A THEORY OF SOME MULTIPLE DECISION PROBLEMS, I!

By E. L. LEaMANN

University of California, Berkeley

Summary. A class of multiple decision procedures is described and its members
are shown to possess uniformly minimum risk among all procedures that are un-
biased with respect to a certain loss function. This provides a justification for a
number of procedures considered by Tukey, Duncan, and others, for certain
classes of point estimates, and for some nonparametric decision procedures based
on sample cumulative distribution functions and related to tests of the Kolmo-
goroff-Smirnoff type.

1. Introduction. As has frequently been pointed out, many statistical situa-
tions, which it is customary to treat by means of hypothesis testing, really involve
a choice between more than two decisions. In such problems, when the hypothesis
is rejected, one wants to know in which of a number of possible ways the actual
situation differs from the one postulated by the hypothesis. By formulating the
problem as one involving only two decisions one not only neglects to differentiate
between certain alternative decisions, which may differ considerably in their
consequences, but one may also be led to an inappropriate acceptance region for
the hypothesis.

As an example suppose that X and Y are independently normally distributed
with unit variance and means ¢ and 4. While there are situations in which one
only wishes to determine whether the hypothesis H: £ = 5 = 0 is true or not,
it is perhaps more common that in case of rejection one will want to know
whether it is £ or 5 that is different from 0, or both, and of the nonzero means
whether they are positive or negative. Here the first formulation implies com-
plete spherical symmetry between the alternatives, and the appropriate accept-
ance region is ‘

d4+y e

On the other hand, when the choice lies between the nine indicated decisions,
it seems most natural to accept H when

max (|2, |y]) =%,

and in case of rejection to divide the rejection region into the eight subregions
shown in Fig. 1 corresponding to the eight possible alternative decisions. This
procedure actually will be justified later in terms of a specific loss function.
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One of the attractions of formulating statistical problems in terms of hy-
pothesis testing is the resulting structural simplicity. However, at the same time
this reduction to a choice between only two decisions frequently causes complica-
tions by creating a class of alternatives which combines too many different ele-
ments. In many such cases, if one is willing to forego structural simplicity and
to divide the class of alternatives into its natural components, one obtains a
multiple decision problem, which admits a simpler and more natural solution
than the apparently less complex testing problem.

As an example consider the comparison of & variances o1, - - - , o on the basis
of samples X;;(j = 1, --+,n;¢ = 1, - - - , k) from normal populations N(; , o3).
There does not seem to exist any really convincing solution to the small sample
problem of testing the hypothesis H: o1 = -+ = 0% . On the other hand, there
exists a natural multiple decision problem based on the comparisons of the
different pairs (o:, o,). The associated acceptance region for H is the one dis-
cussed by Hartley [6].

In the present paper, a general class of multiple decision problems is described
together with procedures that seem appropriate for these problems. The method
of constructing the procedures is not new, and is in fact the one used in most
cases of multiple comparisons treated in the literature. It was mentioned ex-
plicitly in 1950 by Howard Levene in a seminar lecture at Columbia University,
and was recently stated, with only a minor difference, by Duncan in [3]. It is
also closely related to a principle of test construction proposed by Roy [12],
and utilized further by Bose and Roy [2]. As will be shown, the method is appli-
cable not only to the typical multiple comparison problems, but also to problems
of point estimation and various nonparametric problems.

The main purpose of the present paper is to prove an optimum property of
the above procedures, namely that they are unbiased (in a sense introduced by
the author in [9]), and that among all unbiased procedures they uniformly mini-
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mize the risk. It should be mentioned that in the application to specific cases a
number. of distributional problems arise, concerning error control and other
properties of the operating characteristic of the procedures. These problems,
which require separate treatment for each example, are not considered here but
instead the paper is concerned only with general aspects of the method. In
particular, the main result involves assumptions concerning the distribution of
the observable random variables only indirectly in that the existence of tests of
related hypotheses H is assumed, which possess certain optimum properties.
Apart from this, the conditions concern only the structure of the multiple decision
problems in terms of the hypotheses H.

2. A class of multiple decision procedures. Let X be a random observable,
the distribution of which depends on the parameter 6, and suppose that a number
of different hypotheses concerning 6 are of interest, say H, : 0cw,, vel'. The
class of alternatives K, to H, is that 6 lies in the complement of w, , which will
be denoted by w5'. When_considering these hypotheses simultaneously one will
wish to determine whether all of them are true, all of them false, or in the inter-
mediate cases, exactly which of the hypotheses hold and which do not.

One is therefore faced with a multiple decision problem in which the different
possible decisions correspond to the statements that a certain set of the hiypothe-
ses H, is correct while the remaining ones are false, or equivalently, that 6 lies
in a certain set, say Q;, ¢ € I, determined by these conditions. The sets @;, which
are the atoms of the field of sets generated by the sets w, , are formally given-by
(2.1) Q= N w37,

yel'

where the #’s indicate which of the hypotheses are true (z;y, = 1) and which are
false (x;y = —1) for the given Q; . If, as is frequently the case, some of the in-
tersections formally defined by (2.1) are empty, we shall restrict the @’s to
denote the nonempty ones, and shall require that none of the possible decisions
should correspond to the empty intersections. Authors dealing with specific
multiple comparison problems have frequently not insisted on this restriction,
and this is also the point in which Duncan’s definition, referred to above, dif-
fers from the one given here.

To specify a loss function, suppose that the losses for the individual testing
problems are a, and b, for falsely rejecting and accepting the hypothesis H,,
and that in the simultaneous consideration of these problems the losses are
additive. If then 0eQ; and the decision dy is taken that 6% , the resulting loss is

(2.2) Wix = Er (€ixy @y + €riyby),

ve
where

(2.3)

1 ifx,-., = 1, Ty = —1,
o 0 otherwise.
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Formula (2.2) expresses the fact that wy is the sum of all those a, for which
H,is true (z;y = 1) but rejected (xzx, = —1), plus the sum of the b, for which
H, is falsely (z;y = —1) accepted (xxy, = 1). The risk is thus simply a weighted
sum of the probabilities of error. Slightly more generally (taking the a’s and
b’s to be given) one may wish to put, in the case that I' is finite,

Wi, = ZI‘ Vy(€iky @y + €riry),

ye

where the »’s are any positive weights, and in the general case
(24) Wy = j; (€iky @y + €riryby) duly).

Suppose now that attention is restricted to nonrandomized procedures. This
involves no essential loss of generality since it can be achieved for all decision
problems with which we shall be concerned, by adjoining to the original random
variables a continuous variable which is independent of them. Then a decision
procedure for the given multiple decision problem is a partition of the sample
space into sets D; such that, when the observation falls into D;, the decision
d; :0€9Q; is taken. It is natural to try to relate these decision procedures to the
tests of the hypotheses H, . Let @ be a family of such tests with acceptance
regions 4 ., for H, and rejection regions A'.,'l, and consider the decision procedure
that @ induces through the relation
(2.5) D; =N A%

vel
Here it may happen that
P(UD, < 1.

i€l
This is the case when the union of those intersections N, A%, for which the
corresponding intersection (2.1) is empty, has positive probability. The parti-
tion (2.5) is then not a procedure for the given decision problem. When the in-
duced procedure satisfies
(2.6) Pys(UD) =1 for all 9,
iel
the family @ is said to be compatible. Since the acceptances and rejections making
up the intersection (2.5) are consistent with each other if the corresponding
intersection (2.1) is nonempty, and are otherwise mutually contradictory, com-
patibility is equivalent to the condition that the simultaneous application of
the tests 4, not lead to any inconsistencies.

In the case that T' is noncountable, a further complication is the possibility
that a set of measurable 4,’s through (2.5) may give rise to a nonmeasurable
D, . However, barring such measurability difficulties, which it is usually easy
to eliminate in specific problems, one has the following result.

TueoreM 1. Relation (2.5) defines a 1:1 correspondence between the decision
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procedures for the problem induced by the hypotheses H., , veT' and the compatible
families @ of tests of these hypotheses.

Proor. Clearly, if @ is compatible, (2.5) does define .a valid decision proce-
dure. Conversely there always exists one, and essentially only one, compatible
@ leading to a given decision procedure. To see this, suppose first that U D; is
the whole sample space X. The desired result is then a consequence of the fact
that (2.5) implies and is implied by
(27) A‘Y = U D i

{t:ziy=1]}
which we shall now prove.

Assume first that (2.5) holds, and let xe4 , . Since z is in some D; , it must be
in some D; with z;, = 1, and we have 4, € U (s.;;,-1yD: . On the other hand,

U D;= U NA4A¥*C U A% =A4,.
{t:24=1} {#:z;,=1} 8¢T {i:zi,=1}
Thus (2.5) implies (2.6).
Suppose conversely that (2.6) holds. Then A43' = Uie;=—1;D:, and hence
n A:h = n U D,‘ .
yeT vel {4z =2k}
Now a point belongs to the set on the right-hand side of this equation if and only
if it lies in a set D, for which x;, = xx, for all 4. But this holds if and only if
1 = k, so that
ﬂ U D,‘ = Dk,
vel (i y=2py}
and (2.6) implies (2.5), as was to be proved.
In case

UD; = X — N,

where N is a null sec for all distributions Py, relation (2.5) clearly holds also if
each A, is replaced by 4,N (X — N). Applying the correspondence just proved
to the space X — N, we see that (2.7) is replaced by

A,n(X — N) =UD;.

Thus the D’s determine the A’s on the set X — N and it is seen that, except on a
null set, (2.5) and (2.7) establish the desired 1:1 correspondence quite generally.

For later reference we also give the relationship of the multiple decision pro-
cedure to the tests of the individual hypotheses in the case that they may be
randomized. Suppose, for this purpose only, that T' and I are countable. The
tests are then described by means of critical functions ¢, , where ¢, (x) denotes
the probability with which H, is rejected when z is observed. Similarly, a pro-
cedure for the given multiple decision problem is a function ¢ of the two argu-
ments 7 apd z, the value ¥;(z) of which is the probability with which decision D,
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is taken when « is observed. If ® = {¢, , yeT'} is.a family of tests of the hypothe-
ses H., , equations (2.5) and (2.7) become

vo = IL &7,

vel
where ¢;' = 1 — ¢, , and

= U=2iy)/2
Py = ;1 2

3. Some classification problems. We shall now illustrate the concepts of the
previous section with some classes of examples. It will be shown later that for
many distributions of .interest (normal, binomial, Poisson, etc.) the indicated
procedures possess the optimum property of uniformly minimizing the risk
among all unbiased procedures, provided the levels «, of the tests ¢, of H, are
related to the losses a, and b, through the equation

(3.1) oy = by [/ (ay + by).

(1) Three-decision problems. Perhaps the simplest problem involving more
than two decisions, and one which has been previously treated in somewhat
similar terms by the author [8] and by Duncan [3], is that of deciding whether a
real-valued parameter @ is less than, equal to, or greater than a specified value
6o . This may be generated by the hypotheses H; :6 = 6y, H, :60 < 6y, which
according to (2.1) lead to the choice between the three parameter sets Q, =
wwe 10 = 60; = wwy 0> 6; U = wi'wp:0 < 6. If the losses a and b
of false rejection and acceptance are taken to be the same in the two component
problems, the loss function is given by

dy do d

0 < 6 0 b a+b
0 = 6 a 0 a
0> 6 a+b b 0

Here the greatest weight is attached to the losses resulting from taking decision
dy when d, is correct and vice versa, which are neglectéd in the usual formulation
of testing H:0 = 6.

In several cases of interest, for example those of a binomial or. Poisson popu-
lation, or of a normal population with 8 either the mean or the variance where
the other parameter may be unknown, the tests ¢; and ¢, of H; and H, depend
on a common statistic 7', and have rejection regions T < C, for Hyand T = C,
for H;, where the constants are determined by

3.2) Po{T < C1} = Po (T = Cs} = a.

Of the intersections wi'ws’, only wi'w;' is empty. The corresponding action,
which would consist in the simultaneous rejection of both hypotheses, is im-
possible when a < 3 since then C; < C, . Subject to this restriction, the pair of
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tests (o1, ¢2) is therefore compatible. The induced decision procedure consists
simply in applying the ‘“‘equal-tails’” test of the hypothesis H:6 = 6, at level
2a and drawing the indicated conclusions. It is of interest to note that this two-
sided test usually does not coincide with the standard unbiased test to which
one is led by combining the two decisions d, and d; . If the losses are not the
same for the two hypotheses, but are a;, b; for H;, equation (3.2) is replaced by

P’o[Técl} = a, P’o{Tng = g,

and the condition for compatibility becomes a; + o < 1.

Frequently one wishes to determine not whether 6 is exactly equal to 6, but
only whether this equality holds approximately. The corresponding three-de-
cision problem of deciding whether 6 < 6,, 6, < 0 < 6, or 0 > 6. (where
6, < 6, < 6), can be generated by the hypotheses H; :0 < 6, and H, :0 = 6, .
The tests ¢; and ¢, then have the same form as before with the constants C, ,
C, determined by

Pol{T§Cl} = o1, Po,{T;C'z} = 2.

They are compatible with the given decision problem if &y + a2 < 1, and if the
cumulative distribution function Fys(c) = Ps{T =< ¢} is for each ¢ a decreasing
function of 0. For we then have

C, = ['711(111) < Fi;l(al) = Fa_zl(l — ) = (y,

and hence C; < C;, which was seen above to be the condition for compatibility.

In the above two examples the assumptions concerning the form of the tests
¢1 and ¢, was unnecessarily restrictive. As an illustration of a somewhat more
general situation consider the case of two independent binomial variables X;
and X,, and the problem of deciding whether p; < p1, p: = p1 or P > p1.
The best unbiased tests of the one-sided hypotheses p. < p; and p, = p1 at
level « reject the hypotheses when X is too large, respectively too small, on each
line segment X; + X, = const., where the cutoff points are determined so that
the conditional probability in each tail is equal to . It is seen as before that this
pair of tests is compatible provided & < %. The induced three-decision proce-
dure consists in performing the two-sided test conditionally on each line seg-
ment as an “equal tails” test at level 2, and then making the indicated state-
ment.

(i1) Classification of two independent parameters. Let £, 5 be two real-valued
parameters, and consider the problem of classifying £ and n as being < or >
than & and < or > than 5, respectively, so that the choice lies between the four
parameter sets W E = Lo, NS m; RE=SEH, 1> n; KiES> L, 1= 1;
Q £ > &, > no. This clearly can be generated by the hypotheses H; :¢ < &,
H; :n S no . The problem of compatibility does not arise here since none of the
intersections (2.1) is empty. The procedure consists in carrying out the two tests
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separately, and combining the results in the obvious fashion.” Examples in which
this would be appropriate are that of a normal population N (¢, ¢°) where it is
desired to compare ¢ and o” with £ and o? respectively, or that of a bivariate nor-
mal population where both means are to be compared with certain standards.

The method applies of course equally well when more than two parameters
are to be classified. An example is the preference ordering of m objects by n
judges. If we assume that the judges constitute a sample from a population with
probability p;; of preferring object ¢ to object j, we can test each of the hypothe-
ses H;;j :pi; < 3 by means of a sign test. The result of applying the set of all
of these tests is a judgment concerning each pair (¢, 7) that either ¢ is preferred
to j, or 7 to 7, or that neither is preferred to the other. In general one will of
course not obtain a simple ordering but a complex comparison, which may be
represented by. a preference polygon as shown for example in Fig. 1 of [7].

(iii) Comparing several populations. Let samples be given from s populations
with distributions depending on the parameters 6; , - - - , 6, and possibly certain
nuisance parameters, which may or may not be common to the different popu-
lations, and consider the hypotheses H;; :0; < 6;. To be specific, let the dis-
tributions be normal with means 6; and common variance ¢, and let the rejection
region for H;; be, in the usual notation, X; — X; < (';;S with

Coj = Cl(1/nd) + (A/n)]".

We shall again assume that the level of the tests is less than 4, so that the con-
stants C';; are positive. The procedure, which is essentially the one proposed by
Tukey in [14], leads to the decision ; = 8; when | X; — X, < C;8, and it is
seen that the system is not compatible since with positive probability

but | X; — X, | > (.S while the associated parameter sets 6; = 6,, 6, = 6,
and 6; # 6, have an empty intersection. A justification of the resulting incon-
sistencies may be obtained if one interprets the acceptance of a hypothesis
sufficiently loosely. For such inconsistencies occur only if at least one of the hy-
potheses is accepted. If, for example, H,; and H j are hoth rejected, we have

X:— X > (Cij + Ci)S > CaS.

Therefore, Hi; is then also rejected corresponding to the fact that 6, > 6;,
6; > 6, implies 6; > 6 .

A perhaps more satisfactory solution is obtained if one replaces the 11) potheses
Hi; by Hi;:0; <. 6; + A, (A > 0), with rcjection regions X, - X;> 08,
where the constants are determined so that the probability of rejection is «
when 6; = 6, + A. It is easily checked that this system is compatible since
H: may be false when both Hj; and Hj; are true. Each difference 8; — ; is

2 A different justification of the resulting acceptance region for the combined hypothesis
was given by the author in [10].
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now classified as being either < —A, between — A and A, or > A. Since the sig-
nificance statement obtained for the differences §; — 6; in this manner are self-
consistent, they lead to a classification of the s populations of the kind described
by Duncan in Section 3 of [3].

As another example consider samples of equal size from N(&;, o3), and the
problem of classifying the populations according to their variances. This can be
generated by the hypotheses H;; :0; =< o;, for which the rejection regions are
S.:/8; > C. In particular the decision that all of the o’s are equal is taken when
max(S;/8S;) = C, so that the present procedure constitutes a refinement of the
test for equality of variances discussed by Hartley [6]. For the same reason as
in the preceding example the system is incompatible. But for @ < } inconsisten-
cies can again occur only if at least one acceptance is involved since the rejection
of both H;; and Hj implies S;/Sx > C* > C, and hence the rejection of Hy .
As before. the inconsistencies may be avoided altogether by replacing the H,;
by the hypotheses H;; :o; < 60; (5 > 1), and in this way one obtains, as in the

case of the means, a satisfactory classification procedure for the variances.

4. Estimation. (i) Point estimation. Let 6 be a continuous real-valued param-
eter, and consider the decision problem generated by the set of hypotheses
H(6):6 < 6, . If 6* denotes the true value of the parameter, the hypotheses
H(6,) with 6* < 6, are true while those with 6* > 6, are false. The associated
intersection (2.1) is therefore
(4.1) n w(00)n n w—1(00).

8260 89<0*
Since w(fy) is the interval 8 < 6, , the set (4.1) consists of the single point 6%,
or in the case that nuisance parameters are present, of the totality of points for
which 8 = 6*. In the induced multiple decision problem the possible decisions
therefore correspond exactly to the possible true values of 6, that is, the problem
is-one of point estimation.

Suppose now, as in Section 2, that the tests of H(6,) are nonrandomized. If
then A (6,) is the acceptance region for H(6,), a necessary and sufficient condition
for compatibility is that, except on a null set,

(42) A(OO) c A(ol), whenever 6y < 6, ,
and
(4.3) N A@) = A6).

0>09

That this condition is necessary is obvious since the corresponding relationships
do hold for the w(8)’s. To prove sufficiency one must, by the criterion given at
the end of Section 2, show that each sample point lies in one of the intersections
(4.1) with w(8) replaced by A(6). Consider now the set of 6’s for which the sam-
ple point is in A (6), and let 8 be its greatest lower bound. Then by (4.2) and (4.3),
H(6o) is accepted for 8, = 6 and rejected for 8, < 4, and hence the sample point
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lies in the intersection
. Ai(oo) n n A—I(OO)

0920
as was to be proved. The decision taken in this case is that 6 lies in the set

w(Oo)n ﬂ (00) = (0},

[T ]
that is, that 6 equals , which therefore is a point estimate of . The relationship
é é 00<:>X 8/1(00)

shows furthermore that measurability of the sets 4 (6;) implies that of the func-
tion 8, and conversely. One also sees from it that @ is a lower confidence limit
for 6 with confidence coefficient 1 — «, if all the tests are carried out at level a.

If 6* < 6, the hypothesis H(6o) is incorrectly rejected for 6* < 6, < 6§ and
never falsely accepted. Thus in accordance with (2.4) the loss may be taken as
a(f — 6*), where the loss for false rejection is assumed to be a for all of the hy-
potheses H(6). Similarly, when 6 < 6* the loss is b(6* — 6). The loss is there-
fore the absolute error, multiplied by a or b as 6 is an over- or underestimate.
If these two kinds of error are considered of equal importance, the loss is simply
proportional to the absolute error.

If the losses @ and b are the same for the different hypotheses H(6), and if
(3.1) is assumed to hold, then the different tests must be carried out at a constant
level of significance a. Under this assumption, the optimum one-sided tests
satisfy (4.2) and (4.3) in many of the standard problems, in particular when one
is dealing with an exponential family of distributions. On the other hand, these
conditions may also hold in cases in which the losses a and b and hence also the
level « at which H(8) is tested, vary with 6. As an example suppose that the
tests have acceptance regions of the form 7' < C(6), where the e.d.f. Fy(c) =
Po{T = c} is for each ¢ a continuous and decreasing function of 6. Then C(8) =
F3'[a(0)], and conditions (4.2) and (4.3) are satisfied provided C(6) is an increas-
ing function of @, which is continuous on the right, or equivalently if «(0) is
decreasing and continuous on the right.

Slightly more generally, one can take the losses for .over- and underestimation
to be

] [
@) o[ @, o[ duo),

with u not necessarily Lebesgue measure. In case of a scale parameter, for exam-
ple, an appropriate loss function may be given by

[] [Ad
af (})do = alog (6/6*), b f Lig=1 log (6%/6).
'l
(ii) Point estimation after a preliminary test of significance. It is frequently of

interest to obtain a point estimate of a parameter 0 after one has tested, and re-
jected, some hypothesis concerning it. If for example a new treatment is being
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compared with a standard one, the hypothesis may be tested that the new treat-
ment does not represent an improvement, that is, that 8 = n — & < 0, where
7 and £ denote the means of the new and old treatments. In case the hypothesis
is rejected one requires an estimate of n — &.

A procedure for testing the hypothesis H:0 < 6,, and estimating 6 in case of
rejection, can be generated by the set of hypotheses H(6,):0 < 6,, with 6, = 6, .
If the tests are carried out at a constant level «, the procedure consists in per-
forming the usual test of H(6) and in case of rejection estimating 6 by the esti-
mate 8 of (i), that is, by the lower confidence limit corresponding to confidence
coefficient 1 — «. A drawback of this method is the limitation it imposes on the
levels a(6). The conservative attitude reflected by the customary choice of a
small level o for testing H suggests that also in the estimation part of the prob-
lem an overestimate should be considered more serious than the corresponding
underestimate. However, one would usually still wish to test H at a lower level
than is desirable for the construction of the estimate. Unfortunately such a com-
bination of levels leads to an incompatible procedure.

In some cases a procedure with the desired properties can be obtained by a
slight modification of the construction given above. To illustrate the method con-
sider a single normal variable X with mean 6 and unit variance. The hypothesis
H:0 < 0is to be tested at level o < } with the acceptance region X < C and
in case of rejection 6 is to be estimated by X which corresponds to the level 3.
This may be generated by the family of hypotheses H(6,):0 < 6,, with 6, = 0
and 6, = C, at the levels a(0) = «, a(6;) = § for 6, = C. In a similar manner
one_can generate a joint testing and estimation procedure, in which the level for
the estimation part of the problem is higher than that of the test, in the case of a
binomial or Poisson variable. Another example in which this is possible is that of
the ratio */¢” of two variances (for example in components of variance problems),
where one wishes to test H:7/o® < k, and in case of rejection requires a point
estimate of the variance ratio. The method, however, does not appear to be ap-
plicable without further modification to the case of a sample X3, - -+ , X, from
N(%, ¢°) on the basis of which one wishes to test H:¢ < 0 and in case of rejection
to use, say X, as an estimate of £ While this problem may be generated by the
class of hypotheses N(£):£ < & with & = 0 and & = C8S, this class depends
on the random variable S, and can therefore be determined only after the ob-
servations have been taken.

The indicated difficulty usually does not exist if the estimation problem arises
when H is accepted rather than when it is rejected. An example of this occurs
when one wishes to test the hypothesis that a drug has a significant toxic effect
(H:0 = 6,), and in case H is accepted wants to estimate the size of this effect.

b. Some nonparametric problems. (i) Testing for goodness of fit. Let
X1, -, X

be independently distributed with cumulative distribution function F, and con-
sider the problem of deciding whether F = Fy, or, if this is judged not to be the
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case, of determining the sets of points w for which F(u) is <, =, and >Fo(u).
This problem may be generated by the set of hypotheses H, (u):F(u) = Fo(u)
and H_(u):F(u) £ Fo(u). If in order to be specific we assume F, to be continu-
ous and strictly increasing, the set of u for which the true F(u) exceeds Fo(u) is a
union of intervals each of which is open on the right. It is necessary for compati-
bility that the corresponding condition hold for the set of u at which F(u) is
judged to exceed Fo(u), that is, for the set of u for which the sample point is in
Ap(u)N A (u). A similar condition must be satisfied by the sets A7'(w) N
A_(u). These conditions are clearly also sufficient for compatibility since given
any two such unions of intervals, there exists a cumulative distribution function
F which is in the desired relationship to Fy .

The best unbiased tests of the hypotheses H,(u) and H_(u) are the appro-
priate one-sided sign tests, which reject the hypotheses if the number X (u) of
observations <u satisfies

(5.1) X(u) < a(uw) and X(u) > b(u),

respectively. In order to achieve desired levels of significance a,(u) and a_(u) it
may be necessary to introduce an auxiliary random variable Z, distributed uni-
formly on (0, 1), and to reject H,(u) and H_(u) as

(5.2) Xw)+Z < a(w) and X(u) 4+ Z > bluw).

Unfortunately the usual choice of levels, oy (u) = a_(u) = a, is not satisfactory
for the present problem. In fact, with this choice the tests (5.2) will always lead
to rejection for u sufficiently large and sufficiently small respectively. The dif-
ficulty stems from the circumstance that for sufficiently extreme u, X (u) tends
to the sure variable n or 0 and hence contains no information, so that the deci-
sions in the extreme tails depend solely on the value of Z. Since one is usually
not even particularly interested in the behavior of F in the extreme tails, it is
natural to avoid this difficulty by choosing «,(u) and a_(u) in such a way that
they tend to 0 as u tends to = «. This will be the case for example if in (5.1) one
sets

a(u) = Fo(u) — A and b(u) = Fo(u) + A4,

so that the acceptance of all of the hypotheses simultaneously reduces to that of
Kolmogoroff’s test of the hypothesis F = F.

One obtains a completely analogous problem, only without the complications
caused by the behavior in the tails, if the observations are grouped. The procedure
will then decide for each interval whether the hypothesis p; = pu.is to be ac-
cepted or whether the observed frequency in the sth interval indicates that p;
exceeds or falls short of its hypothetical value. This is a special case of the classi-
fication problems considered in (ii) of Section 3.

(ii) The two-sample problem. The problem of deciding whether two unknown
cumulative distribution functions F and G are equal, or in the contrary case of
determining for each u whether G(u) is <, =, or > F(u), may be generated by
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the hypotheses H . (u):G(u) = F(u) and H_(u):G(u) = F(u). Let Xy, - -+ , Xn,
and Yy, ---, Y, be samples from F and G, and denote by X (u) and Y (u) the
number of observations in these samples that are <wu. The appropriate tests of
H (u) and H_(u) are the standard one-sided tests for equality of two binomial
distributions, and with a;(u) = a_(u) = « < % they are clearly compaitible.
This choice of levels, as in the previous case, puts the weight of the decision in the
tails on an irrelevant random experiment. But this is'less serious in the present
problem since the very small value of « that is required for satisfactory error
control implies that one will only rarely reject the hypotheses in the tails, where
X(u) = Y(u) =0o0r X(u) = m, Y(u) = n.

(iii) Estimating a cumulative distribution function. Let Xy, --- , X, be inde-
pendently distributed with cumulative distribution function F, and consider the
hypotheses H(uo, po):F(u) < po. As in Section 4(i), if F* denotes the true
c.d.f., the hypotheses H (o, po) for which F*(ue) < po are true, and those with
F*(ug) > po are false. The associated intersection (2.1) is therefore

(5.3) : ﬂ w(uo 5 po) n w—l(’l.lo s po).

{(x0.p0):po= F*(uo))} {(u0:p0):po<F*(ug)}
Since w(uo, po) is the set of all F for which F(ug) = po, the first and second
member of (5.3) are the sets of all F satisfying F(u) < F*(u) for all w and F(u) =
F*(u) for all u, respectively. The set (5.3) therefore contains as its only element
the c.d.f. F*.

It is seen that for each fixed uo, if we set 8§ = F(u,), we are dealing with the
problem of Section 4(i), so that in particular the family of sign tests of the hy-
potheses H(uo, p) based on the binomial variable X (u,) leads to the estimate
6 = F(uo) derived there. However, for compatibility one must now add the re-
quirement that as u varies the F(u) should constitute a c.d.f. This condition is
violated in a rather trivial way if one puts a(u, p) = a. For when X (u) is 0 or
n, the estimate (u) is not 0 and 1 but only close to these values. One can achiev:
compatibility by putting a(u, p) = a(u), and letting «(u) tend to 0 as u tends to
o, and 1 as u tends to — «. Since it is enough to make this change in the extreme
tails, it need not affect the result in practice.

6. Restricted products of decision problems.The method,described in Section 2,
of generating a multiple decision problem from a set of hypotheses is a special case
of the following process. Consider the definition of a general decision problem in
terms of a family of distributions ® = {P;, 6 ¢ @}, a space of possible decisions
D = {d} and a loss function W(8, d). Suppose that @ is fixed but that two dif-
ferent decision spaces D', D” with the loss functions W’, W” are of interest. From
the two associated decision problems one can form a new problem, which consists
in the simultaneous consideration of the two given ones, and may be termed their
product. Its decision space is the Cartesian product D’ X D” and the loss re-
sulting from the decision d = (d’, d”) is

(6.1) w(e, d) = W'e, d') + W (6, d”),
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or slightly more generally W (0, d) = pW'(8,d’) 4+ (1 — p)W”(6, d”). A typical
illustration is the first example of Section 1, where the component problems are
concerned with the classification of £, respectively 7, as negative, zero, or posi-
tive, and where the product problem is that of simultaneously classifying both
parameters.

This-concept is however not general enough to cover most of the other problems
considered in the previous sections. Consider for example the two hypotheses
H’:0 < 6o and H”:0 = 6, . If we denote the decisions to accept H’ and H” by
do and dg and the decisions to reject by di and dy , the product problem offers
the choice of the four decisions (do, ds ), (do , d1), (d1, do), (dy, dy). Of these the
first corresponds to the parameter point 6 = 6, , the second and third to the sets
6 < 6 and 6 > o, while the last one combines two inconsistent decisions and
hence corresponds to an empty set in the parameter space. In order to obtain the
problem of choosing only between the first three of these possibilities, one must
eliminate the point (d’, d”) from the decision space D. In general, we shall speak
of a restricted product if in a product problem some of the decision pairs (d’, d”)
are omitted from D’ X D”, so that D is a subset of D’ X D”. Given any pro-
cedures &', 8” for the problems with decision spaces D’ and D”, let § = (&, §”) be
the procedure that takes decision (d’, d”) when &’ = d’ and 8” = d”. In con-
formance with our earlier terminology we shall say that the pair (&, 6”) is com-
patible with the given set of restrictions if

Po{(3'(X), 8"(X)) e D} =1 for all @,

that is, if the probability is zero of the procedure (§’, 6”) leading to one of the
forbidden elements of ®’ X ©”. Under suitable measurability conditions there
is then again a 1:1 correspondence between compatible pairs of decision pro-
cedures for the component problems and decision procedures for the restricted
product problem. The proof is exactly as that of Theorem 1.

f(x’ 01) g f(x’.o—l) e — _7'_(0_1) g ﬁgi} 1= —
“1 el lew] -l el -+
Hence, for each m and all z'™,
[ PmGE™)  poamE@™) me
(4.13) min [p%(x(m)) [ pom(x(m)) ] sk

where ¢ = min [1/2p, 1/2(1 — p)]. Equation (4.10) follows at once from equa-
tion (4.13). This completes the proof of Lemma 4.2.

We now prove some consequences of Assumptions A, B, and C. In what
follows £ is a fixed a priori probability measure all of whose components are
positive. The reader should recall the italicized statement a few lines above
Assumption A. Write D@ = £9/£°, where £ = (£9, &2, £”).

CORRECTION

Page 14, formula (4.12) through page 17, line 23 should be exchanged with page 70, line 8
through page 72, next-to-last line.



MULTIPLE DECISION PROBLEMS I 15

Lemma 4.3. Under Assumption A there exist positive constants b, and a, (m =
0,1,2 ) with b, < am and such that

@414) e, fandonlyif  PimE™) / pam@E™) =
(4.15) £ eCy  dandonlyif  prw@E™) / Potn(@E™) £ b,

with strict inequality holding if and only if £™ is an interior point of the appropriate
C;.

(Of course, the values @, , b, depend on £%.)

Proor: The method of proof is similar to that of Theorem 3. Let ™ and
¥‘™ be such that (4.3) holds, and let £™ (z™), £™ (y™) be the a posteriori proba-
bility measures corresponding to observed values ™, y™. Equation (4.15)
will follow if we can show that £¢™(z™) & C_; implies £™(%'™) & C_;. (The
reader will be aided in what follows if he draws a picture.) Now, (4.3) says that
the line Vo™ (y™) lies toward V_; from (or on) the line Vo™ (z™). More-
over, (4.3) implies (4.4) and (4.5), which say that the line V3£ (y™) lies toward
V_1 from (or on) the line V1™ (™) and that the line V_1£™ (y'™) lies toward
V, from (or on) the line V_;#™ (z‘™). Hence, £{™ (y™) lies inside or on the
triangle T whose vertices are V_;, £™ (@), and the intercept of Vi£™ (z‘™)
with V_;V,. Since T is contained in the triangle Vo&™(z™)V_, which (by
convexity) is contained in C_;, (4.15) is proved. Moreover, since the last part
of Assumption A implies that £™ (y™) could lie on the line V_;£™ (zt) only if
£™(y™) is Vo or €™ @™), it is clear that £™(y™) is a boundary point of
C_, if and only if either €™ (y'™) = V_; (see the italicized remark a few lines
above Assumption A in this case) or else £™(z™) is a boundary point of C'_;
and £ (™) = £™ (™), the latter implies equality in (4.3). Thus (modulo the
italicized remark), defining b} to be (for fixed £®) the supremum (over ™) of
those values P1m(@™) / p1m(z'™) for which £™ (™) ¢ C_;, and taking b, =
bE if £™(2™) = V_, is on the boundary of C_; for some z™ and b} < b, <
infimum of those Pim(z™) / p1m(@™) for which ™ (=) £ C_; otherwise,
we see from the previous sentence and the fact that pin(y™) / po1m@™) <
Pin(@™) [ poam(@™) if £ @™) # £™(y™) e T, that the last part of the
lemma, as it applies to (4.15) is proved. Equation (4.14) (and the corresponding
last part) is proved similarly.

LEMMA 4.4. Under Assumptions A and B, there exist constants b, < D® < a,,
of Lemma 4.3 satisfying bm < bmi1, Gm = Gmya, form = 0,1,2, ...,

Proor: We shall prove the assertion regarding the b,, , a similar proof applying
for the a,, . Keeping £ fixed as before, in order to prove b, = bmn4 it clearly
suffices to prove that £™ & C_; and p1,ms1@™™) / Pt mpa ™) < pra(z™) /
P_1,m(x(™) imply that =+ ¢ C_, (the case where either ratio is 0/0 or where
both are 0 is easily disposed of); i.e., that £™ & C_; and fi(Zmt1) = f1(Tmy1) Im-
ply &m0 ¢ C_; . The last inequality says that the line V&"+? lies toward V_;
from (or on) the line V(™ ; by (4.8) and (4.9), it implies that the line V_;¢m+d
lies toward V° from (or on) the line V_;£™. Thus, §™*D lies in the triangle



16 E. L. LEHMANN

Vo™V _; and hence, by convexity, £#mtD ¢ C_,. The remaining part of the
lemma follows at once from the fact that £™ =< £7 is equivalent to Pim /
p—lm é D (0).

If fi(x) / f-1(x) cannot take on a suitably dense set of values, the a., and b,
might (for fixed £”) not be unique and might correspond to £™ in the interior
of the C; or the complement of C_; U C;. If this is not the case, the previous
paragraph and the fact that VoPV_; ¢ C_; show that we can strengthen the
weak inequality of Lemma 4.4. One possible formulation of this result is the
following:

LemMa 4.5. If b, < D (resp., am > D®) and of for every open interval J con-
taining b, (resp., an) the ratio pi(z™) / p_1,m(x™) takes on values in J — {bm}
(resp., J — {am}) with positive probability under H; and H_y (so that b, , an are
unique), and if for every open interval J' containing D as a left (resp., right)
end-point fi(x) / fi(x) takes on values in J' with positive probability under H,
and H_y ,then bn < bmi1(resp., @n>ami1). In particular, in case (3) of Lemma
4.2, of u ts equivalent to Lebesgue measure (or if Lebesque measure is absolutely
continuous with respect to u) on the real line, the @, and b., are unique and this last
result holds.

In fact, it remains only to prove the last assertion of the lemma, which follows
at once from the fact that ¢® ™"~V takes on values in any interval of positive
numbers with positive probability under H, and H_,, if Lebesgue measure is
absolutely continuous with respect to u.

Lemma 4.6. Under Assumption C, for any £ all of whose components are (or in
fact, for which 20«» is) positive, there is an integer N = N(&®) such that every
Bayes solution with respect to £® requires fewer than N observations with proba-
bility one under f1, f1, and f, .

Proor: Fix £”. Since P is a positive distance from V, , there is clearly a
positive number ¢ such that every Bayes solution must stop with probability
one whenever either pinm(z™) / pom(z™) < ¢ or else p_in(x™) / Pom(z™) < c.
The desired result now follows at once from (4.10). (Note again the remark
made in italics just before Assumption A).

We may now summarize our results:

TuEOREM 4. Under Assumptions A, B, and C (in particular, under (1), (2),
or (3) of Lemma 4.2), any procedure which minimizes Ao(8) subject to (4.1) s a
GSPRT of H, against H_y with by < bpy1 £ D© = @1 < amform =0, 1, 2,
+++, N and some D which stops with probability one under f,(i = 0, %1) after
N or fewer observations. Under additional conditions specified in Lemma 4.5 the
values am , bu(m = 1) will be unique and an > amy1 08 by < bpy1 unless a,, = DO
or b, = DO where DO corresponds to the a priori distribution with respect to which
the optimum procedure is Bayes.

REMARKS, GENERALIZATIONS, ETcC.

1. Of course, a GSPRT of Theorem 4 involves a randomization rule for all
m = N, including a possibly randomized starting rule (m = 0) if ao or by =D®.
If 1 is nonatomic, there will clearly exist an optimum GSPRT involving no
randomization, except possibly in the starting rule. The lack of uniqueness of
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the a, and b, in cases not covered by Lemma 4.5 is of course inessential, re-
flecting only that certain intervals of values of pim/p-1» have probability zero
under all f; .

2. In all of the above, the X; are random elements whose range is immaterial
(not necessarily real) as long as the appropriate assumptions are satisfied. To
conserve space we have not included statements about the obvious sets of
measure zero where various conditions may be permitted to fail.

3. As an example of what can happen when our assumptions are not satisfied,
we mention briefly the following example: Suppose f;(z) = 1/ #[1 + (x — 77,
j = 0, 1, u = Lebesgue measure. In this Cauchy case it is easy to see that,
for £® with all components positive, the set of possible £ values is a simple
closed curve minus the point £, and lies entirely in the interior of the triangle
VoV1V_1 . Assumption A is not satisfied, and there is no reason why the result of
Lemma 4.3. should be valid. Also, since (e.g.) fi(V/ 3/2)]‘}(—\/ 3/2) does not
depend on j, there is no reason why the result of Lemma 4.6 should hold here.

4. Remarks analogous to those of Section 2 can be made here: for concave
(resp., convex) nondecreasing c¢(n), the minimization of a linear combination
such as (4.2) with A,(8) replaced by Eoc(n) under § may be compared in an
obvious fashion to the minimization when c(n) is replaced by the linear homo-
geneous cost function cx(n) passing through (1, ¢(m + 1) — ¢(m)) (ie., to the
solution of the problem we have considered): the stopping region will now change
with m, being contained in (resp., containing) that fixed region for the problem
concerning ca(n).

To prove the procedures unbiased, we note that unbiasedness of a two-deci-
sion procedure ¢ with losses a and b, by (6.3) is equivalent to

few

b/(a+b) for . i,

(74) Ejo(X)

IV IA

that is, to the Neyman-Pearson condition of unbiasedness at the level
(7.5) a = b/(a + b).

The result now follows from (iv) of Section 6 since in all of the examples the pro-
cedures were obtained as products of unbiased tests. .

Unfortunately, ashas already been pointed out, it is in general not true that un-
biasedness of a product implies the same property for the component problems.
Suppose however that for every test of H:6 ¢ w, the power function Epp(X) is a
continuous function of 9. Then unbiasedness of ¢ entails the somewhat weaker
condition of similarity on the boundary, namely

(7.6) Eyo(X) = a for 6eA,

where A is the common boundary of w and w ™. For an important class of testing
problems, there exists not only among all unbiased tests but also among the larger
class of tests satisfying (7.6), one that uniformly maximizes Esp(X) for 6 & o'
and uniformly minimizes it for 8 £ w. This test therefore, among all those that
are similar on the boundary, uniformly minimizes the risk (7.1). As was shown in

CORRECTION

Page 14, formula (4.12) through page 17, line 23 should be exchanged with page 70, line 8
through page 72, next-to-last line.
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[11], this is the case in particular when 6 = (6;, -- - , 6,), the distributions of ©
form an exponential family and w is of the form 6, < 6§ or 6, = 67 .

The desired optimum property of the various procedures discussed in the ear-
lier sections, for finite I' is an easy consequence of the above remarks and the
following theorem.

THEOREM 2. Let {H,:0 € wy , v € T} be a finite family of hypotheses, and suppose
that for each v the test o uniformly minimizes the risk among all tests that are similar
on the boundary at level o, = b,/(ay + by), and that the family {¢% ,v € T} s
compatible. Suppose further that the following structural assumption is satisfied.

(%) For every vo € T and each common boundary point 6 of w,, and w5, there exist

intersection sets Q; and Q; of the form (2.1) such that 6 is also a common boundary

point of Q; and Q; , and such that x;, = x;y for all ¢ 7= vo but that T;y, & T,y -
Then if Esp,(X) is continuous in 0 for each v, the product procedure " given by

i = ;;Ir (py)™

is unbiased, and uniformly minimizes the risk among all unbiased decision pro-
cedures of the restricted product problem, the components of which are the problems of
testing H ., with losses a, and b, .

Proor. Let € be the class of all decision procedures the component tests of
which are similar on the boundary at level a., . It follows from the assumptions
made and from (iii) of Section 6 that the procedure ¢’ uniformly minimizes the
risk within €. Since the tests ¢ are unbiased—as is seen by comparison with
the tests o, (z) = a,—the same is true of . Let @, denote the class of all unbiased
procedures of the product problem. We shall now show that ¢, C €, which will
complete the proof.

Let ¢ be any procedure belonging to @, let o be any element of I" and 6, any
boundary point of w,, and wys . Let ©; and Q; be the sets, the existence of which is
guaranteed by (*), and assume without loss of generality that z;,, = 1. Then
unbiasedness of Y implies that for any 6 in Q;,

Eo 2y 3(#iy + 1)ayey(X) — @iy — Dbypy (X))
< By 2y @iy + Daywy(X) — @5y — Dbyy (X)),

where the ¢, are the component tests of y. Since z;y = zjy fory # vo, Ziy, = 1,
Zjy, = —1, this reduces to

Ay Boyy(X) = by Boll — Pre(X)]-
Analogously the opposite inequality is seen to hold for any 6 in Q; . Because of the
continuity of Epep,,(X) it follows that equality must hold on the boundary of
Q; and 2;, and hence in particular for § = 6, . Thus
by _
Qyy + by

for every boundary point of w,, and w5, , 8 Was to be proved.

(7.7) Eopy(X) =

Qg
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The assumptions of this theorem may be weakened slightly at one point, which
is important for applications. If A, is the common boundary of w, and w7, it is
not necessary for (x) to be satisfied at every point of A, but enough if it holds for
the points of a dense subset A% . The proof then shows that Ese,(X) = a, for
all 6 ¢ A , and by continuity the equality holds as before for all points of A .

The remaining conditions being automatically satisfied for any problem that
is generated by one-sided hypotheses concerning one of the parameters in an ex-
ponential family, it is necessary only to verify () in order to prove the desired
optimum property for the various examples of Section 3. This requires no further
reference to the possible distributions of the observable random variables, since
(*) concerns only the structure of the multiple decision problem, that is, of the
sets Q; , not the distributions that are represented by the points 6 ¢ Q.

In the first example of Section 3, the only boundary point of w; and w;* (¢ =
1, 2) is 6, . But this is also the boundary point of @ = wiw;and @; = w; w; (¢ # 7),
and hence () is satisfied.The result here is slightly stronger than the one given
by the author in [8] since the condition of unbiasedness can be seen to be less
stringent than the restriction imposed on the procedure in [8]. The checking of
(%) is exactly analogous in the second version of this example, in which 6 is re-
placed by the interval 8, < 6 = 6,.

In example (ii), the common boundary points of w; and wi" for example, are
the points with £-= & . Let (£, 1) be any such point, and suppose without loss
of generality that # < 0. Then (%, #) is also a boundary point of & = ww. and
2 = wi ws, as was to be proved. The other cases are verified analogously.

In example (iii) where w;; is the parameter set 8; < 6; + A, consider the com-
mon boundary of, say, wx and wsi . By the remark following Theorem 2, we may
restrict attention to points of this boundary satisfying

0;, < <0;,<bp=6+A<K0;,< - <¥bj,_,_,

and we may assume further that all of the differences 6, — 6;, ¢ =1, -+ , 7)
are #A. Let

00 = (03, cecy, 02) ewunwglnﬂw’f}"
be any specific such point, and consider the points (6%, 6;, --- , 62) with 0 <

05 — 6, < e. If e is sufficiently small the relationship between all pairs of co-
ordinates will be the same as before, except that 6. < instead of = 6; + A.
These points are therefore in the intersection.

wiz N wy n Nwii,
and since 6’ is a boundary point of this set as well as of the intersection differing
from the present éne only in the factor w2, () is verified.

8. Optimality of the procedures of Sections 4 and 5. A basic assumption of
Theorem 2 is the finiteness of the set I', and the theorem is therefore not applica-
ble to any of the problems of Sections 4 and 5. Since the assumption was used
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however only in the proof of the relationship
(8.1) GO g e)

it will be enough in the following to prove (8.1) in each case. This means showing
for these problems that unbiasedness of a decision procedure implies that all of
its component tests are similar on the boundary.

(i) Estimation. For the problem of estimating a real-valued parameter 6,
let the risk function of an estimate Y, in accordance with Section 4, be given by

) [}
a j; (v — 0 dP) + [ _ (6 - ) dP),

where P, denotes the probability distribution of Y. The condition of unbiased-
ness then becomes

o0 [}
o w-0arw +b [ ©-yarw
(8.2) w 0
saf -0 W +b[ @ -9 aPw)

for all 6, ¢'. In the case that @ = b, this states that the estimate, on the average
is closer to the true value 6 than to any other value ¢'.

In the following we shall restrict attention to estimates Y with finite risk.
If 9 < ¢, (8.2) then reduces to

o[ ["w-0ari) + @ -0 [ ar]

(M []
so| [[@-var+ @ -0 [ )
Dividing both sides by 8’ — 6, and letting ¢’ tend to 6, we see that

v
0 ;= [ w-0dr) s Plo <7 58} -0,

and that similarly also the first term on the right-hand side tends to zero. In
the limit we therefore get

aPo{Y > 6} < bPy{Y < 6)

or

b
Po{Y>0}§m——a.

By letting 6’ tend to 6 from below, we find analogously that unbiasedness of the
estimate Y implies

PolY 2 0} 2 a
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Suppose now that the distributions of @ constitute an exponential family,
and that they possess densities with respect to Lebesgue measure. This is the
case not only for families of univariate and multivariate normal distributions,
of gamma distributions, etc., but also when one is dealing with binomial or Pois-
son variables to which, as a randomization device, one adds a variable that is
uniformly distributed over (0, 1). If then Pe{Y = ¢} is positive for some 6, it is
positive for all 6. Hence

(8.3) PylY > 0} = a,

except possibly for a countable set of parameter values, and it follows from a
theorem of Scheffé [13] that (8.3) must hold for all 6. Since it was shown in Sec-
tion 4 that ¥ > 6, is the rejection region of the hypothesis H(6):6 = 6o, and
since 6y is the only common boundary point of w(6p) and «w*(6,), this completes
the proof of (8.1).

(ii) Estimation after a preliminary test of significance. For the problem gener-
ated by the hypotheses H(6;):0 < 6:(6p < 6,), and with constant losses a and b,
the risk is

© ] [
a f (y — 0) dPo(y) + b f (0 — y) dPo(y) + b8 — 60) f dPs(y) if 6, < 6,
0+ 0o+ —0
and
o -6 dPy) if.0 < 0.
6o+

It is seen exactly as before that unbiasedness implies (8.3) for all 6 > 6, , and
that this holds also for 8 = 6, follows again from Scheffé’s theorem.

Consider instead the modified problem of Section 4 (ii) generated by the hy-
potheses H(6;):0 < 6, with 6, = 0 or 6, = C, and with losses ao, b for H(0)
and a, b for the remaining hypotheses. A compatible procedure accepts H(0)
when a statistic Y < C, and otherwise takes Y as an estimate of 6. The asso-

ciated risk is

[ + laty — C) + pad dPs(y) if6 <0,
o [ P +a[ - aPly) 0 <ssC,
— o0 CH
) [}
a Cw - 0 aP) + b [ 0= v) dP)

+ f_ "6 = C) + bogl dPs(y) if C< 0.

Here we have taken the measure u of (2.4) to be Lebesgue measure for the hy-
potheses H(6;) with 6, = C and to assign measure p to the hypothesis H(0).
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For 6 = C we see as before that unbiasedness implies (8.3), while for 8§ = 0 we
find
aPolY > C} = bpPo{Y = C}
and hence
Po{Y > C} =

by considering the condition of unbiasedness for § = 0 and ¢’ | 0 and vice versa.

(iii) Testing for goodness of fit. The problem, as described in Section 5, is gen-
erated by the hypotheses H_(u):F(u) < Fo(u) and H,(u):F(u) = Fo(u). Let
d_(u), do(u), di(u) denote the decisions that the true F(u) is <, =, > than
Fo(u) and let ¢_(z, u), Yo(z, u), ¢4 (x, u) be the probabilities with which these
decisions are taken when ¢ = (2, - -+ , x,) is observed. Then the corresponding
over-all probabilities of these decisions are P_(u) = P_(u, F) = Ew_(X, u),
Py(u) and P, (u). If the losses resulting from false rejection and acceptance are
a(u) and b(u) for both H_(w) and H,(u), and if we put

R_(u, F) = R_(u) = [a(u) + b(u)]P;(u) + b(u)Po(u),
Ro(u, F) = Ro(u) = a(u)[P_(u) + P.(u)],
Ri(u, F) = R (u) = [a(u) + b(u)]P_(u) + b(u)Po(u),

the risk function is
RE) = [ R duw) + [ Row) dut) + [ Ruw) dutw)

where S_, Sy and S, are the sets on which the true F(u) is <, =, and > than
Fo(u). In particular

R(Fo) = .[ Ro(u, Fo) d[.&(’u).
We shall assume in the following that R(Fo) is finite, that a(u) and b(u) are
bounded in every finite interval, and for the sake of convenience also that F,

possesses a probability density.
The condition of unbiasedness becomes in the present case

[ R P dut) + [ B, ) dute) + [ Retw Pauw

< f , R_(u, F) du(u) + f , Rou, F) du(u) + f . Ry(u, F) duu),

where S_, S and S are the sets on which some alternative c.d.f. F’ is <, =,
and > than F,. Consider this condition now for some F and F’, both of which
agree with Fy except on a finite interval I on which F < Fo and F/ > F,. It
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then reduces to

fI R_(u, F) du(u) < f, R (u, F) du(u).

If, holding I fixed, one considers a sequence of such distributions F, which pos-
sess probability densities that tend to the density of Fy, it follows from Scheffé’s
theorem that

[mmmwwgﬁmmmww,

and since I was an arbitrary interval, that

R_(u, Fo) < R,(u, Fy) a.e.
Analogously one sees that the reverse inequality must hold, so that

R_(u, Fy) = Ry(u, Fy) a.e.

If in the above argument F is replaced by Fy, one finds

ﬂmmmwwgﬁmmmww

for all 1, and hence
Ro(u, Fo) é R+(u, Fo) a.e.

Similarly, on replacing F’ by F, one gets
[ Row, Py duw) 5 [ Rolw, P) dut)

for all 7, which by the same argument as before leads to
R, (u, Fo) £ Ro(u, Fy).
Thus, for almost all u,
R_(u, Fo) = Ro(u, Fo) = R (u, Fy),
which implies

b(u)

P, F) = Puu, F) = oot

= a(u),
as was to be proved.

A very similar proof applies in the two-sample problem discussed in Section
5(ii), and we shall therefore not give the details.

(iv) Estimating a cumulative distribution function. The problem of estimating a
c.d.f. was treated from a minimax point of view by Agarwal [1] for several loss
functions all of which differ from the one below. Following our earlier definitions,
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we take the risk function here to be

FAL o = roon e + [ vty - 1 apw) du,

where P, = P, r is the distribution of the estimate Y (u) of F(u). As in the prob-
lem of estimating a single parameter, we shall restrict attention to estimates
with finite risk, and the condition of unbiasedness then becomes

) F'(w) )
[ o [~ rearso) + @ - reor [ apuw} auen
— o0 F(u) F’(u)

F(u)

) F'(u)
< [Lfo [ w0 — s aps) + 0w — ren [ apo) duo,

-]

where the probabilities are computed with respect to F, and where F’ is any
alternative c.d.f.

We shall consider first the case that F is the uniform distribution on (0, 1),
that I = (uo, wi) is any subinterval of (0, 1), and that F”’ is any continuous
c.df. such that F'(u) = F(u) + A for uo < u < w; and F'(u) = F(u) for
u < u — A and w > w + A. On dividing by A, and letting A tend to zero,
(8.4) is then seen to reduce to

f, AP YW > F@)} duw) S [ b@PL(Y () < F@)} du(w),

and since this holds for all I, to

b(u)
a(u) + b(u)

On letting F’ tend to F from below one finds similarly
PY(u) = Flu)} = au) a.e.

P {Y(u) > F(u)} < = au) a.e.

In exactly the same manner these two inequalities are seen to hold also for any F
belonging to the family & of mixtures of uniform distribution over nonoverlap-
ping intervals. By considering a countable dense subset of &, for example mix-
tures with rational weights of uniform distributions over intervals with rational
endpoints, it is seen that there exists a null set N such that for any » £ N the
two inequalities hold for all Fe &, and it follows by an argument similar to that
given in (i) of this section that for all u 2 N, and all F ¢ &

P, r{Y(uw) > F(w)} = a(u).

For FeF and any fixed uz N, the common boundary points of w(uo, po):
F(us) < po and w '(up, po) are exactly the distributions of & for which F(ug) =

Do . For these we then have
Py p{Y(u) > po} = a(w),
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and since the left-hand side is the probability of rejecting the hypothesis H (s,
Do), this completes the proof of (8.1). The desired optimum property of the pro-
cedure now follows from the fact, proved by Fraser [4], [5], that for the family
of distributions &, the one-sided sign test uniformly minimizes the probabilities
of error among all unbiased tests of the hypothesis H(uo, po).
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