coefficients
for several special choices of {w;} and {w;} and each of the following sets of
{r;} are given in Tables 3, 4, and 5:

(Set I) {r;} = 10, 10, 10, 5, 5.
(Set TII) {r;} = 10, 10, 6, 6, 2, 2.
(Set ITI) {r:) = 4,4,4,4,2,2,2,2,2, 2.

P

TABLE 3

Coeffictents in variance and covariance of variance components for an unbalanced
design of structure 5%, 103

w;, forr; = § 5 2 1 5 2 1
w;, for r; = 10 10 3 1 10 3 1
w, forr; = 5 1 1 1 i i 1
ui, for r; = 10 1 1 1 } 3 e
a .21200 .20429 .20000 .21200 .20428 .20000
[ . 54080 .51437 .50000 .54080 .51437 .50000
7 .12800 .12996 .14000 .12800 .12996 .14000
) .00010 .00018 .00031 .00000 .00002 .00008
€@ .00913 .00997 .01182 .00929 .01014 .01201
2 .02506 .02506 .02506 .02800 .02800 .02800
€ .05714 .05714 .05714 .06667 .06667 .06667
EX —.00008 |—.00010 |—.00014 | .00010 | .00025 | .00048
= —.00731 |—.00759 |—.00800 (—.00853 [—.00886 |—.00933
Variance of between
variance component
for kzz = %Kzz ,
k2K2 = ‘\/kzz Kzg N and
ki = —ko , Ky = —Kjy | .621kz .609k32 .626k32 622k, 619k, .628k32
kk=K,=0 .833ks2 .814k,, .827k2 834k, .815ks, .828k 2
ky = 4kyy , Ky = 4K, 1.683kze | 1.634ks | 1.632ks2 | 1.682ky | 1.632ky; | 1.629k,,
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Both common sense and an examination of the tables of coefficients show us
that if the between component is much larger than the within component, we
will do better, in calculating the between component, to weight the column means
equally. Similarly, if the between component is very small, we will do best to
weight the column means in proportion to the number of entries. The big ques-
tion is, Where does the crossover take place? Tables 3, 4, and 5 also give the
variance of the between component when the between component is 1 the within
component for various degrees of non-normality. When we examine these values,
we see that changes in ks/ks and Ky/K, can have effects which are large com-
pared to the weighting system. We see further that in Set I (two columns of 5
entries and 3 of 10) it is already better to use equal weights when (between) =
1 (within) than to use proportional ones, although a slight further gain can be
had from an intermediate weighting system. In Set II (two columns each of 10,
6, and 2) equal weighting is not yet as good as proportional to number. However,
a weighting procedure which weights columns of 10 and 6 both twice as much as
a column of 2 is better than either for most sorts of non-normality. For this case,
where the ratio of extreme column sizes is 10/2 = 5, equal weighting is better

TABLE 4

Coefficients in variances and covariance of variance components for an unbalanced
design of structure 10% 62, 2?

w;, forry = 2 2 1 1 2 1 1
w; , forr; =6 6 2 1 6 2 1
w; , for r; = 10 10 2 1 10 3 1
u;,forr; =2 1 1 1 1 1 1
u;,forr; =6 1 1 1 1 1 1
ui, forr; = 10 1 1 1 3 b i
a .20271 .17638 .16667 .20271 .17638 .16667
B .51349 .42950 .40000 .51349 .42950 .40000
7 .14173 .15728 .20444 .14173 .15728 .20444
81 .00091 .00269 .00639 .00003 .00043 .00187
€@ .01465 .02328 .04028 .01713 .02689 .04544
82 .02837 .02837 .02837 .04259 .04259 .04259
€ .06667 .06667 .06667 .14568 .14568 .14568
83 —.00074 {—.00126 |—.00193 .00052 .00250 .00510
€ —.01181 |—.01425 |—.01704 |—.02581 |—.03115 |—.03723
Variance of between
variance component
fOI‘ kzz = %Kzg )
kK2 = /knKz: ,and
ks = —kos , Ky = —Kay | .649ks 6502, .T78ks2 .663k22 674k, .816k22
ks=K,=0 .856k2, .837ks 970k, 8662, .852k 4, 991k,
k4 = 4K22 ) K4 = 4K22 1681](?22 1.586](?22 1739’022 1676k22 1.564]022 1687](?22
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TABLE 5

55

Coefficients in variances and covariance of variance components for an unbalanced
destgn of struclure 45, 28

w; , for r; = 2 1 2 1
w;, forr; = 4 1 4 1
ug, for r; = 1 1 1 1
u;i, forry = 1 1 3 3
a1 .10900 .10000 .10900 .10000
B .24500 .22222 .24500 22222
7 .15000 .16667 .15000 .16667
81 .00123 .00366 .00001 .00059
€ .03670 .04840 .04050 .05308
82 .03438 .03438 .03750 .03750
€ .10000 .10000 .13333 .13333
83 —.00113 —.00195 .00016 .00156
€3 —.03375 —.03750 —.04500 —.05000
Variance of between variance com-
ponent for kzz = '}Kzz 2
kK2 = \/knKz , and
k4 = —kn ) K4 = '—K22 578](722 .634]022 .598’022 .666k22
kk=K,=0 692k, 749k 2, 707k, .768ks2
k4 = 4kzz ) K4 = 4.K22 1 . 147]022 1 .208]022 1 . 143]022 1 .177k22
TABLE 6

Comparative variance of the between variance component in unbalanced® and

balanced designs

Pattern of Columns r; R k= }X:i::(clek%ak; -\/%20’- $Kn
8,8,8,8,8 40 .785ks,
5, 5, 10, 10, 10 40 .814k,;,
7,7,7,7717 35 .832k2,
5,5,5,5,5,5 30 JT97ks2
2,2,6,6,10, 10 36 .837k2e
4,4,4,4,4,4 24 928k,
3,3,33,3,3,3,3,3,3 30 662k 22
2,2,2,2,2,4,4,4,4,4 30 692k,
2,2,2,2,2,2,2,2,2,2 20 1.089k;,

* With weights chosen from those in Tables 3, 4, and 5 to minimize this variance.

than proportional weighting for k. near, but somewhat smaller, than Ky. In
Set III (five columns each of 2 and 4) we have not computed an intermediate
weighting system. Here proportional weighting is preferred until kg, rises to

somewhat above Ky .
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If we examine the effect of changing the {u;}, we see that the case
u; = 1/(r; — 1), which corresponds to pooling mean squares, rather than sums
of squares, across columns, is slightly less favorable in each set unless K, =
4K,, , when the reverse holds.

Finally, it is interesting to compare the variances of the between component
in the unbalanced designs with those in balanced cases. This is done for one case
in Table 6. The loss in effective number of observations for a ratio of 2 to 1.in
column sizes is rather small, being perhaps 3 observations in the first and last
cases. The loss for the middle case is larger, but not as large as might have been
expected from the 10/2 = 5 ratio of extreme column sizes.
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