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where Fo(z) = 1, Fi(2) = 2z + 2, and F.(2) = (z + 2n) Fn._y(2) — 2Fn_(2), for
a>0;x20;n=1,2 3---. These recurrence relations could be used to com-
pute a table of the distribution function.

4. Moments. The moments are obtainable directly from the expansion of the
characteristic function

1L _ A8 A+D & A+ DO+2) &
( f)* a2 o2 214 o 318"
1+ —
2a
We have
w=0 0 =ps=pp=p = -

14
He = Mg =

A

[
_AG+ 1)

2

[s2

22

1
ﬁl=0’62=ﬁ=3(1+x>.

As one would expect, the variance of X increases as A increases. It is interesting
to note that 3, is always greater than 3.
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METRICS AND NORMS ON SPACES OF RANDOM VARIABLES

By A. J. THOMASIAN!
University of California, Berkeley

1. Introduction and summary. Let X be the space of random variables defined
on an abstract probability space (2, @, P) where we consider any two elements of
X which are equal a.s. (almost surely) as the same. Fréchet [2] exhibited a metric
on ¥ (for example, E[| X — Y |/(1 + | X — Y |)]) with the property that con-
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vergence in the metric is equivalent to convergence in probability, and he showed
that for some probability spaces the same cannot be done for convergence a.s.
Dugué (1] showed that it is not in general possible to define a norm on ¥ such
that convergence in the norm is equivalent to convergence in probability. These
results are contained in and completed by the following fact which was stated
without proof by the author in [5] and which follows easily from the two theorems
stated and proved in this note. There exists a metric (norm) on ¥ with con-
vergence in the metric (norm) equivalent to convergence a.s. (in probability) if,
and only if, @ is the union of countable (finite) number of disjoint atoms. After
these results were obtained it was found that the equivalence of parts (i) and
(iii) of Theorem 1 had been proved by Marczewski [4], p. 121.

An atom of a probability space is a measurable set A with P(4) > 0, such that
any measurable subset has probability 0 or P(A4). It is easy to show that a
random variable is a.s. constant on an atom. f will always designate a real-
valued function defined on ¥. Convergence in f is said to be equivalent to con-
vergence a.s. (in probability) if, for every sequence {X,} of elements from ¥,
f(X,) — 0if, and only if, X, — 0 a.s. (in probability).

TaEOREM 1. The following conditions on a probability space are equivalent.

(1) There exists a function f, such that convergence in f is equivalent to con-
vergence a.s.
(il) For any sequence {X.} from X, if X, — 0 in probability, then X, — 0 a.s.

(i) Q s a countable union of disjoint atoms.

TrEOREM 2. The following conditions on a probability space are equivalent.

(a) There exists a function f, such that convergence in f is equivalent to convergence

in probability and f satisfies | f(aX) | = |a|-|f(X)| for any X ¢ % and
any real number a.
(b) @ is a finite union of disjoint atoms.

2. Proof of Theorem 1. The following well-known result (see Logve [3], p.
100, Example 7) will be used in the proof.

TueorEM A. For any probability space, @ = A + 2.7 A; where all of the sets in
the decomposition are disjoint and each A ; is the empty set or an atom, and for every
measurable subset B of A, P takes every valuc between 0 and P(B) for measurable
subsets of B.

(ii) implies (i) by the result of Fréchet.

To show that (i) implies (ii) assume (i) and take any sequence X, — 0 in
probability. If f(X,)-~> 0 then there exists a subsequence X,., and an ¢ > 0
such that | f(X.-) | > e. But X, — 0 in probability so that it has a subsequence
X, — 0a.s. Thus f(X,) — 0 contradicting | f(X,.) | > e Therefore, f(X,)
must converge to 0, hence, X, — 0 a.s.

(ii) follows easily from (iii) since a random variable is a.s. constant on an
atom.

To prove that (ii) implies (iii), assume that (iii) is false. Thus in the decompo-
sition of Theorem A, P(4) > 0 and for each n, A = > %, A, where P(4,;) =
(1/n)P(A) for ¢ = 1,2, ---, n, and the sets Au1, Ane, - -+, Ann are disjoint.
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Let X,; be the characteristic function of the set 4,;. The sequence of random
variables

XllyXZIyXﬂ)XM)"'

converges to 0 in probability but not a.s. so that (ii) implies (iii), completing
the proof.

3. Proof of Theorem 2. To prove that (a) implies (b), assume that (a) is
true and (b) is false. From Theorem A there exists a sequence 4, of events with
0 < P(A,) — 0. Let X, be the characteristic function of the set A, . For all n,
f(X») # 0 because if f(X,,) = 0, then by (a) the sequence of random variables,
each of which is X, , must converge to 0 in probability, contradicting P(4.,) >
0. By (a), [f(X./f(X,))] = 1 for all n, so that the sequence of random variables
X./f(X,) cannot converge to 0 in probability. However, it must, because P(4,)
— 0. A contradiction has been reached, hence (a) implies (b).

Assuming (b) it is easy to show that f(X) = E | X | is 2 norm on ¥% such that
convergence in f is equivalent to convergence in probability. Theorem 2 is
proved.

4. Acknowledgment. The author wishes to thank Professor M. Logve for
suggesting this problem.
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DIVERGENT TIME HOMOGENEOUS BIRTH AND DEATH PROCESSES!
By Perer W. M. JonN

University of New Mexico

1. Introduction. In a time-homogeneous birth and death process a population
is considered, the size of which is given by the random variable n(t) defined on
the non-negative integers. If at time ¢ the population size is n, the probability
that a birth occurs in the time interval (¢, ¢ 4+ Atf) is M.t + 0(At); the probability
of a death is u.t + o(At), and the probability of the occurrence of more than one

Received January 17, 1956; revised September 24, 1956.
L These results were included in a dissertation submitted to the University of Oklahoma
in partial fulfillment of the requirements for the Ph.D. degree in mathematics, August,

1955.



